1
|
McCullen M, Oltz E. The multifaceted roles of TCF1 in innate and adaptive lymphocytes. Adv Immunol 2024; 164:39-71. [PMID: 39523028 DOI: 10.1016/bs.ai.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The immune system requires a complex network of specialized cell types to defend against a range of threats. The specific roles and destinies of these cell types are enforced by a constellation of gene regulatory programs, which are orchestrated through lineage-specifying transcription factors. T Cell Factor 1 (TCF1) is a central transcription factor in many of these programs, guiding the development and functionality of both adaptive and innate lymphoid cells. This review highlights recent insights into the function of TCF1 in a variety of lymphoid cell subsets and its potential for translational applications in immune disorders and cancer.
Collapse
Affiliation(s)
- Matthew McCullen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States
| | - Eugene Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States.
| |
Collapse
|
2
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
3
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
4
|
Zhao X, Hu W, Park SR, Zhu S, Hu SS, Zang C, Peng W, Shan Q, Xue HH. The transcriptional cofactor Tle3 reciprocally controls effector and central memory CD8 + T cell fates. Nat Immunol 2024; 25:294-306. [PMID: 38238608 PMCID: PMC10916363 DOI: 10.1038/s41590-023-01720-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/28/2023] [Indexed: 02/03/2024]
Abstract
Antigen-experienced CD8+ T cells form effector and central memory T cells (TEM and TCM cells, respectively); however, the mechanism(s) controlling their lineage plasticity remains incompletely understood. Here we show that the transcription cofactor Tle3 critically regulates TEM and TCM cell fates and lineage stability through dynamic redistribution in antigen-responding CD8+ T cell genome. Genetic ablation of Tle3 promoted CD8+ TCM cell formation at the expense of CD8+ TEM cells. Lineage tracing showed that Tle3-deficient CD8+ TEM cells underwent accelerated conversion into CD8+ TCM cells while retaining robust recall capacity. Tle3 acted as a coactivator for Tbet to increase chromatin opening at CD8+ TEM cell-characteristic sites and to activate CD8+ TEM cell signature gene transcription, while engaging Runx3 and Tcf1 to limit CD8+ TCM cell-characteristic molecular features. Thus, Tle3 integrated functions of multiple transcription factors to guard lineage fidelity of CD8+ TEM cells, and manipulation of Tle3 activity could favor CD8+ TCM cell production.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Sung Rye Park
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Qiang Shan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA.
| |
Collapse
|
5
|
Lambi AG, DeSante RJ, Patel PR, Hilliard BA, Popoff SN, Barbe MF. Blocking CCN2 Reduces Established Palmar Neuromuscular Fibrosis and Improves Function Following Repetitive Overuse Injury. Int J Mol Sci 2023; 24:13866. [PMID: 37762168 PMCID: PMC10531056 DOI: 10.3390/ijms241813866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The matricellular protein cell communication factor 2/connective tissue growth factor (CCN2/CTGF) is critical to development of neuromuscular fibrosis. Here, we tested whether anti-CCN2 antibody treatment will reduce established forepaw fibro-degenerative changes and improve function in a rat model of overuse injury. Adult female rats performed a high repetition high force (HRHF) task for 18 weeks. Tissues were collected from one subset after 18 wks (HRHF-Untreated). Two subsets were provided 6 wks of rest with concurrent treatment with anti-CCN2 (HRHF-Rest/anti-CCN2) or IgG (HRHF-Rest/IgG). Results were compared to IgG-treated Controls. Forepaw muscle fibrosis, neural fibrosis and entheseal damage were increased in HRHF-Untreated rats, compared to Controls, and changes were ameliorated in HRHF-Rest/anti-CCN2 rats. Anti-CCN2 treatment also reduced phosphorylated-β-catenin (pro-fibrotic protein) in muscles and distal bone/entheses complex, and increased CCN3 (anti-fibrotic) in the same tissues, compared to HRHF-Untreated rats. Grip strength declines and mechanical sensitivity observed in HRHF-Untreated improved with rest; grip strength improved further in HRHF-Rest/anti-CCN2. Grip strength declines correlated with muscle fibrosis, entheseal damage, extraneural fibrosis, and decreased nerve conduction velocity, while enhanced mechanical sensitivity (a pain-related behavior) correlated with extraneural fibrosis. These studies demonstrate that blocking CCN2 signaling reduces established forepaw neuromuscular fibrosis and entheseal damage, which improves forepaw function, following overuse injury.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Surgery, Plastic Surgery Section, New Mexico Veterans Administration Health Care System, Albuquerque, NM 87108, USA;
- Division of Plastic Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Robert J. DeSante
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Parth R. Patel
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
| | - Steven N. Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (R.J.D.); (P.R.P.); (B.A.H.)
