1
|
Bu J, Miao Z, Yang Q. GOT2: New therapeutic target in pancreatic cancer. Genes Dis 2025; 12:101370. [PMID: 40247913 PMCID: PMC12005923 DOI: 10.1016/j.gendis.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 04/19/2025] Open
Abstract
In recent years, the incidence and mortality rates of pancreatic cancer have been steadily increasing, and conventional therapies have shown a high degree of tolerance. Therefore, the search for new therapeutic targets remains a key issue in current research. Mitochondrial glutamic-oxaloacetic transaminase 2 (GOT2) is an important component of the malate-aspartate shuttle system, which plays an important role in the maintenance of cellular redox balance and amino acid metabolism, and has the potential to become a promising target for anti-cancer therapy. In this paper, we will elaborate on the metabolic and immune effects of GOT2 in pancreatic cancer based on existing studies, with a view to opening up new avenues for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jiarui Bu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
2
|
Cao Y, Qian R, Yao R, Zheng Q, Yang C, Yang X, Ji S, Zhang L, Zhan S, Wang Y, Wang T, Wang H, Wong CM, Yuan S, Heeschen C, Gao Q, Bernards R, Qin W, Wang C. DYRK1A-TGF-β signaling axis determines sensitivity to OXPHOS inhibition in hepatocellular carcinoma. Dev Cell 2025; 60:1483-1497.e7. [PMID: 39798576 DOI: 10.1016/j.devcel.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/14/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025]
Abstract
Intervening in mitochondrial oxidative phosphorylation (OXPHOS) has emerged as a potential therapeutic strategy for certain types of cancers. Employing kinome-based CRISPR screen, we find that knockout of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) synergizes with OXPHOS inhibitor IACS-010759 in liver cancer cells. Targeting DYRK1A combined with OXPHOS inhibitors activates TGF-β signaling, which is crucial for OXPHOS-inhibition-triggered cell death. Mechanistically, upregulation of glutamine transporter solute carrier family 1 member 5 (SLC1A5) transcription compensates for the increased glutamine requirement upon OXPHOS inhibition. DYRK1A directly phosphorylates SMAD3 Thr132, thereby suppressing the negative impact of TGF-β signaling on transcription of SLC1A5, leading to intrinsic resistance of liver cancer cells to OXPHOS inhibition. Moreover, we demonstrate the therapeutic efficacy of IACS-010759 in combination with DYRK1A inhibition in multiple liver cancer models, including xenografts, patient-derived xenografts, and spontaneous tumor model. Our study elucidates how the DYRK1A-TGF-β signaling axis controls the response of tumor cells to OXPHOS inhibition and provides valuable insights into targeting OXPHOS for liver cancer therapy.
Collapse
Affiliation(s)
- Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruolan Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linmen Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Zhan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Ming Wong
- State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang S, Han P, Mi P, Wang C, Lu M, Li X, Xu B, Wang H, Gao Y, Hou Y, Tan X, Liang J, Ding X, Zhang Y, Zhang T, Yuan D, Gao L, Zhang C. The Role of the Hexosamine-Sialic Acid Metabolic Pathway Mediated by GFPT1/NANS in c-Myc-Driven Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2025:101523. [PMID: 40280277 DOI: 10.1016/j.jcmgh.2025.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) frequently involves metabolic reprogramming, which promotes oncogenesis and metastasis. However, the underlying molecular mechanisms remain insufficiently explored. In this study, we aim to investigate the metabolic abnormalities in c-Myc-driven HCC development and their potential therapeutic implications. METHODS RNA sequencing and metabolomics were performed on HCC and adjacent tissues in a murine HCC model established by hydrodynamic tail-vein injection of c-Myc and sgTrp53/Cas9 plasmids. Key catalytic enzyme gene knockout was used to assess tumor formation and murine survival. Gene expression was analyzed using quantitative polymerase chain reaction, immunohistochemistry, and Western blot. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction and luciferase assays verified c-Myc regulation. RESULTS RNA sequencing data revealed that the hexosamine biosynthetic pathway was significantly activated in c-Myc-driven HCC. The rate-limiting enzyme GFPT1 (rather than GFPT2) was up-regulated in the first step of this pathway. Knocking out GFPT1 reduces tumor growth and prolongs murine survival. Human specimens showed that GFPT1 was overexpressed in HCC tissues and was associated with advanced Edmondson-Steiner grades and short patient survival. Further luciferase reporter assays confirmed that c-Myc binds directly to the promoter region of GFPT1 and activates its transcription. Subsequent examination of the downstream pathways of the hexosamine biosynthetic pathway showed that the sialic acid synthesis (but not O-GlcNac glycosylation) pathway was enhanced, which was mediated by a key enzyme, N-acetylneuraminic acid synthase. Knockout of N-acetylneuraminic acid synthase also inhibits tumor growth and extends murine survival in c-Myc-driven HCC models. CONCLUSIONS These findings indicate that the activation of the hexosamine biosynthetic pathway/sialic acid pathway is an important mechanism underlying the development of c-Myc-driven HCC. Inhibitors of GFPT1, along with anti- N-acetylneuraminic acid synthase may offer a promising therapeutic strategy.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunxue Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China; Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miao Lu
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Haoran Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingchen Gao
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China
| | - Yanlei Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueying Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingguo Zhang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Gao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Cuijuan Zhang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Kim DH, Kim DJ, Park SJ, Jang WJ, Jeong CH. Inhibition of GLS1 and ASCT2 Synergistically Enhances the Anticancer Effects in Pancreatic Cancer Cells. J Microbiol Biotechnol 2025; 35:e2412032. [PMID: 40223274 PMCID: PMC12010092 DOI: 10.4014/jmb.2412.12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
Pancreatic cancer, a leading cause of cancer-related deaths, is characterized by increased dependence on glutamine metabolism. Telaglenastat (CB-839), a glutaminase (GLS) inhibitor targets glutamine metabolism; however, its efficacy as monotherapy is limited owing to metabolic adaptations. In this study, we demonstrated that CB-839 effectively inhibited cell growth in pancreatic cancer cells, but activated the general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) signaling pathway. ATF4 knockdown reduced glutamine transporter alanine, serine, and cysteine transporter 2 (ASCT2) expression, glutamine uptake, and cell viability under glutamine deprivation-recovery conditions, confirming its protective role in mitigating glutamine-related metabolic stress. Notably, the combination of CB-839 and the ASCT2 inhibitor V-9302 demonstrated a synergistic effect, significantly suppressing pancreatic cancer cell survival. These findings highlight ATF4 and ASCT2 as crucial therapeutic targets and indicate that dual inhibition of GLS and ASCT2 may enhance treatment outcomes for pancreatic cancer.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Jun Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
5
|
Hu H, Ning S, Liu F, Zhang Z, Zeng W, Liu Y, Liao Z, Zhang H, Zhang Z. Hafnium Metal-Organic Framework-Based Glutamine Metabolism Disruptor For Potentiating Radio-Immunotherapy in MYC-Amplified Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19367-19381. [PMID: 40116395 DOI: 10.1021/acsami.4c21998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Hepatocellular carcinoma (HCC) with MYC oncogene amplification remains a serious challenge in clinical practice. Recent advances in comprehensive treatment strategies, particularly the combination of radiotherapy and immunotherapy, offer new hope. To further improve efficacy while lowering radiation doses, nanopharmaceuticals based on high-Z elements have been extensively studied in radio-immunotherapy. In this work, a hafnium-based metal-organic framework (Hf-MOF), UiO-66-Hf(2OH)-CB-839/BSO@HA (UiO-66-Hf(2OH)-C/B@HA), was designed to codeliver telaglenastat (CB-839) and buthionine sulfoximine (BSO), which synergistically inhibited glutamine metabolism and alleviated tumor hypoxia. Further modification with hyaluronic acid (HA) enhanced tumor targeting, ultimately strengthening the efficacy of radiotherapy in MYC-amplified HCC. Beyond increasing reactive oxygen species (ROS) generation, promoting DNA damage, and inducing tumor apoptosis, more importantly, UiO66-Hf(2OH)-C/B@HA triggered immunogenic cell death (ICD), driving the antitumor immune response. Combination with immune checkpoint blockade (ICB) further enhanced the efficacy, accompanied by increased infiltration of T cells with high granzyme B expression (GZMB+ T cells) within the tumor microenvironment (TME). In the orthotopic HCC model, established with MYC-amplified tumor cells, intravenous administration of UiO66-Hf(2OH)-C/B@HA significantly potentiated the efficacy of radio-immunotherapy, resulting in superior tumor regression. In summary, our study provides insights into the design of Hf-MOF for radio-immunotherapy and proposes a promising therapeutic approach for MYC-amplified HCC.
