1
|
Visalli MA, Nale Lovett DJ, Kornfeind EM, Herrington H, Xiao YT, Lee D, Plair P, Wilder SG, Garza BK, Young A, Visalli RJ. Mutagenesis and functional analysis of the varicella-zoster virus portal protein. J Virol 2024; 98:e0060323. [PMID: 38517165 PMCID: PMC11019927 DOI: 10.1128/jvi.00603-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Herpesviruses replicate by cleaving concatemeric dsDNA into single genomic units that are packaged through an oligomeric portal present in preformed procapsids. In contrast to what is known about phage portal proteins, details concerning herpesvirus portal structure and function are not as well understood. A panel of 65 Varicella-Zoster virus (VZV) recombinant portal proteins with five amino acid in-frame insertions were generated by random transposon mutagenesis of the VZV portal gene, ORF54. Subsequently, 65 VZVLUC recombinant viruses (TNs) were generated via recombineering. Insertions were mapped to predicted portal domains (clip, wing, stem, wall, crown, and β-hairpin tunnel-loop) and recombinant viruses were characterized for plaque morphology, replication kinetics, pORF54 expression, and classified based on replication in non-complementing (ARPE19) or complementing (ARPE54C50) cell lines. The N- and C-termini were tolerant to insertion mutagenesis, as were certain clip sub-domains. The majority of mutants mapping to the wing, wall, β-hairpin tunnel loop, and stem domains were lethal. Elimination of the predicted ORF54 start codon revealed that the first 40 amino acids of the N-terminus were not required for viral replication. Stop codon insertions in the C-terminus showed that the last 100 amino acids were not required for viral replication. Lastly, a putative protease cleavage site was identified in the C-terminus of pORF54. Cleavage was likely orchestrated by a viral protease; however, processing was not required for DNA encapsidation and viral replication. The panel of recombinants should prove valuable in future studies to dissect mammalian portal structure and function.IMPORTANCEThough nucleoside analogs and a live-attenuated vaccine are currently available to treat some human herpesvirus family members, alternate methods of combating herpesvirus infection could include blocking viral replication at the DNA encapsidation stage. The approval of Letermovir provided proof of concept regarding the use of encapsidation inhibitors to treat herpesvirus infections in the clinic. We propose that small-molecule compounds could be employed to interrupt portal oligomerization, assembly into the capsid vertex, or affect portal function/dynamics. Targeting portal at any of these steps would result in disruption of viral DNA packaging and a decrease or absence of mature infectious herpesvirus particles. The oligomeric portals of herpesviruses are structurally conserved, and therefore, it may be possible to find a single compound capable of targeting portals from one or more of the herpesvirus subfamilies. Drug candidates from such a series would be effective against viruses resistant to the currently available antivirals.
Collapse
Affiliation(s)
- Melissa A. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Dakota J. Nale Lovett
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Ellyn M. Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Haley Herrington
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Yi Tian Xiao
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Daniel Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Patience Plair
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - S. Garrett Wilder
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Bret K. Garza
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Ashton Young
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Robert J. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| |
Collapse
|
2
|
Subramanian S, Bergland Drarvik SM, Tinney KR, Parent KN. Cryo-EM structure of a Shigella podophage reveals a hybrid tail and novel decoration proteins. Structure 2024; 32:24-34.e4. [PMID: 37909043 PMCID: PMC10842012 DOI: 10.1016/j.str.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
There is a paucity of high-resolution structures of phages infecting Shigella, a human pathogen and a serious threat to global health. HRP29 is a Shigella podophage belonging to the Autographivirinae family, and has very low sequence identity to other known phages. Here, we resolved the structure of the entire HRP29 virion by cryo-EM. Phage HRP29 has a highly unusual tail that is a fusion of a T7-like tail tube and P22-like tailspikes mediated by interactions from a novel tailspike adaptor protein. Understanding phage tail structures is critical as they mediate hosts interactions. Furthermore, we show that the HRP29 capsid is stabilized by two novel, and essential decoration proteins, gp47 and gp48. Only one high resolution structure is currently available for Shigella podophages. The presence of a hybrid tail and an adapter protein suggests that it may be a product of horizontal gene transfer, and may be prevalent in other phages.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Silje M Bergland Drarvik