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
6
|
Láinez-González D, Alonso-Aguado AB, Alonso-Dominguez JM. Understanding the Wnt Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Feasible Key against Relapses. BIOLOGY 2023; 12:biology12050683. [PMID: 37237497 DOI: 10.3390/biology12050683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Wnt signaling is a highly conserved pathway in evolution which controls important processes such as cell proliferation, differentiation and migration, both in the embryo and in the adult. Dysregulation of this pathway can favor the development of different types of cancer, such as acute myeloid leukemia and other hematological malignancies. Overactivation of this pathway may promote the transformation of pre-leukemic stem cells into acute myeloid leukemia stem cells, as well as the maintenance of their quiescent state, which confers them with self-renewal and chemoresistance capacity, favoring relapse of the disease. Although this pathway participates in the regulation of normal hematopoiesis, its requirements seem to be greater in the leukemic stem cell population. In this review, we explore the possible therapeutic targeting of Wnt to eradicate the LSCs of AML.
Collapse
Affiliation(s)
- Daniel Láinez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ana Belén Alonso-Aguado
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Juan Manuel Alonso-Dominguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
7
|
Cosgun KN, Jumaa H, Robinson ME, Kistner KM, Xu L, Xiao G, Chan LN, Lee J, Kume K, Leveille E, Fonseca-Arce D, Khanduja D, Ng HL, Feldhahn N, Song J, Chan WC, Chen J, Taketo MM, Kothari S, Davids MS, Schjerven H, Jellusova J, Müschen M. Targeted engagement of β-catenin-Ikaros complexes in refractory B-cell malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532152. [PMID: 36993619 PMCID: PMC10054980 DOI: 10.1101/2023.03.13.532152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED In most cell types, nuclear β-catenin functions as prominent oncogenic driver and pairs with TCF7-family factors for transcriptional activation of MYC. Surprisingly, B-lymphoid malignancies not only lacked expression and activating lesions of β-catenin but critically depended on GSK3β for effective β-catenin degradation. Our interactome studies in B-lymphoid tumors revealed that β-catenin formed repressive complexes with lymphoid-specific Ikaros factors at the expense of TCF7. Instead of MYC-activation, β-catenin was essential to enable Ikaros-mediated recruitment of nucleosome remodeling and deacetylation (NuRD) complexes for transcriptional repression of MYC. To leverage this previously unrecognized vulnerability of B-cell-specific repressive β-catenin-Ikaros-complexes in refractory B-cell malignancies, we examined GSK3β small molecule inhibitors to subvert β-catenin degradation. Clinically approved GSK3β-inhibitors that achieved favorable safety prof les at micromolar concentrations in clinical trials for neurological disorders and solid tumors were effective at low nanomolar concentrations in B-cell malignancies, induced massive accumulation of β-catenin, repression of MYC and acute cell death. Preclinical in vivo treatment experiments in patient-derived xenografts validated small molecule GSK3β-inhibitors for targeted engagement of lymphoid-specific β-catenin-Ikaros complexes as a novel strategy to overcome conventional mechanisms of drug-resistance in refractory malignancies. HIGHLIGHTS Unlike other cell lineages, B-cells express nuclear β-catenin protein at low baseline levels and depend on GSK3β for its degradation.In B-cells, β-catenin forms unique complexes with lymphoid-specific Ikaros factors and is required for Ikaros-mediated tumor suppression and assembly of repressive NuRD complexes. CRISPR-based knockin mutation of a single Ikaros-binding motif in a lymphoid MYC superenhancer region reversed β-catenin-dependent Myc repression and induction of cell death. The discovery of GSK3β-dependent degradation of β-catenin as unique B-lymphoid vulnerability provides a rationale to repurpose clinically approved GSK3β-inhibitors for the treatment of refractory B-cell malignancies. GRAPHICAL ABSTRACT Abundant nuclear β-cateninβ-catenin pairs with TCF7 factors for transcriptional activation of MYCB-cells rely on efficient degradation of β-catenin by GSK3βB-cell-specific expression of Ikaros factors Unique vulnerability in B-cell tumors: GSK3β-inhibitors induce nuclear accumulation of β-catenin.β-catenin pairs with B-cell-specific Ikaros factors for transcriptional repression of MYC.