Collapse
Affiliation(s)
- Haofan Hu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Shangwu Ning
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| |
Collapse
|
6
|
McMahon AN, Reis IM, Takita C, Wright JL, Hu JJ. Metabolomic Profiling of Disease Progression Following Radiotherapy for Breast Cancer. Cancers (Basel) 2025; 17:891. [PMID: 40075737 PMCID: PMC11899340 DOI: 10.3390/cancers17050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This study aims to explore metabolic biomarkers and pathways in breast cancer prognosis. METHODS We performed a global post-radiotherapy (RT) urinary metabolomic analysis of 120 breast cancer patients: 60 progression-free (PF) patients as the reference and 60 with progressive disease (PD: recurrence, second primary, metastasis, or death). UPLC-MS/MS (Metabolon Inc.) identified 1742 biochemicals (1258 known and 484 unknown structures). Following normalization to osmolality, log transformation, and imputation of missing values, a Welch's two-sample t-test was used to identify biochemicals and metabolic pathways that differed between PF and PD groups. Data analysis and visualization were performed with MetaboAnalyst. RESULTS Metabolic biomarkers and pathways that significantly differed between the PD and PF groups were the following: amino acid metabolism, including phenylalanine, tyrosine, and tryptophan biosynthesis (impact value (IV) = 1.00; p = 0.0007); histidine metabolism (IV = 0.60; p < 0.0001); and arginine and proline metabolism (IV = 0.70; p = 0.0035). Metabolites of carbohydrate metabolism, including glucose (p = 0.0197), sedoheptulose (p = 0.0115), and carboxymethyl lysine (p = 0.0098), were elevated in patients with PD. Gamma-glutamyl amino acids, myo-inositol, and oxidative stress biomarkers, including 7-Hydroxyindole Sulfate and sulfate, were elevated in patients who died (p ≤ 0.05). CONCLUSIONS Amino acid metabolism emerged as a key pathway in breast cancer progression, while carbohydrate and oxidative stress metabolites also showed potential utility as biomarkers for breast cancer progression. These findings demonstrate applications of metabolomics in identifying metabolic biomarkers and pathways as potential targets for predicting breast cancer progression.
Collapse
Affiliation(s)
- Alexandra N. McMahon
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.N.M.); (I.M.R.)
| | - Isildinha M. Reis
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.N.M.); (I.M.R.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jean L. Wright
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA;
| | - Jennifer J. Hu
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.N.M.); (I.M.R.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
7
|
Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y, Li Y. Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment. Front Immunol 2025; 16:1494788. [PMID: 40028341 PMCID: PMC11868052 DOI: 10.3389/fimmu.2025.1494788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Metabolic reprogramming is one of the major biological features of malignant tumors, playing a crucial role in the initiation and progression of cancer. The tumor microenvironment consists of various non-cancer cells, such as hepatic stellate cells, cancer-associated fibroblasts (CAFs), immune cells, as well as extracellular matrix and soluble substances. In liver cancer, metabolic reprogramming not only affects its own growth and survival but also interacts with other non-cancer cells by influencing the expression and release of metabolites and cytokines (such as lactate, PGE2, arginine). This interaction leads to acidification of the microenvironment and restricts the uptake of nutrients by other non-cancer cells, resulting in metabolic competition and symbiosis. At the same time, metabolic reprogramming in neighboring cells during proliferation and differentiation processes also impacts tumor immunity. This article provides a comprehensive overview of the metabolic crosstalk between liver cancer cells and their tumor microenvironment, deepening our understanding of relevant findings and pathways. This contributes to further understanding the regulation of cancer development and immune evasion mechanisms while providing assistance in advancing personalized therapies targeting metabolic pathways for anti-cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghui Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiting Niu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyu Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanjun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, TongjiShanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Yi Y, Wang G, Zhang W, Yu S, Fei J, An T, Yi J, Li F, Huang T, Yang J, Niu M, Wang Y, Xu C, Xiao ZXJ. Mitochondrial-cytochrome c oxidase II promotes glutaminolysis to sustain tumor cell survival upon glucose deprivation. Nat Commun 2025; 16:212. [PMID: 39747079 PMCID: PMC11695821 DOI: 10.1038/s41467-024-55768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA. Elevated MT-CO2 increases flavin adenosine dinucleotide (FAD) levels in activating lysine-specific demethylase 1 (LSD1) to epigenetically upregulate JUN transcription, consequently promoting glutaminase-1 (GLS1) and glutaminolysis for tumor cell survival. Furthermore, MT-CO2 is indispensable for oncogenic Ras-induced glutaminolysis and tumor growth, and elevated expression of MT-CO2 is associated with poor prognosis in lung cancer patients. Together, these findings reveal a role for MT-CO2 in adapting to metabolic stress and highlight MT-CO2 as a putative therapeutic target for Ras-driven cancers.
Collapse
Affiliation(s)
- Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Guoqiang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenhua Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuhan Yu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingting An
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianqiao Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Ting Huang
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Komza M, Chipuk JE. Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy. J Cell Physiol 2025; 240:e31441. [PMID: 39324415 PMCID: PMC11732733 DOI: 10.1002/jcp.31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
Collapse
Affiliation(s)
- Monika Komza
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Diabetes, Obesity, and Metabolism Institute, New York, New York, USA
| |
Collapse
|
10
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
11
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
12
|
Lei KF, Lin YT, Boreddy SKR, Pai PC. Analysis of chemosensitivity of tumor spheroids exposed to two-dimensional gradient of combination drugs in a hydrogel-based diffusion microfluidic platform. Anal Chim Acta 2024; 1332:343371. [PMID: 39580177 DOI: 10.1016/j.aca.2024.343371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Liver cancer stands as a leading cause of cancer-related deaths globally, challenging conventional treatments due to resistance to chemotherapy and targeted therapy. Although frontline medications show initial efficacy, prolonged use often leads to resistance and harm. Current clinical strategies rely on combination therapies, but evaluating their effectiveness remains challenging. RESULTS To address this, we developed a hydrogel-based diffusion microfluidic platform for assessing chemosensitivity. This platform features a hydrogel-filled diffusion layer linked to liquid wells, allowing the creation of drug gradients. Tumor spheroids, cultured on the non-adhesive hydrogel surface, were exposed to single or combination drug gradients. Analysis revealed that drug efficacy, quantified by IC50 values, could be determined from responses to single drug gradients. A novel method was introduced to assess spheroid circularity as a time-invariant index of drug efficacy. Furthermore, exposing spheroids to 2D combination drug gradients allowed intuitive visualization of their responses via a color map. This analysis identified optimal drug combinations, exhibiting superior efficacy to monotherapy. SIGNIFICANCE The microfluidic platform enables assessment of synergistic effects and replicates in vivo conditions, enhancing the relevance of test results. By offering a streamlined, fast, and efficient drug screening approach, this platform aims to provide insight into tumor spheroid responses to varying drug combinations, facilitating more effective clinical applications.