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kendal R Tinney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Brown C, Agarwal A, Luque A. pyCapsid: identifying dominant dynamics and quasi-rigid mechanical units in protein shells. Bioinformatics 2024; 40:btad761. [PMID: 38113434 PMCID: PMC10786678 DOI: 10.1093/bioinformatics/btad761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
SUMMARY pyCapsid is a Python package developed to facilitate the characterization of the dynamics and quasi-rigid mechanical units of protein shells and other protein complexes. The package was developed in response to the rapid increase of high-resolution structures, particularly capsids of viruses, requiring multiscale biophysical analyses. Given a protein shell, pyCapsid generates the collective vibrations of its amino-acid residues, identifies quasi-rigid mechanical regions associated with the disassembly of the structure, and maps the results back to the input proteins for interpretation. pyCapsid summarizes the main results in a report that includes publication-quality figures. AVAILABILITY AND IMPLEMENTATION pyCapsid's source code is available under MIT License on GitHub. It is compatible with Python 3.8-3.10 and has been deployed in two leading Python package-management systems, PIP and Conda. Installation instructions and tutorials are available in the online documentation and in the pyCapsid's YouTube playlist. In addition, a cloud-based implementation of pyCapsid is available as a Google Colab notebook. pyCapsid Colab does not require installation and generates the same report and outputs as the installable version. Users can post issues regarding pyCapsid in the repository's issues section.
Collapse
Affiliation(s)
- Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Department of Physics, San Diego State University, San Diego, CA 92116, United States
| | - Anuradha Agarwal
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, United States
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| |
Collapse
|
4
|
Hawkins DEDP, Godwin OC, Antson AA. Viral Genomic DNA Packaging Machinery. Subcell Biochem 2024; 104:181-205. [PMID: 38963488 PMCID: PMC7617512 DOI: 10.1007/978-3-031-58843-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.
Collapse
Affiliation(s)
- Dorothy E D P Hawkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
| | - Owen C Godwin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Structural Biology, The Francis Crick Institute, London, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
- Structural Biology, The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
Rūmnieks J, Füzik T, Tārs K. Structure of the Borrelia Bacteriophage φBB1 Procapsid. J Mol Biol 2023; 435:168323. [PMID: 37866476 DOI: 10.1016/j.jmb.2023.168323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Bacteriophages of Borrelia burgdorferi are a biologically important but under-investigated feature of the Lyme disease-causing spirochete. No virulent borrelial viruses have been identified, but all B. burgdorferi isolates carry a prophage φBB1 as resident circular plasmids. Like its host, the φBB1 phage is quite distinctive and shares little sequence similarity with other known bacteriophages. We expressed φBB1 head morphogenesis proteins in Escherichia coli which resulted in assembly of homogeneous prolate procapsid structures and used cryo-electron microscopy to determine the three-dimensional structure of these particles. The φBB1 procapsids consist of 415 copies of the major capsid protein and an equal combined number of three homologous capsid decoration proteins that form trimeric knobs on the outside of the particle. One of the end vertices of the particle is occupied by a portal assembled from twelve copies of the portal protein. The φBB1 scaffolding protein is entirely α-helical and has an elongated shape with a small globular domain in the middle. Within the tubular section of the procapsid, the internal scaffold is built of stacked rings, each composed of 32 scaffolding protein molecules, which run in opposite directions from both caps with a heterogeneous part in the middle. Inside the portal-containing cap, the scaffold is organized asymmetrically with ten scaffolding protein molecules bound to the portal. The φBB1 procapsid structure provides better insight into the vast structural diversity of bacteriophages and presents clues of how elongated bacteriophage particles might be assembled.