Collapse
|
8
|
Fröhlich J, Rose K, Hecht A. Transcriptional activity mediated by β-CATENIN and TCF/LEF family members is completely dispensable for survival and propagation of multiple human colorectal cancer cell lines. Sci Rep 2023; 13:287. [PMID: 36609428 PMCID: PMC9822887 DOI: 10.1038/s41598-022-27261-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023] Open
Abstract
Unrestrained transcriptional activity of β-CATENIN and its binding partner TCF7L2 frequently underlies colorectal tumor initiation and is considered an obligatory oncogenic driver throughout intestinal carcinogenesis. Yet, the TCF7L2 gene carries inactivating mutations in about 10% of colorectal tumors and is non-essential in colorectal cancer (CRC) cell lines. To determine whether CRC cells acquire TCF7L2-independence through cancer-specific compensation by other T-cell factor (TCF)/lymphoid enhancer-binding factor (LEF) family members, or rather lose addiction to β-CATENIN/TCF7L2-driven gene expression altogether, we generated multiple CRC cell lines entirely negative for TCF/LEF or β-CATENIN expression. Survival of these cells and the ability to propagate them demonstrate their complete β-CATENIN- and TCF/LEF-independence. Nonetheless, one β-CATENIN-deficient cell line eventually became senescent, and absence of TCF/LEF proteins and β-CATENIN consistently impaired CRC cell proliferation, reminiscent of mitogenic effects of WNT/β-CATENIN signaling in the healthy intestine. Despite this common phenotype, β-CATENIN-deficient cells exhibited highly cell-line-specific gene expression changes with little overlap between β-CATENIN- and TCF7L2-dependent transcriptomes. Apparently, β-CATENIN and TCF7L2 independently control sizeable fractions of their target genes. The observed divergence of β-CATENIN and TCF7L2 transcriptional programs, and the finding that neither β-CATENIN nor TCF/LEF activity is strictly required for CRC cell survival has important implications when evaluating these factors as potential drug targets.
Collapse
Affiliation(s)
- Janna Fröhlich
- grid.5963.9Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany ,grid.5963.9Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Katja Rose
- grid.5963.9Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany. .,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
9
|
Shan Q, Zhu S, Chen X, Liu J, Yuan S, Li X, Peng W, Xue HH. Tcf1-CTCF cooperativity shapes genomic architecture to promote CD8 + T cell homeostasis. Nat Immunol 2022; 23:1222-1235. [PMID: 35882936 PMCID: PMC9579964 DOI: 10.1038/s41590-022-01263-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/09/2022] [Indexed: 02/03/2023]
Abstract
CD8+ T cell homeostasis is maintained by the cytokines IL-7 and IL-15. Here we show that transcription factors Tcf1 and Lef1 were intrinsically required for homeostatic proliferation of CD8+ T cells. Multiomics analyses showed that Tcf1 recruited the genome organizer CTCF and that homeostatic cytokines induced Tcf1-dependent CTCF redistribution in the CD8+ T cell genome. Hi-C coupled with network analyses indicated that Tcf1 and CTCF acted cooperatively to promote chromatin interactions and form highly connected, dynamic interaction hubs in CD8+ T cells before and after cytokine stimulation. Ablating CTCF phenocopied the proliferative defects caused by Tcf1 and Lef1 deficiency. Tcf1 and CTCF controlled a similar set of genes that regulated cell cycle progression and promoted CD8+ T cell homeostatic proliferation in vivo. These findings identified CTCF as a Tcf1 cofactor and uncovered an intricate interplay between Tcf1 and CTCF that modulates the genomic architecture of CD8+ T cells to preserve homeostasis.