Collapse
Affiliation(s)
- Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Electrical & Electronic Engineering, Yonsei University, Seoul, South Korea.
| | - Yu-Ting Lin
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | | | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
13
|
Lu M, Wu Y, Xia M, Zhang Y. The role of metabolic reprogramming in liver cancer and its clinical perspectives. Front Oncol 2024; 14:1454161. [PMID: 39610917 PMCID: PMC11602425 DOI: 10.3389/fonc.2024.1454161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-related death worldwide. Chronic liver diseases, such as hepatitis B and C infections and metabolic dysfunction-associated steatotic liver disease (MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining feature of cancer, enables liver cancer cells to adapt to the demands of rapid proliferation and the challenging tumor microenvironment (TME). This manuscript examines the pivotal role of metabolic reprogramming in PLC, with an emphasis on the alterations in glucose, lipid, and amino acid metabolism that drive tumor progression. The Warburg effect, marked by increased glycolysis, facilitates rapid energy production and biosynthesis of cellular components in HCC. Changes in lipid metabolism, including elevated de novo fatty acid synthesis and lipid oxidation, support membrane formation and energy storage essential for cancer cell survival. Amino acid metabolism, particularly glutamine utilization, supplies critical carbon and nitrogen for nucleotide synthesis and maintains redox homeostasis. These metabolic adaptations not only enhance tumor growth and invasion but also reshape the TME, promoting immune escape. Targeting these metabolic pathways presents promising therapeutic opportunities for PLC. This review underscores the interaction between metabolic reprogramming and tumor immunity, suggesting potential metabolic targets for innovative therapeutic strategies. A comprehensive understanding of PLC's intricate metabolic landscape may lead to more effective treatments and better patient outcomes. Integrating metabolomics, genomics, and proteomics in future research will be vital for identifying precise therapeutic targets and advancing personalized therapies for liver cancer.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | |
Collapse
|
14
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
15
|
Leverett B, Austin S, Tan-Arroyo J. Malate dehydrogenase (MDH) in cancer: a promiscuous enzyme, a redox regulator, and a metabolic co-conspirator. Essays Biochem 2024; 68:135-146. [PMID: 38864161 DOI: 10.1042/ebc20230088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.
Collapse
Affiliation(s)
- Betsy Leverett
- Department of Biochemistry, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209, U.S.A
| | - Shane Austin
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown Barbados BB11000, Barbados
| | - Jason Tan-Arroyo
- Department of Biology, Augsburg University, 2211 Riverside Ave, Minneapolis, MN 55454, U.S.A
| |
Collapse
|
16
|
Li W, Zeng Q, Wang B, Lv C, He H, Yang X, Cheng B, Tao X. Oxidative stress promotes oral carcinogenesis via Thbs1-mediated M1-like tumor-associated macrophages polarization. Redox Biol 2024; 76:103335. [PMID: 39255693 PMCID: PMC11414564 DOI: 10.1016/j.redox.2024.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Although oxidative stress is closely associated with tumor invasion and metastasis, its' exact role and mechanism in the initial stage of oral cancer remain ambiguous. Glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) participates in glutathione synthesis to resolve oxidative stress. Currently, we firstly found that ASCT2 deletion caused oxidative stress in oral mucosa and promoted oral carcinogenesis induced by 4-Nitroquinoline-1-oxide (4-NQO) using transgenic mice of ASCT2 knockout in oral epithelium. Subsequently, we identified an upregulated gene Thbs1 linked to macrophage infiltration by mRNA sequencing and immunohistochemistry. Importantly, multiplex immunohistochemistry showed M1-like tumor-associated macrophages (TAMs) were enriched in cancerous area. Mechanically, targeted ASCT2 effectively curbed glutamine uptake and caused intracellular reactive oxygen species (ROS) accumulation, which upregulated Thbs1 in oral keratinocytes and then activated p38, Akt and SAPK/JNK signaling to polarize M1-like TAMs via exosome-transferred pathway. Moreover, we demonstrated M1-like TAMs promoted malignant progression of oral squamous cell carcinoma (OSCC) both in vitro and in vivo by a DOK transformed cell line induced by 4-NQO. All these results establish that oxidative stress triggered by ASCT2 deletion promotes oral carcinogenesis through Thbs1-mediated M1 polarization, and indicate that restore redox homeostasis is a new approach to prevent malignant progression of oral potentially malignant disorders.
Collapse
Affiliation(s)
- Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingwen Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bing Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chao Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haoan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
17
|
Liang XH, Chen XY, Yan Y, Cheng AY, Lin JY, Jiang YX, Chen HZ, Jin JM, Luan X. Targeting metabolism to enhance immunotherapy within tumor microenvironment. Acta Pharmacol Sin 2024; 45:2011-2022. [PMID: 38811773 PMCID: PMC11420344 DOI: 10.1038/s41401-024-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Like cancer cells, immune cells within the tumor microenvironment or premetastatic niche also undergo extensive metabolic reprogramming, which profoundly impacts anti-tumor immune responses. Numerous evidence has illuminated that immunosuppressive TME and the metabolites released by tumor cells, including lactic acid, Prostaglandin E2 (PGE2), fatty acids (FAs), cholesterol, D-2-Hydroxyglutaric acid (2-HG), adenosine (ADO), and kynurenine (KYN) can contribute to CD8+ T cell dysfunction. Dynamic alterations of these metabolites between tumor cells and immune cells can similarly initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response. This review summarizes the new landscape beyond the classical metabolic pathways in tumor cells, highlighting the pivotal role of metabolic disturbance in the immunosuppressive microenvironment, especially how nutrient deprivation in TME leads to metabolic reprogramming of CD8+ T cells. Likewise, it emphasizes the current therapeutic targets or strategies related to tumor metabolism and immune response, providing therapeutic benefits for tumor immunotherapy and drug development in the future. Cancer metabolic reprogramming has been considered an emerging hallmark in tumorigenesis and the antitumor immune response. Dynamic alterations of metabolites between tumor cells and immune cells initiate metabolic competition in the TME, leading to nutrient deprivation and subsequent microenvironmental acidosis, which impedes immune response.
Collapse
Affiliation(s)
- Xiao-Hui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yi Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Han Y, Pu Y, Liu X, Liu Z, Chen Y, Tang L, Zhou J, Song Q, Ji Q. YTHDF1 regulates GID8-mediated glutamine metabolism to promote colorectal cancer progression in m6A-dependent manner. Cancer Lett 2024; 601:217186. [PMID: 39151722 DOI: 10.1016/j.canlet.2024.217186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Dysregulation of epigenetics is a hallmark of cancer development, and YTHDF1 stands out as a crucial epigenetic regulator with the highest DNA copy number variation among all N6-methyladenosine (m6A) regulators in colorectal cancer (CRC) patients. Here, we aimed to investigate the specific contribution of YTHDF1 overexpression to CRC progression and its consequences. Through multiple bioinformatic analyses of human cancer databases and clinical CRC samples, we identified GID8/Twa1 as a crucial downstream target of YTHDF1. YTHDF1 manipulates GID8 translation efficiency in an m6A-dependent manner, and high expression of GID8 is associated with more aggressive tumor progression and poor overall survival. Mechanistically, GID8 is intimately associated with glutamine metabolic demands by maintaining active glutamine uptake and metabolism through the regulation of excitatory amino acid transporter 1 (SLC1A3) and glutaminase (GLS), thereby facilitating the malignant progression of CRC. Inhibition of GID8 attenuated CRC proliferation and metastasis both in vitro and in vivo. In summary, we identified a previously unknown target pertaining to glutamine uptake and metabolism in tumor cells, underscoring the potential of GID8 in the treatment of CRC.
Collapse
Affiliation(s)
- Yicun Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodie Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhiyi Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongqi Chen
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Tang
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang, 315000, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215007, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Galvan C, Flores AA, Cerrilos V, Avila I, Murphy C, Zheng W, Christofk HR, Lowry WE. Defining metabolic flexibility in hair follicle stem cell induced squamous cell carcinoma. SCIENCE ADVANCES 2024; 10:eadn2806. [PMID: 39303037 PMCID: PMC11414736 DOI: 10.1126/sciadv.adn2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
We previously showed that inhibition of glycolysis in cutaneous squamous cell carcinoma (SCC)-initiating cells had no effect on tumorigenesis, despite the perceived requirement of the Warburg effect, which was thought to drive carcinogenesis. Instead, these SCCs were metabolically flexible and sustained growth through glutaminolysis, another metabolic process frequently implicated to fuel tumorigenesis in various cancers. Here, we focused on glutaminolysis and genetically blocked this process through glutaminase (GLS) deletion in SCC cells of origin. Genetic deletion of GLS had little effect on tumorigenesis due to the up-regulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We went on to show that posttranscriptional regulation of nutrient transporters appears to mediate metabolic flexibility in this SCC model. To define the limits of this flexibility, we genetically blocked both glycolysis and glutaminolysis simultaneously and found the abrogation of both of these carbon utilization pathways was enough to prevent both papilloma and frank carcinoma.