Collapse
Affiliation(s)
- Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia.
| | - Tibor Füzik
- Structural Virology, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia; Faculty of Biology, University of Latvia, Jelgavas 1, 1004 Riga, Latvia
| |
Collapse
|
6
|
Mukherjee A, Kizziah J, Parker L, Dokland T. High-resolution Cryo-EM Structure of Staphylococcus aureus Bacteriophage 80α Portal Protein and SaPI1 Capsid. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:925-926. [PMID: 37613470 DOI: 10.1093/micmic/ozad067.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Amarshi Mukherjee
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Kizziah
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Laura Parker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Hawkins DEDP, Bayfield O, Fung HKH, Grba DN, Huet A, Conway J, Antson AA. Insights into a viral motor: the structure of the HK97 packaging termination assembly. Nucleic Acids Res 2023; 51:7025-7035. [PMID: 37293963 PMCID: PMC10359639 DOI: 10.1093/nar/gkad480] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Double-stranded DNA viruses utilise machinery, made of terminase proteins, to package viral DNA into the capsid. For cos bacteriophage, a defined signal, recognised by small terminase, flanks each genome unit. Here we present the first structural data for a cos virus DNA packaging motor, assembled from the bacteriophage HK97 terminase proteins, procapsids encompassing the portal protein, and DNA containing a cos site. The cryo-EM structure is consistent with the packaging termination state adopted after DNA cleavage, with DNA density within the large terminase assembly ending abruptly at the portal protein entrance. Retention of the large terminase complex after cleavage of the short DNA substrate suggests that motor dissociation from the capsid requires headful pressure, in common with pac viruses. Interestingly, the clip domain of the 12-subunit portal protein does not adhere to C12 symmetry, indicating asymmetry induced by binding of the large terminase/DNA. The motor assembly is also highly asymmetric, showing a ring of 5 large terminase monomers, tilted against the portal. Variable degrees of extension between N- and C-terminal domains of individual subunits suggest a mechanism of DNA translocation driven by inter-domain contraction and relaxation.
Collapse
Affiliation(s)
- Dorothy E D P Hawkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Oliver W Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Daniel N Grba
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alexis Huet
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James F Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
8
|
Huang Y, Sun H, Wei S, Cai L, Liu L, Jiang Y, Xin J, Chen Z, Que Y, Kong Z, Li T, Yu H, Zhang J, Gu Y, Zheng Q, Li S, Zhang R, Xia N. Structure and proposed DNA delivery mechanism of a marine roseophage. Nat Commun 2023; 14:3609. [PMID: 37330604 PMCID: PMC10276861 DOI: 10.1038/s41467-023-39220-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Tailed bacteriophages (order, Caudovirales) account for the majority of all phages. However, the long flexible tail of siphophages hinders comprehensive investigation of the mechanism of viral gene delivery. Here, we report the atomic capsid and in-situ structures of the tail machine of the marine siphophage, vB_DshS-R4C (R4C), which infects Roseobacter. The R4C virion, comprising 12 distinct structural protein components, has a unique five-fold vertex of the icosahedral capsid that allows genome delivery. The specific position and interaction pattern of the tail tube proteins determine the atypical long rigid tail of R4C, and further provide negative charge distribution within the tail tube. A ratchet mechanism assists in DNA transmission, which is initiated by an absorption device that structurally resembles the phage-like particle, RcGTA. Overall, these results provide in-depth knowledge into the intact structure and underlining DNA delivery mechanism for the ecologically important siphophages.
Collapse
Affiliation(s)
- Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jiabao Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
9
|
Mojtabavi M, Greive SJ, Antson AA, Wanunu M. High-Voltage Biomolecular Sensing Using a Bacteriophage Portal Protein Covalently Immobilized within a Solid-State Nanopore. J Am Chem Soc 2022; 144:22540-22548. [PMID: 36455212 DOI: 10.1021/jacs.2c08514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The application of nanopores as label-free, single-molecule biosensors for electrical or optical probing of structural features in biomolecules has been widely explored. While biological nanopores (membrane proteins and bacteriophage portal proteins) and solid-state nanopores (thin films and two-dimensional materials) have been extensively employed, the third class of nanopores known as hybrid nanopores, where an artificial membrane substitutes the organic support membrane of proteins, has been only sparsely studied due to challenges in implementation. G20c portal protein contains a natural DNA pore that is used by viruses for filling their capsid with viral genomic DNA. We have previously developed a lipid-free hybrid nanopore by "corking" the G20c portal protein into a SiNx nanopore. Herein, we demonstrate that through chemical functionalization of the synthetic nanopore, covalent linkage between the solid-state pore and the G20c portal protein considerably improves the hybrid pore stability, lifetime, and voltage resilience. Moreover, we demonstrate electric-field-driven and motor protein-mediated transport of DNA molecules through this hybrid nanopore. Our integrated protein/solid-state device can serve as a robust and durable framework for sensing and sequencing at high voltages, potentially providing higher resolution, higher signal-to-noise ratio, and higher throughput compared to the more conventional membrane-embedded protein platforms.