Collapse
Affiliation(s)
- Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110,These authors contributed equally to this work
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington DC, 20052,These authors contributed equally to this work
| | - Xia Chen
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Jia Liu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Shuang Yuan
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Xiang Li
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC, 20052,Corresponding authors: Hai-Hui Xue, 111 Ideation Way, Bldg. 102, Rm. A417, Nutley, NJ 07110, Tel: 201-880-3550; ; Weiqun Peng, Science & Engineering Hall 4790, 800 22nd St NW, Washington, DC 20052, Tel: 202-994-0129;
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110,New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018,Corresponding authors: Hai-Hui Xue, 111 Ideation Way, Bldg. 102, Rm. A417, Nutley, NJ 07110, Tel: 201-880-3550; ; Weiqun Peng, Science & Engineering Hall 4790, 800 22nd St NW, Washington, DC 20052, Tel: 202-994-0129;
| |
Collapse
|
10
|
TCF-1: a maverick in T cell development and function. Nat Immunol 2022; 23:671-678. [PMID: 35487986 PMCID: PMC9202512 DOI: 10.1038/s41590-022-01194-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.
Collapse
|
11
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
12
|
Abstract
TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.
Collapse
|
13
|
Liu Y, Debo B, Li M, Shi Z, Sheng W, Shi Y. LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. Nat Commun 2021; 12:6831. [PMID: 34819502 PMCID: PMC8613218 DOI: 10.1038/s41467-021-27179-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Exhausted CD8+ T cells are key targets of immune checkpoint blockade therapy and their ineffective reinvigoration limits the durable benefit in some cancer patients. Here, we demonstrate that histone demethylase LSD1 acts to enforce an epigenetic program in progenitor exhausted CD8+ T cells to antagonize the TCF1-mediated progenitor maintenance and to promote terminal differentiation. Consequently, genetic perturbation or small molecules targeting LSD1 increases the persistence of the progenitor exhausted CD8+ T cells, which provide a sustained source for the proliferative conversion to numerically larger terminally exhausted T cells with tumor-killing cytotoxicity, thereby leading to effective and durable responses to anti-PD1 therapy. Collectively, our findings provide important insights into epigenetic mechanisms that regulate T cell exhaustion and have important implications for durable immunotherapy.
Collapse
Affiliation(s)
- Yi Liu
- grid.38142.3c000000041936754XDivision of Newborn Medicine and Epigenetics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Brian Debo
- grid.38142.3c000000041936754XDivision of Newborn Medicine and Epigenetics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.4991.50000 0004 1936 8948Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ UK
| | - Mingfeng Li
- grid.47100.320000000419368710Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510 USA
| | - Zhennan Shi
- grid.38142.3c000000041936754XDivision of Newborn Medicine and Epigenetics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wanqiang Sheng
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Institute of Immunology, and Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
14
|
Wander P, Arentsen-Peters STCJM, Pinhanҫos SS, Koopmans B, Dolman MEM, Ariese R, Bos FL, Castro PG, Jones L, Schneider P, Navarro MG, Molenaar JJ, Rios AC, Zwaan CM, Stam RW. High-throughput drug screening reveals Pyrvinium pamoate as effective candidate against pediatric MLL-rearranged acute myeloid leukemia. Transl Oncol 2021; 14:101048. [PMID: 33667892 PMCID: PMC7933809 DOI: 10.1016/j.tranon.2021.101048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Drug library screening identified pyrvinium to be effective against MLL-rearranged AML. Pyrvinium targets the mitochondria of MLL-rearranged AML cells. Pyrvinium does not antagonize with standard chemotherapy in MLL-rearranged AML.