Collapse
Affiliation(s)
- Carlos Galvan
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Aimee A. Flores
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Victoria Cerrilos
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Itzetl Avila
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Conor Murphy
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Wilson Zheng
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, DGSOM, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - William E. Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, DGSOM, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
CHU FEI, TONG KAI, GU XIANG, BAO MEI, CHEN YANFEN, WANG BIN, SHAO YANHUA, WEI LING. Glutamine transporters as effective targets in digestive system malignant tumor treatment. Oncol Res 2024; 32:1661-1671. [PMID: 39308523 PMCID: PMC11413814 DOI: 10.32604/or.2024.048287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/07/2024] [Indexed: 09/25/2024] Open
Abstract
Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body. Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements, which is supported by the upregulation of glutamine transporters. Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors. Among all cancers, digestive system malignant tumors (DSMTs) have the highest incidence and mortality rates, and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy. Due to the relatively low survival rate and severe side effects associated with DSMTs treatment, new treatment strategies are urgently required. This article summarizes the glutamine transporters involved in DSMTs and describes their role in DSMTs. Additionally, glutamine transporter-target drugs are discussed, providing theoretical guidance for the further development of drugs DSMTs treatment.
Collapse
Affiliation(s)
- FEI CHU
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - KAI TONG
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - XIANG GU
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - MEI BAO
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - YANFEN CHEN
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - BIN WANG
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - YANHUA SHAO
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - LING WEI
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
21
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Wang Z, Liu M, Yang Q. Glutamine and leukemia research: progress and clinical prospects. Discov Oncol 2024; 15:391. [PMID: 39215845 PMCID: PMC11365919 DOI: 10.1007/s12672-024-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "conditionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides new directions and hints at potential roles for future clinical treatments and studies.
Collapse
Affiliation(s)
- Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| | - Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang, 621000, Sichuan, China
| |
Collapse
|
23
|
Jiang J, Wei X, Lu Y, Li S, Xu X. Network-based prediction of anti-cancer drug combinations. Front Pharmacol 2024; 15:1418902. [PMID: 39211773 PMCID: PMC11357946 DOI: 10.3389/fphar.2024.1418902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Drug combinations have emerged as a promising therapeutic approach in cancer treatment, aimed at overcoming drug resistance and improving the efficacy of monotherapy regimens. However, identifying effective drug combinations has traditionally been time-consuming and often dependent on chance discoveries. Therefore, there is an urgent need to explore alternative strategies to support experimental research. In this study, we propose network-based prediction models to identify potential drug combinations for 11 types of cancer. Our approach involves extracting 55,299 associations from literature and constructing human protein interactomes for each cancer type. To predict drug combinations, we measure the proximity of drug-drug relationships within the network and employ a correlation clustering framework to detect functional communities. Finally, we identify 61,754 drug combinations. Furthermore, we analyze the network configurations specific to different cancer types and identify 30 key genes and 21 pathways. The performance of these models is subsequently assessed through in vitro assays, which exhibit a significant level of agreement. These findings represent a valuable contribution to the development of network-based drug combination design strategies, presenting potential solutions to overcome drug resistance and enhance cancer treatment outcomes.
Collapse
Affiliation(s)
- Jue Jiang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xuxu Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - YuKang Lu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Simin Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xue Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Zhang GQ, Xi C, Ju NT, Shen CT, Qiu ZL, Song HJ, Luo QY. Targeting glutamine metabolism exhibits anti-tumor effects in thyroid cancer. J Endocrinol Invest 2024; 47:1953-1969. [PMID: 38386265 PMCID: PMC11266413 DOI: 10.1007/s40618-023-02294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Effective treatment for patients with advanced thyroid cancer is lacking. Metabolism reprogramming is required for cancer to undergo oncogenic transformation and rapid tumorigenic growth. Glutamine is frequently used by cancer cells for active bioenergetic and biosynthetic needs. This study aims to investigate whether targeting glutamine metabolism is a promising therapeutic strategy for thyroid cancer. METHODS The expression of glutaminase (GLS) and glutamate dehydrogenase (GDH) in thyroid cancer tissues was evaluated by immunohistochemistry, and glutamine metabolism-related genes were assessed using real time-qPCR and western blotting. The effects of glutamine metabolism inhibitor 6-diazo-5-oxo-l-norleucine (DON) on thyroid cancer cells were determined by CCK-8, clone formation assay, Edu incorporation assay, flow cytometry, and Transwell assay. The mechanistic study was performed by real time-qPCR, western blotting, Seahorse assay, and gas chromatography-mass spectrometer assay. The effect of DON prodrug (JHU-083) on thyroid cancer in vivo was assessed using xenograft tumor models in BALB/c nude mice. RESULTS GLS and GDH were over-expressed in thyroid cancer tissues, and GLS expression was positively associated with lymph-node metastasis and TNM stage. The growth of thyroid cancer cells was significantly inhibited when cultured in glutamine-free medium. Targeting glutamine metabolism with DON inhibited the proliferation of thyroid cancer cells. DON treatment did not promote apoptosis, but increased the proportion of cells in the S phase, accompanied by the decreased expression of cyclin-dependent kinase 2 and cyclin A. DON treatment also significantly inhibited the migration and invasion of thyroid cancer cells by reducing the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Non-essential amino acids, including proline, alanine, aspartate, asparagine, and glycine, were reduced in thyroid cancer cells treated with DON, which could explain the decrease of proteins involved in migration, invasion, and cell cycle. The efficacy and safety of DON prodrug (JHU-083) for thyroid cancer treatment were verified in a mouse model. In addition to suppressing the proliferation and metastasis potential of thyroid cancer in vivo, enhanced innate immune response was also observed in JHU-083-treated xenograft tumors as a result of decreased expression of cluster of differentiation 47 and programmed cell death ligand 1. CONCLUSIONS Thyroid cancer exhibited enhanced glutamine metabolism, as evidenced by the glutamine dependence of thyroid cancer cells and high expression of multiple glutamine metabolism-related genes. Targeting glutamine metabolism with DON prodrug could be a promising therapeutic option for advanced thyroid cancer.
Collapse
Affiliation(s)
- G-Q Zhang
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - N-T Ju
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - C-T Shen
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Z-L Qiu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - H-J Song
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Q-Y Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
25
|
Tambay V, Raymond VA, Voisin L, Meloche S, Bilodeau M. Reprogramming of Glutamine Amino Acid Transporters Expression and Prognostic Significance in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7558. [PMID: 39062801 PMCID: PMC11277143 DOI: 10.3390/ijms25147558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy and is a major cause of cancer-related mortality in the world. This study aimed to characterize glutamine amino acid transporter expression profiles in HCC compared to those of normal liver cells. In vitro and in vivo models of HCC were studied using qPCR, whereas the prognostic significance of glutamine transporter expression levels within patient tumors was analyzed through RNAseq. Solute carrier (SLC) 1A5 and SLC38A2 were targeted through siRNA or gamma-p-nitroanilide (GPNA). HCC cells depended on exogenous glutamine for optimal survival and growth. Murine HCC cells showed superior glutamine uptake rate than normal hepatocytes (p < 0.0001). HCC manifested a global reprogramming of glutamine transporters compared to normal liver: SLC38A3 levels decreased, whereas SLC38A1, SLC7A6, and SLC1A5 levels increased. Also, decreased SLC6A14 and SLC38A3 levels or increased SLC38A1, SLC7A6, and SLC1A5 levels predicted worse survival outcomes (all p < 0.05). Knockdown of SLC1A5 and/or SLC38A2 expression in human Huh7 and Hep3B HCC cells, as well as GPNA-mediated inhibition, significantly decreased the uptake of glutamine; combined SLC1A5 and SLC38A2 targeting had the most considerable impact (all p < 0.05). This study revealed glutamine transporter reprogramming as a novel hallmark of HCC and that such expression profiles are clinically significant.