Collapse
Affiliation(s)
- Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Li F, Hou CFD, Yang R, Whitehead R, Teschke CM, Cingolani G. High-resolution cryo-EM structure of the Shigella virus Sf6 genome delivery tail machine. SCIENCE ADVANCES 2022; 8:eadc9641. [PMID: 36475795 PMCID: PMC9728967 DOI: 10.1126/sciadv.adc9641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Sf6 is a bacterial virus that infects the human pathogen Shigella flexneri. Here, we describe the cryo-electron microscopy structure of the Sf6 tail machine before DNA ejection, which we determined at a 2.7-angstrom resolution. We built de novo structures of all tail components and resolved four symmetry-mismatched interfaces. Unexpectedly, we found that the tail exists in two conformations, rotated by ~6° with respect to the capsid. The two tail conformers are identical in structure but differ solely in how the portal and head-to-tail adaptor carboxyl termini bond with the capsid at the fivefold vertex, similar to a diamond held over a five-pronged ring in two nonidentical states. Thus, in the mature Sf6 tail, the portal structure does not morph locally to accommodate the symmetry mismatch but exists in two energetic minima rotated by a discrete angle. We propose that the design principles of the Sf6 tail are conserved across P22-like Podoviridae.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard Whitehead
- Department of Molecular and Cell Biology, Department of Chemistry, University of Connecticut, 91 N Eagleville Road, Storrs, CT 06269, USA
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, Department of Chemistry, University of Connecticut, 91 N Eagleville Road, Storrs, CT 06269, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
CryoEM structure and assembly mechanism of a bacterial virus genome gatekeeper. Nat Commun 2022; 13:7283. [PMID: 36435855 PMCID: PMC9701221 DOI: 10.1038/s41467-022-34999-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Numerous viruses package their dsDNA genome into preformed capsids through a portal gatekeeper that is subsequently closed. We report the structure of the DNA gatekeeper complex of bacteriophage SPP1 (gp612gp1512gp166) in the post-DNA packaging state at 2.7 Å resolution obtained by single particle cryo-electron microscopy. Comparison of the native SPP1 complex with assembly-naïve structures of individual components uncovered the complex program of conformational changes leading to its assembly. After DNA packaging, gp15 binds via its C-terminus to the gp6 oligomer positioning gp15 subunits for oligomerization. Gp15 refolds its inner loops creating an intersubunit β-barrel that establishes different types of contacts with six gp16 subunits. Gp16 binding and oligomerization is accompanied by folding of helices that close the portal channel to keep the viral genome inside the capsid. This mechanism of assembly has broad functional and evolutionary implications for viruses of the prokaryotic tailed viruses-herpesviruses lineage.
Collapse
|
12
|
Fang Q, Tang WC, Fokine A, Mahalingam M, Shao Q, Rossmann MG, Rao VB. Structures of a large prolate virus capsid in unexpanded and expanded states generate insights into the icosahedral virus assembly. Proc Natl Acad Sci U S A 2022; 119:e2203272119. [PMID: 36161892 PMCID: PMC9546572 DOI: 10.1073/pnas.2203272119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers' periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume.