Pediatric MLL-rearranged acute myeloid leukemia (AML) has a generally unfavorable outcome, primarily due to relapse and drug resistance. To overcome these difficulties, new therapeutic agents are urgently needed. Yet, implementing novel drugs for clinical use is a time-consuming, laborious, costly and high-risk process. Therefore, we applied a drug-repositioning strategy by screening drug libraries, comprised of >4000 compounds that are mostly FDA-approved, in a high-throughput format on primary MLL-rearranged AML cells. Here we identified pyrvinium pamoate (pyrvinium) as a novel candidate drug effective against MLL-rearranged AML, eliminating all cell viability at <1000 nM. Additional screening of identified drug hits on non-leukemic bone marrow samples, resulted in a decrease in cell viability of ∼50% at 1000 nM pyrvinium, suggesting a therapeutic window for targeting leukemic cells specifically. Validation of pyrvinium on an extensive panel of AML cell lines and primary AML samples showed comparable viabilities as the drug screen data, with pyrvinium achieving IC50 values of <80 nM in these samples. Remarkably, pyrvinium also induced cell toxicity in primary MLL-AF10+ AML cells, an MLL-rearrangement associated with a poor outcome. While pyrvinium is able to inhibit the Wnt pathway in other diseases, this unlikely explains the efficacy we observed as β-catenin was not expressed in the AML cells tested. Rather, we show that pyrvinium co-localized with the mitochondrial stain in cells, and hence may act by inhibiting mitochondrial respiration. Overall, this study shows that pyrvinium is highly effective against MLL-rearranged AML in vitro, and therefore represents a novel potential candidate for further studies in MLL-rearranged AML.
Collapse
Affiliation(s)
- Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Sandra S Pinhanҫos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Rijndert Ariese
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Frank L Bos
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Luke Jones
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Miriam Guillen Navarro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, Netherlands.
| |
Collapse
|
15
|
Is α1-Antitrypsin Important for Murine Thymocyte Development? Trends Immunol 2021; 42:178-180. [PMID: 33518416 DOI: 10.1016/j.it.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022]
|
16
|
Li F, Zhao X, Zhang Y, Shao P, Ma X, Paradee WJ, Liu C, Wang J, Xue HH. T FH cells depend on Tcf1-intrinsic HDAC activity to suppress CTLA4 and guard B-cell help function. Proc Natl Acad Sci U S A 2021; 118:e2014562118. [PMID: 33372138 PMCID: PMC7812797 DOI: 10.1073/pnas.2014562118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Precise regulation of coinhibitory receptors is essential for maintaining immune tolerance without interfering with protective immunity, yet the mechanism underlying such a balanced act remains poorly understood. In response to protein immunization, T follicular helper (TFH) cells lacking Tcf1 and Lef1 transcription factors were phenotypically normal but failed to promote germinal center formation and antibody production. Transcriptomic profiling revealed that Tcf1/Lef1-deficient TFH cells aberrantly up-regulated CTLA4 and LAG3 expression, and treatment with anti-CTLA4 alone or combined with anti-LAG3 substantially rectified B-cell help defects by Tcf1/Lef1-deficient TFH cells. Mechanistically, Tcf1 and Lef1 restrain chromatin accessibility at the Ctla4 and Lag3 loci. Groucho/Tle corepressors, which are known to cooperate with Tcf/Lef factors, were essential for TFH cell expansion but dispensable for repressing coinhibitory receptors. In contrast, mutating key amino acids in histone deacetylase (HDAC) domain in Tcf1 resulted in CTLA4 derepression in TFH cells. These findings demonstrate that Tcf1-instrinsic HDAC activity is necessary for preventing excessive CTLA4 induction in protein immunization-elicited TFH cells and hence guarding their B-cell help function.
Collapse
Affiliation(s)
- Fengyin Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui, People's Republic of China;
- Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, Anhui, People's Republic of China
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, 215123 Xi'an, Shanxi, People's Republic of China
| | - William J Paradee
- Genome Editing Core Facility, University of Iowa, Coralville, IA 52241
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263;
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110;
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Immunology Research Laboratory, New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018
| |
Collapse
|