Collapse
Affiliation(s)
- Vincent Tambay
- Laboratoire d’Hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Valérie-Ann Raymond
- Laboratoire d’Hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laure Voisin
- Institut de Recherche en Immunologie et en Cancérologie de l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sylvain Meloche
- Institut de Recherche en Immunologie et en Cancérologie de l’Université de Montréal, Montréal, QC H3T 1J4, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marc Bilodeau
- Laboratoire d’Hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
26
|
Shen H, Wang H, Mo J, Zhang J, Xu C, Sun F, Ou X, Zhu X, Du L, Ju H, Ye R, Shi G, Kwok RT, Lam JW, Sun J, Zhang T, Ning S, Tang BZ. Unrestricted molecular motions enable mild photothermy for recurrence-resistant FLASH antitumor radiotherapy. Bioact Mater 2024; 37:299-312. [PMID: 38694765 PMCID: PMC11061705 DOI: 10.1016/j.bioactmat.2024.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024] Open
Abstract
Ultrahigh dose-rate (FLASH) radiotherapy is an emerging technology with excellent therapeutic effects and low biological toxicity. However, tumor recurrence largely impede the effectiveness of FLASH therapy. Overcoming tumor recurrence is crucial for practical FLASH applications. Here, we prepared an agarose-based thermosensitive hydrogel containing a mild photothermal agent (TPE-BBT) and a glutaminase inhibitor (CB-839). Within nanoparticles, TPE-BBT exhibits aggregation-induced emission peaked at 900 nm, while the unrestricted molecular motions endow TPE-BBT with a mild photothermy generation ability. The balanced photothermal effect and photoluminescence are ideal for phototheranostics. Upon 660-nm laser irradiation, the temperature-rising effect softens and hydrolyzes the hydrogel to release TPE-BBT and CB-839 into the tumor site for concurrent mild photothermal therapy and chemotherapy, jointly inhibiting homologous recombination repair of DNA. The enhanced FLASH radiotherapy efficiently kills the tumor tissue without recurrence and obvious systematic toxicity. This work deciphers the unrestricted molecular motions in bright organic fluorophores as a source of photothermy, and provides novel recurrence-resistant radiotherapy without adverse side effects.
Collapse
Affiliation(s)
- Hanchen Shen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Hongbin Wang
- The Second Ward of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Heilongjiang, 150081, China
| | - Jianlan Mo
- Department of Anesthesiology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Changhuo Xu
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao, China
| | - Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xinyan Zhu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Lidong Du
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao, China
| | - Huaqiang Ju
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Guangfu Shi
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ryan T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jacky W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Tianfu Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
27
|
Gao W, Wang J, Xu Y, Yu H, Yi S, Bai C, Cong Q, Zhu Y. Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Mol Med Rep 2024; 30:131. [PMID: 38818815 PMCID: PMC11148525 DOI: 10.3892/mmr.2024.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and its morbidity is increasing worldwide due to increasing prevalence. Metabolic reprogramming has been recognized as a hallmark of cancer and serves a role in cancer progression. Glucose, lipids and amino acids are three major components whose altered metabolism can directly affect the energy production of cells, including liver cancer cells. Nutrients and energy are indispensable for the growth and proliferation of cancer cells, thus altering the metabolism of hepatoma cells can inhibit the progression of HCC. The present review summarizes recent studies on tumour regulatory molecules, including numerous noncoding RNAs, oncogenes and tumour suppressors, which regulate the metabolic activities of glucose, lipids and amino acids by targeting key enzymes, signalling pathways or interactions between the two. These regulatory molecules can regulate the rapid proliferation of cancer cells, tumour progression and treatment resistance. It is thought that these tumour regulatory factors may serve as therapeutic targets or valuable biomarkers for HCC, with the potential to mitigate HCC drug resistance. Furthermore, the advantages and disadvantages of metabolic inhibitors as a treatment approach for HCC, as well as possible solutions are discussed, providing insights for developing more effective treatment strategies for HCC.
Collapse
Affiliation(s)
- Wenyue Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Jing Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Yuting Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Hongbo Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Sitong Yi
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Changchuan Bai
- Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116000, P.R China
| | - Qingwei Cong
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| |
Collapse
|
28
|
Li A, Wang R, Zhao Y, Zhao P, Yang J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024; 14:325. [PMID: 38921460 PMCID: PMC11205353 DOI: 10.3390/metabo14060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.
Collapse
Affiliation(s)
- Anqi Li
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuqiang Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Peiran Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Jing Yang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| |
Collapse
|
29
|
Ziki RA, Colnot S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep 2024; 6:101077. [PMID: 38699532 PMCID: PMC11063524 DOI: 10.1016/j.jhepr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024] Open
Abstract
The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding β-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.
Collapse
Affiliation(s)
- Razan Abou Ziki
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
30
|
Hasan Bou Issa L, Fléchon L, Laine W, Ouelkdite A, Gaggero S, Cozzani A, Tilmont R, Chauvet P, Gower N, Sklavenitis-Pistofidis R, Brinster C, Thuru X, Touil Y, Quesnel B, Mitra S, Ghobrial IM, Kluza J, Manier S. MYC dependency in GLS1 and NAMPT is a therapeutic vulnerability in multiple myeloma. iScience 2024; 27:109417. [PMID: 38510131 PMCID: PMC10952034 DOI: 10.1016/j.isci.2024.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/26/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy in which MYC alterations contribute to the malignant phenotype. Nevertheless, MYC lacks therapeutic druggability. Here, we leveraged large-scale loss-of-function screens and conducted a small molecule screen to identify genes and pathways with enhanced essentiality correlated with MYC expression. We reported a specific gene dependency in glutaminase (GLS1), essential for the viability and proliferation of MYC overexpressing cells. Conversely, the analysis of isogenic models, as well as cell lines dataset (CCLE) and patient datasets, revealed GLS1 as a non-oncogenic dependency in MYC-driven cells. We functionally delineated the differential modulation of glutamine to maintain mitochondrial function and cellular biosynthesis in MYC overexpressing cells. Furthermore, we observed that pharmaceutical inhibition of NAMPT selectively affects MYC upregulated cells. We demonstrate the effectiveness of combining GLS1 and NAMPT inhibitors, suggesting that targeting glutaminolysis and NAD synthesis may be a promising strategy to target MYC-driven MM.
Collapse
Affiliation(s)
- Lama Hasan Bou Issa
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Léa Fléchon
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - William Laine
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Aicha Ouelkdite
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Silvia Gaggero
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Adeline Cozzani
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Remi Tilmont
- Department of Hematology, CHU Lille, 59000 Lille, France
| | - Paul Chauvet
- Department of Hematology, CHU Lille, 59000 Lille, France
| | - Nicolas Gower
- Department of Hematology, CHU Lille, 59000 Lille, France
| | | | - Carine Brinster
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Xavier Thuru
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Yasmine Touil
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Bruno Quesnel
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
- Department of Hematology, CHU Lille, 59000 Lille, France
| | - Suman Mitra
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Irene M. Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jérôme Kluza
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Salomon Manier
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
- Department of Hematology, CHU Lille, 59000 Lille, France
| |
Collapse
|
31
|
Kim JH, Lee J, Im SS, Kim B, Kim EY, Min HJ, Heo J, Chang EJ, Choi KC, Shin DM, Son J. Glutamine-mediated epigenetic regulation of cFLIP underlies resistance to TRAIL in pancreatic cancer. Exp Mol Med 2024; 56:1013-1026. [PMID: 38684915 PMCID: PMC11058808 DOI: 10.1038/s12276-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.