Collapse
Affiliation(s)
- Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wei-Chun Tang
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
13
|
Woodbury BM, Motwani T, Leroux MN, Barnes LF, Lyktey NA, Banerjee S, Dedeo CL, Jarrold MF, Teschke CM. Tryptophan Residues Are Critical for Portal Protein Assembly and Incorporation in Bacteriophage P22. Viruses 2022; 14:1400. [PMID: 35891382 PMCID: PMC9320234 DOI: 10.3390/v14071400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The oligomerization and incorporation of the bacteriophage P22 portal protein complex into procapsids (PCs) depends upon an interaction with scaffolding protein, but the region of the portal protein that interacts with scaffolding protein has not been defined. In herpes simplex virus 1 (HSV-1), conserved tryptophan residues located in the wing domain are required for portal-scaffolding protein interactions. In this study, tryptophan residues (W) present at positions 41, 44, 207 and 211 within the wing domain of the bacteriophage P22 portal protein were mutated to both conserved and non-conserved amino acids. Substitutions at each of these positions were shown to impair portal function in vivo, resulting in a lethal phenotype by complementation. The alanine substitutions caused the most severe defects and were thus further characterized. An analysis of infected cell lysates for the W to A mutants revealed that all the portal protein variants except W211A, which has a temperature-sensitive incorporation defect, were successfully recruited into procapsids. By charge detection mass spectrometry, all W to A mutant portal proteins were shown to form stable dodecameric rings except the variant W41A, which dissociated readily to monomers. Together, these results suggest that for P22 conserved tryptophan, residues in the wing domain of the portal protein play key roles in portal protein oligomerization and incorporation into procapsids, ultimately affecting the functionality of the portal protein at specific stages of virus assembly.
Collapse
Affiliation(s)
- Brianna M. Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Makayla N. Leroux
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Lauren F. Barnes
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Nicholas A. Lyktey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Sanchari Banerjee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Corynne L. Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA; (L.F.B.); (N.A.L.); (M.F.J.)
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (B.M.W.); (T.M.); (M.N.L.); (S.B.); (C.L.D.)
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
David Hou CF, Swanson NA, Li F, Yang R, Lokareddy RK, Cingolani G. Cryo-EM structure of a kinetically trapped dodecameric portal protein from the Pseudomonas-phage PaP3. J Mol Biol 2022; 434:167537. [DOI: 10.1016/j.jmb.2022.167537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
15
|
A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Nat Commun 2021; 12:6548. [PMID: 34772936 PMCID: PMC8589836 DOI: 10.1038/s41467-021-26800-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.
Collapse
|
16
|
Rao VB, Fokine A, Fang Q. The remarkable viral portal vertex: structure and a plausible model for mechanism. Curr Opin Virol 2021; 51:65-73. [PMID: 34619513 DOI: 10.1016/j.coviro.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 01/20/2023]
Abstract
Many icosahedral viruses including tailed bacteriophages and herpes viruses have a unique portal vertex where a dodecameric protein ring is associated with a fivefold capsid shell. While the peripheral regions of the portal ring are involved in capsid assembly, its central channel is used to transport DNA into and out of capsid during genome packaging and infection. Though the atomic structure of this highly conserved, turbine-shaped, portal is known for nearly two decades, its molecular mechanism remains a mystery. Recent high-resolution in situ structures reveal various conformational states of the portal and the asymmetric interactions between the 12-fold portal and the fivefold capsid. These lead to a valve-like mechanism for this symmetry-mismatched portal vertex that regulates DNA flow through the channel, a critical function for high fidelity assembly of an infectious virion.
Collapse
Affiliation(s)
- Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Structural changes in bacteriophage T7 upon receptor-induced genome ejection. Proc Natl Acad Sci U S A 2021; 118:2102003118. [PMID: 34504014 DOI: 10.1073/pnas.2102003118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Many tailed bacteriophages assemble ejection proteins and a portal-tail complex at a unique vertex of the capsid. The ejection proteins form a transenvelope channel extending the portal-tail channel for the delivery of genomic DNA in cell infection. Here, we report the structure of the mature bacteriophage T7, including the ejection proteins, as well as the structures of the full and empty T7 particles in complex with their cell receptor lipopolysaccharide. Our near-atomic-resolution reconstruction shows that the ejection proteins in the mature T7 assemble into a core, which comprises a fourfold gene product 16 (gp16) ring, an eightfold gp15 ring, and a putative eightfold gp14 ring. The gp15 and gp16 are mainly composed of helix bundles, and gp16 harbors a lytic transglycosylase domain for degrading the bacterial peptidoglycan layer. When interacting with the lipopolysaccharide, the T7 tail nozzle opens. Six copies of gp14 anchor to the tail nozzle, extending the nozzle across the lipopolysaccharide lipid bilayer. The structures of gp15 and gp16 in the mature T7 suggest that they should undergo remarkable conformational changes to form the transenvelope channel. Hydrophobic α-helices were observed in gp16 but not in gp15, suggesting that gp15 forms the channel in the hydrophilic periplasm and gp16 forms the channel in the cytoplasmic membrane.