Collapse
MESH Headings
- Humans
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- CASP8 and FADD-Like Apoptosis Regulating Protein/genetics
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- Epigenesis, Genetic
- Glutamine/metabolism
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Jumonji Domain-Containing Histone Demethylases/genetics
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Apoptosis/drug effects
- Ketoglutaric Acids/metabolism
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Animals
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinyoung Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Se Seul Im
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Boyun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinbeom Heo
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jaekyoung Son
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
32
|
Prange CJ, Sayed NYB, Feng B, Goepfert C, Trujillo DO, Hu X, Tang L. A redox-responsive prodrug for tumor-targeted glutamine restriction. J Control Release 2024; 368:251-264. [PMID: 38403173 DOI: 10.1016/j.jconrel.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Modulating the metabolism of cancer cells, immune cells, or both is a promising strategy to potentiate cancer immunotherapy in the nutrient-competitive tumor microenvironment. Glutamine has emerged as an ideal target as cancer cells highly rely on glutamine for replenishing the tricarboxylic acid cycle in the process of aerobic glycolysis. However, non-specific glutamine restriction may induce adverse effects in unconcerned tissues and therefore glutamine inhibitors have achieved limited success in the clinic so far. Here we report the synthesis and evaluation of a redox-responsive prodrug of 6-Diazo-5-oxo-L-norleucine (redox-DON) for tumor-targeted glutamine inhibition. When applied to treat mice bearing subcutaneous CT26 mouse colon carcinoma, redox-DON exhibited equivalent antitumor efficacy but a greatly improved safety profile, particularly, in spleen and gastrointestinal tract, as compared to the state-of-the-art DON prodrug, JHU083. Furthermore, redox-DON synergized with checkpoint blockade antibodies leading to durable cures in tumor-bearing mice. Our results suggest that redox-DON is a safe and effective therapeutic for tumor-targeted glutamine inhibition showing promise for enhanced metabolic modulatory immunotherapy. The approach of reversible chemical modification may be generalized to other metabolic modulatory drugs that suffer from overt toxicity.
Collapse
Affiliation(s)
- Céline Jasmin Prange
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Nadia Yasmina Ben Sayed
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Christine Goepfert
- Histology Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; COMPATH, Institute of Veterinary Pathology, University of Berne, Berne CH-3012, Switzerland
| | - Daniel Ortiz Trujillo
- Mass Spectrometry Platform, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Xile Hu
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland; Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
33
|
Han X, Wang D, Yang L, Wang N, Shen J, Wang J, Zhang L, Chen L, Gao S, Zong WX, Wang Y. Activation of polyamine catabolism promotes glutamine metabolism and creates a targetable vulnerability in lung cancer. Proc Natl Acad Sci U S A 2024; 121:e2319429121. [PMID: 38513095 PMCID: PMC10990097 DOI: 10.1073/pnas.2319429121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/25/2024] [Indexed: 03/23/2024] Open
Abstract
Polyamines are a class of small polycationic alkylamines that play essential roles in both normal and cancer cell growth. Polyamine metabolism is frequently dysregulated and considered a therapeutic target in cancer. However, targeting polyamine metabolism as monotherapy often exhibits limited efficacy, and the underlying mechanisms are incompletely understood. Here we report that activation of polyamine catabolism promotes glutamine metabolism, leading to a targetable vulnerability in lung cancer. Genetic and pharmacological activation of spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme of polyamine catabolism, enhances the conversion of glutamine to glutamate and subsequent glutathione (GSH) synthesis. This metabolic rewiring ameliorates oxidative stress to support lung cancer cell proliferation and survival. Simultaneous glutamine limitation and SAT1 activation result in ROS accumulation, growth inhibition, and cell death. Importantly, pharmacological inhibition of either one of glutamine transport, glutaminase, or GSH biosynthesis in combination with activation of polyamine catabolism synergistically suppresses lung cancer cell growth and xenograft tumor formation. Together, this study unveils a previously unappreciated functional interconnection between polyamine catabolism and glutamine metabolism and establishes cotargeting strategies as potential therapeutics in lung cancer.
Collapse
Affiliation(s)
- Xinlu Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Deyu Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Liao Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Ning Wang
- Bio-med Big Data Center, Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ08854
| | - Jinghan Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200433, China
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ08854
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Minhang Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
34
|
Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol 2024; 15:1345522. [PMID: 38510646 PMCID: PMC10952006 DOI: 10.3389/fphar.2024.1345522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Han Xue
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Zhimin Li
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Mingge Huo
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Hongxia Gao
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| |
Collapse
|
35
|
Wu K, El Zowalaty AE, Sayin VI, Papagiannakopoulos T. The pleiotropic functions of reactive oxygen species in cancer. NATURE CANCER 2024; 5:384-399. [PMID: 38531982 DOI: 10.1038/s43018-024-00738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.
Collapse
Affiliation(s)
- Katherine Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed Ezat El Zowalaty
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Zhang Q, Wei T, Jin W, Yan L, Shi L, Zhu S, Bai Y, Zeng Y, Yin Z, Yang J, Zhang W, Wu M, Zhang Y, Peng G, Roessler S, Liu L. Deficiency in SLC25A15, a hypoxia-responsive gene, promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J Hepatol 2024; 80:293-308. [PMID: 38450598 DOI: 10.1016/j.jhep.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND & AIMS The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms. METHODS We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models. Furthermore, we analyzed its involvement in reprogramming glutamine metabolism. RESULTS SLC25A15 expression was significantly decreased in HCC tissues, and patients with low SLC25A15 levels had a poorer prognosis. Hypoxia-exposed HCC cells or tissues had lower SLC25A15 expression. A positive correlation between HNF4A, a transcription factor suppressed by hypoxia, and SLC25A15 was observed in both HCC tissues and cells. Modulating HNF4A levels altered SLC25A15 mRNA levels. SLC25A15 upregulated SLC1A5, increasing glutamine uptake. The reactive metabolic pathway of glutamine was increased in SLC25A15-deficient HCC cells, providing energy for HCC progression through additional lipid synthesis. Ammonia accumulation due to low SLC25A15 levels suppressed the expression of OGDHL (oxoglutarate dehydrogenase L), a switch gene that mediates SLC25A15 deficiency-induced reprogramming of glutamine metabolism. SLC25A15-deficient HCC cells were more susceptible to glutamine deprivation and glutaminase inhibitors. Intervening in glutamine metabolism increased SLC25A15-deficient HCC cells' response to anti-PD-L1 treatment. CONCLUSION SLC25A15 is hypoxia-responsive in HCC, and low SLC25A15 levels result in glutamine reprogramming through SLC1A5 and OGDHL regulation, promoting HCC progression and regulating cell sensitivity to anti-PD-L1. Interrupting the glutamine-derived energy supply is a potential therapeutic strategy for treating SLC25A15-deficient HCC. IMPACT AND IMPLICATIONS We first demonstrated the tumor suppressor role of solute carrier family 25 member 15 (SLC25A15) in hepatocellular carcinoma (HCC) and showed that its deficiency leads to reprogramming of glutamine metabolism to promote HCC development. SLC25A15 can serve as a potential biomarker to guide the development of precision therapeutic strategies aimed at targeting glutamine deprivation. Furthermore, we highlight that the use of an inhibitor of glutamine utilization can enhance the sensitivity of low SLC25A15 HCC to anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 510632 Guangzhou, China
| | - Teng Wei
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Wen Jin
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Lesen Yan
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Lulin Shi
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Siqi Zhu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Yu Bai
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Yuandi Zeng
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Zexin Yin
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Jilin Yang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Wenjian Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Meilong Wu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Yusen Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Gongze Peng
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020 Shenzhen, China.
| |
Collapse
|
37
|
Jenkins SV, Shruti Shah, Jamshidi-Parsian A, Mortazavi A, Kristian H, Boysen G, Vang KB, Griffin RJ, Rajaram N, Dings RP. Acquired Radiation Resistance Induces Thiol-dependent Cisplatin Cross-resistance. Radiat Res 2024; 201:174-187. [PMID: 38329819 PMCID: PMC10993299 DOI: 10.1667/rade-23-00005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024]
Abstract
Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.
Collapse
Affiliation(s)
- Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Shruti Shah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Amir Mortazavi
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Hailey Kristian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gunnar Boysen
- Environment Health Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kieng B. Vang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Narasimhan Rajaram
- Department for Biomedical Engineering, University of Arkansas, University of Arkansas at Fayetteville, Fayetteville, Arkansas 72701
| | - Ruud P.M. Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
38
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
39
|
Zhang Z, Ju M, Tang Z, He Z, Hua S. DNAJC8: a prognostic marker and potential therapeutic target for hepatocellular carcinoma. Front Immunol 2024; 14:1289548. [PMID: 38274804 PMCID: PMC10808467 DOI: 10.3389/fimmu.2023.1289548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer, accounting for ~90% of the total cases. DnaJ heat shock protein family member C8 (DNAJC8), belonging to the heat shock protein 40 (HSP40) family, is known to regulate cancer biology function. However, the role of DNAJC8 on HCC development remains unknown. Methods The Cancer Genome Atlas, GTEx, cBioPortal, and Human Protein Atlas were used to analyze the expression and clinical significance of DNAJC8 in HCC. Two HCC cell lines, MHCC-97H and Huh-7, were utilized to determine the biological function of DNAJC8. Results DNAJC8 expression was upregulated in HCC tissues and correlated with poor clinical prognosis. It was closely related to spliceosome, nucleocytoplasmic transport, and cell cycle and might be involved in the formation of tumor immunosuppressive microenvironment. Knockdown of DNAJC8 severely inhibited HCC cell proliferation and induced apoptosis. Conclusion Our study demonstrate that DNAJC8 functions as an oncogene in HCC and hence may be used as a potential therapeutic target and prognostic marker for HCC.
Collapse
Affiliation(s)
| | | | | | | | - Shengni Hua
- Department of Radiation Oncology, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
40
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
41
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
42
|
Elmetwalli A, Nageh A, Youssef AI, Youssef M, Ahmed MAER, Noreldin AE, El-Sewedy T. Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer. Med Oncol 2023; 41:38. [PMID: 38157146 DOI: 10.1007/s12032-023-02250-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
The glutamine synthetase (GS) facilitates cancer cell growth by catalyzing de novo glutamine synthesis. This enzyme removes ammonia waste from the liver following the urea cycle. Since cancer development is associated with dysregulated urea cycles, there has been no investigation of GS's role in ammonia clearance. Here, we demonstrate that, although GS expression is increased in the setting of β-catenin oncogenic activation, it is insufficient to clear the ammonia waste burden due to the dysregulated urea cycle and may thus be unable to prevent cancer formation. In vivo study, a total of 165 male Swiss albino mice allocated in 11 groups were used, and liver cancer was induced by p-DAB. The activity of GS was evaluated along with the relative expression of mTOR, β-catenin, MMP-14, and GS genes in liver samples and HepG2 cells using qRT-PCR. Moreover, the cytotoxicity of the NH3 scavenger phenyl acetate (PA) and/or GS-inhibitor L-methionine sulfoximine (MSO) and the migratory potential of cells was assessed by MTT and wound healing assays, respectively. The Swiss target prediction algorithm was used to screen the mentioned compounds for probable targets. The treatment of the HepG2 cell line with PA plus MSO demonstrated strong cytotoxicity. The post-scratch remaining wound area (%) in the untreated HepG2 cells was 2.0%. In contrast, the remaining wound area (%) in the cells treated with PA, MSO, and PA + MSO for 48 h was 61.1, 55.8, and 78.5%, respectively. The combination of the two drugs had the greatest effect, resulting in the greatest decrease in the GS activity, β-catenin, and mTOR expression. MSO and PA are both capable of suppressing mTOR, a key player in the development of HCC, and MMP-14, a key player in the development of HCC. PA inhibited the MMP-14 enzyme more effectively than MSO, implying that PA might be a better way to target HCC as it inhibited MMP-14 more effectively than MSO. A large number of abnormal hepatocytes (5%) were found to be present in the HCC mice compared to mice in the control group as determined by the histopathological lesions scores. In contrast, PA, MSO, and PA + MSO showed a significant reduction in the hepatic lesions score either when protecting the liver or when treating the liver. The molecular docking study indicated that PA and MSO form a three-dimensional structure with NF-κB and COX-II, blocking their ability to promote cancer and cause gene mutations. PA and MSO could be used to manipulate GS activities to modulate ammonia levels, thus providing a potential treatment for ammonia homeostasis.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Aly Nageh
- Fertility and Assisted Reproductive Techniques Unit, International Teaching Hospital, Tanta University, Tanta, Egypt
| | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Magda Youssef
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed Abd El-Rahman Ahmed
- Department of Clinical Pathology, Military Medical Academy, Alexandria Armed Forces Hospitals, Alexandria, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Buczkowska J, Szeliga M. Two Faces of Glutaminase GLS2 in Carcinogenesis. Cancers (Basel) 2023; 15:5566. [PMID: 38067269 PMCID: PMC10705333 DOI: 10.3390/cancers15235566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 04/29/2025] Open
Abstract
In rapidly proliferating cancer cells, glutamine is a major source of energy and building blocks. Increased glutamine uptake and enhanced glutaminolysis are key metabolic features of many cancers. Glutamine is metabolized by glutaminase (GA), which is encoded by two genes: GLS and GLS2. In contrast to isoforms arising from the GLS gene, which clearly act as oncoproteins, the role of GLS2 products in tumorigenesis is far from well understood. While in some cancer types GLS2 is overexpressed and drives cancer development, in some other types it is downregulated and behaves as a tumor suppressor gene. In this review, we describe the essential functions and regulatory mechanisms of human GLS2 and the cellular compartments in which GLS2 has been localized. Furthermore, we present the context-dependent oncogenic and tumor-suppressor properties of GLS2, and delve into the mechanisms underlying these phenomena.
Collapse
Affiliation(s)
| | - Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland;
| |
Collapse
|
44
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
45
|
Holt AK, Najumudeen AK, Collard TJ, Li H, Millett LM, Hoskin AJ, Legge DN, Mortensson EMH, Flanagan DJ, Jones N, Kollareddy M, Timms P, Hitchings MD, Cronin J, Sansom OJ, Williams AC, Vincent EE. Aspirin reprogrammes colorectal cancer cell metabolism and sensitises to glutaminase inhibition. Cancer Metab 2023; 11:18. [PMID: 37858256 PMCID: PMC10588174 DOI: 10.1186/s40170-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.
Collapse
Affiliation(s)
- Amy K Holt
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Arafath K Najumudeen
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tracey J Collard
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Hao Li
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Ashley J Hoskin
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Danny N Legge
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Eleanor M H Mortensson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | | | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Madhu Kollareddy
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Penny Timms
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - James Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ann C Williams
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Emma E Vincent
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
46
|
Galvan C, Flores A, Cerrillos V, Avila I, Murphy C, Zheng W, To TT, Christofk HR, Lowry WE. Defining metabolic flexibility in hair follicle stem cell induced squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562128. [PMID: 37905122 PMCID: PMC10614763 DOI: 10.1101/2023.10.16.562128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Among the numerous changes associated with the transformation to cancer, cellular metabolism is one of the first discovered and most prominent[1, 2]. However, despite the knowledge that nearly every cancer is associated with the strong upregulation of various metabolic pathways, there has yet to be much clinical progress on the treatment of cancer by targeting a single metabolic enzyme directly[3-6]. We previously showed that inhibition of glycolysis through lactate dehydrogenase (LDHA) deletion in cancer cells of origin had no effect on the initiation or progression of cutaneous squamous cell carcinoma[7], suggesting that these cancers are metabolically flexible enough to produce the necessary metabolites required for sustained growth in the absence of glycolysis. Here we focused on glutaminolysis, another metabolic pathway frequently implicated as important for tumorigenesis in correlative studies. We genetically blocked glutaminolysis through glutaminase (GLS) deletion in cancer cells of origin, and found that this had little effect on tumorigenesis, similar to what we previously showed for blocking glycolysis. Tumors with genetic deletion of glutaminolysis instead upregulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We also found that the metabolic flexibility observed upon inhibition of glycolysis or glutaminolysis is due to post-transcriptional changes in the levels of plasma membrane lactate and glutamine transporters. To define the limits of metabolic flexibility in cancer initiating hair follicle stem cells, we genetically blocked both glycolysis and glutaminolysis simultaneously and found that frank carcinoma was not compatible with abrogation of both of these carbon utilization pathways. These data point towards metabolic flexibility mediated by regulation of nutrient consumption, and suggest that treatment of cancer through metabolic manipulation will require multiple interventions on distinct pathways.