Collapse
|
18
|
Woodson M, Pajak J, Mahler BP, Zhao W, Zhang W, Arya G, White MA, Jardine PJ, Morais MC. A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA. SCIENCE ADVANCES 2021; 7:7/19/eabc1955. [PMID: 33962953 PMCID: PMC8104870 DOI: 10.1126/sciadv.abc1955] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Molecular segregation and biopolymer manipulation require the action of molecular motors to do work by applying directional forces to macromolecules. The additional strand conserved E (ASCE) ring motors are an ancient family of molecular motors responsible for diverse biological polymer manipulation tasks. Viruses use ASCE segregation motors to package their genomes into their protein capsids and provide accessible experimental systems due to their relative simplicity. We show by cryo-EM-focused image reconstruction that ASCE ATPases in viral double-stranded DNA (dsDNA) packaging motors adopt helical symmetry complementary to their dsDNA substrates. Together with previous data, our results suggest that these motors cycle between helical and planar configurations, providing a possible mechanism for directional translocation of DNA. Similar changes in quaternary structure have been observed for proteasome and helicase motors, suggesting an ancient and common mechanism of force generation that has been adapted for specific tasks over the course of evolution.
Collapse
Affiliation(s)
- Michael Woodson
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Bryon P Mahler
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Zhao
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Mark A White
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marc C Morais
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Mo Y, Keller N, delToro D, Ananthaswamy N, Harvey S, Rao VB, Smith DE. Function of a viral genome packaging motor from bacteriophage T4 is insensitive to DNA sequence. Nucleic Acids Res 2020; 48:11602-11614. [PMID: 33119757 PMCID: PMC7672480 DOI: 10.1093/nar/gkaa875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
Many viruses employ ATP-powered motors during assembly to translocate DNA into procapsid shells. Previous reports raise the question if motor function is modulated by substrate DNA sequence: (i) the phage T4 motor exhibits large translocation rate fluctuations and pauses and slips; (ii) evidence suggests that the phage phi29 motor contacts DNA bases during translocation; and (iii) one theoretical model, the 'B-A scrunchworm', predicts that 'A-philic' sequences that transition more easily to A-form would alter motor function. Here, we use single-molecule optical tweezers measurements to compare translocation of phage, plasmid, and synthetic A-philic, GC rich sequences by the T4 motor. We observed no significant differences in motor velocities, even with A-philic sequences predicted to show higher translocation rate at high applied force. We also observed no significant changes in motor pausing and only modest changes in slipping. To more generally test for sequence dependence, we conducted correlation analyses across pairs of packaging events. No significant correlations in packaging rate, pausing or slipping versus sequence position were detected across repeated measurements with several different DNA sequences. These studies suggest that viral genome packaging is insensitive to DNA sequence and fluctuations in packaging motor velocity, pausing and slipping are primarily stochastic temporal events.
Collapse
Affiliation(s)
- Youbin Mo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, Univ. of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Bayfield OW, Steven AC, Antson AA. Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss. eLife 2020; 9:e55517. [PMID: 32286226 PMCID: PMC7234808 DOI: 10.7554/elife.55517] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
The portal protein is a key component of many double-stranded DNA viruses, governing capsid assembly and genome packaging. Twelve subunits of the portal protein define a tunnel, through which DNA is translocated into the capsid. It is unknown how the portal protein functions as a gatekeeper, preventing DNA slippage, whilst allowing its passage into the capsid, and how these processes are controlled. A cryo-EM structure of the portal protein of thermostable virus P23-45, determined in situ in its procapsid-bound state, indicates a mechanism that naturally safeguards the virus against genome loss. This occurs via an inversion of the conformation of the loops that define the constriction in the central tunnel, accompanied by a hydrophilic-hydrophobic switch. The structure also shows how translocation of DNA into the capsid could be modulated by a changing mode of protein-protein interactions between portal and capsid, across a symmetry-mismatched interface.
Collapse
Affiliation(s)
- Oliver W Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of YorkYorkUnited Kingdom
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of YorkYorkUnited Kingdom
| |
Collapse
|