Collapse
|
47
|
Ventura C, Junco M, Santiago Valtierra FX, Gooz M, Zhiwei Y, Townsend DM, Woster PM, Maldonado EN. Synergism of small molecules targeting VDAC with sorafenib, regorafenib or lenvatinib on hepatocarcinoma cell proliferation and survival. Eur J Pharmacol 2023; 957:176034. [PMID: 37652292 PMCID: PMC10586475 DOI: 10.1016/j.ejphar.2023.176034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Voltage dependent anion channels (VDAC) in the outer mitochondrial membrane regulate the influx of metabolites that sustain mitochondrial metabolism and the efflux of ATP to the cytosol. Free tubulin and NADH close VDAC. The VDAC-binding small molecules X1 and SC18 modulate mitochondrial metabolism. X1 antagonizes the inhibitory effect of tubulin on VDAC. SC18 occupies an NADH-binding pocket in the inner wall of all VDAC isoforms. Here, we hypothesized that X1 and SC18 have a synergistic effect with sorafenib, regorafenib or lenvatinib to arrest proliferation and induce death in hepatocarcinoma cells. We used colony formation assays to determine cell proliferation, and a combination of calcein/propidium iodide, and trypan blue exclusion to assess cell death in the well differentiated Huh7 and the poorly differentiated SNU-449 cells. Synergism was assessed using the Chou-Talalay method. The inhibitory effect of X1, SC18, sorafenib, regorafenib and lenvatinib was concentration and time dependent. IC50s calculated from the inhibition of clonogenic capacity were lower than those determined from cell survival. At IC50s that inhibited cell proliferation, SC18 arrested cells in G0/G1. SC18 at 0.25-2 IC50s had a synergistic effect with sorafenib on clonogenic inhibition in Huh7 and SNU-449 cells, and with regorafenib or lenvatinib in SNU-449 cells. X1 or SC18 also had synergistic effects with sorafenib on promoting cell death at 0.5-2 IC50s for SC18 in Huh7 and SNU-449 cells. These results suggest that small molecules targeting VDAC represent a potential new class of drugs to treat liver cancer.
Collapse
Affiliation(s)
- C Ventura
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA; Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Argentina
| | - M Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - F X Santiago Valtierra
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Y Zhiwei
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - D M Townsend
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - P M Woster
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
48
|
Du D, Qin M, Shi L, Liu C, Jiang J, Liao Z, Wang H, Zhang Z, Sun L, Fan H, Liu Z, Yu H, Li H, Peng J, Yuan S, Yang M, Xiong J. RNA binding motif protein 45-mediated phosphorylation enhances protein stability of ASCT2 to promote hepatocellular carcinoma progression. Oncogene 2023; 42:3127-3141. [PMID: 37658192 DOI: 10.1038/s41388-023-02795-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023]
Abstract
Targeting metabolic remodeling represents a potentially promising strategy for hepatocellular carcinoma (HCC) therapy. In-depth understanding on the regulation of the glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) contributes to the development of novel promising therapeutics. As a developmentally regulated RNA binding protein, RBM45 is capable to shuttle between nucleus and cytoplasm, and directly interacts with proteins. By bioinformatics analysis, we screened out that RBM45 was elevated in the HCC patient specimens and positively correlated with poor prognosis. RBM45 promoted cell proliferation, boosted xenograft tumorigenicity and accelerated HCC progression. Using untargeted metabolomics, it was found that RBM45 interfered with glutamine metabolism. Further results demonstrated that RBM45 positively associated with ASCT2 in human and mouse specimens. Moreover, RBM45 enhanced ASCT2 protein stability by counteracting autophagy-independent lysosomal degradation. Significantly, wild-type ASCT2, instead of phospho-defective mutants, rescued siRBM45-suppressed HCC cell proliferation. Using molecular docking approaches, we found AG-221, a mutant isocitrate dehydrogenase 2 (mIDH2) inhibitor for acute myeloid leukemia therapy, pharmacologically perturbed RBM45-ASCT2 interaction, decreased ASCT2 stability and suppressed HCC progression. These findings provide evidence that RBM45 plays a crucial role in HCC progression via interacting with and counteracting the degradation of ASCT2. Our findings suggest a novel alternative structural sites for the design of ASCT2 inhibitors and the agents interfering with RBM45-ASCT2 interaction may be a potential direction for HCC drug development.
Collapse
Affiliation(s)
- Danyu Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Li Shi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chan Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwei Jiang
- Shuangyun BioMed Sci & Tech Co., Ltd., Suzhou, 215000, China
| | - Zhengguang Liao
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongxv Wang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhibo Zhang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Li Sun
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Fan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengrui Liu
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital Affiliated to Dalian Medical University, Taizhou, 225300, Jiangsu, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, China
| | - Jun Peng
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengtao Yuan
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China.
| | - Mei Yang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
49
|
Li W, Ling Z, Wang J, Su Z, Lu J, Yang X, Cheng B, Tao X. ASCT2-mediated glutamine uptake promotes Th1 differentiation via ROS-EGR1-PAC1 pathway in oral lichen planus. Biochem Pharmacol 2023; 216:115767. [PMID: 37634599 DOI: 10.1016/j.bcp.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Oral lichen planus (OLP) is a T cell-mediated autoimmune disease of oral mucosa concerning with the redox imbalance. Although glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) is critical to T cell differentiation, the exact mechanism remains ambiguous. Here, we elucidate a novel regulatory mechanism of ASCT2-mediated uptake in the differentiation and proliferation of T cells through maintaining redox balance in OLP. The results of immunohistochemistry (IHC) showed that both ASCT2 and glutaminase (GLS) were obviously upregulated compared to controls in OLP. Moreover, correlation analyses indicated that ASCT2 expression was significantly related to GLS level. Interestingly, the upregulation of glutamine metabolism in epithelial layer was consistent with that in lamina propria. Functional assays in vitro revealed the positive association between glutamine metabolism and lymphocytes infiltration. Additionally, multiplex immunohistochemistry (mIHC) uncovered a stronger colocalization among ASCT2 and CD4 and IFN-γ, which was further demonstrated by human Th1 differentiation assay in vitro. Mechanistically, targeting glutamine uptake through interference with ASCT2 using L-γ-Glutamyl-p-nitroanilide (GPNA) decreased the glutamine uptake of T cells and leaded to the accumulation of intracellular reactive oxygen species (ROS), which promoted dual specificity phosphatase 2 (DUSP2/PAC1) expression through activation of early growth response 1 (EGR1) to induce dephosphorylation of signal transducer and activator of transcription 3 (STAT3) and inhibit Th1 differentiation in turn. These results demonstrated that glutamine uptake mediated by ASCT2 induced Th1 differentiation by ROS-EGR1-PAC1 pathway, and restoring the redox dynamic balance through targeting ASCT2 may be a potential treatment for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jinmei Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhangci Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jingyi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
50
|
Lobel GP, Jiang Y, Simon MC. Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chem Biol 2023; 30:1015-1032. [PMID: 37703882 PMCID: PMC10528750 DOI: 10.1016/j.chembiol.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Over the last two decades, the rapidly expanding field of tumor metabolism has enhanced our knowledge of the impact of nutrient availability on metabolic reprogramming in cancer. Apart from established roles in cancer cells themselves, various nutrients, metabolic enzymes, and stress responses are key to the activities of tumor microenvironmental immune, fibroblastic, endothelial, and other cell types that support malignant transformation. In this article, we review our current understanding of how nutrient availability affects metabolic pathways and responses in both cancer and "stromal" cells, by dissecting major examples and their regulation of cellular activity. Understanding the relationship of nutrient availability to cellular behaviors in the tumor ecosystem will broaden the horizon of exploiting novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Graham P Lobel
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|