1
|
Jézéquel J, Condomitti G, Kroon T, Hamid F, Sanalidou S, Garcés T, Maeso P, Balia M, Hu Z, Sahara S, Rico B. Cadherins orchestrate specific patterns of perisomatic inhibition onto distinct pyramidal cell populations. Nat Commun 2025; 16:4481. [PMID: 40368888 PMCID: PMC12078473 DOI: 10.1038/s41467-025-59635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
GABAergic interneurons were thought to regulate excitatory networks by establishing unselective connections onto diverse pyramidal cell populations, but recent studies demonstrate the existence of a cell type-specific inhibitory connectome. How and when interneurons establish precise connectivity patterns among intermingled populations of excitatory neurons remains enigmatic. We explore the molecular mechanisms orchestrating the emergence of cell type-specific inhibition in the mouse cerebral cortex. We demonstrate that layer 5 intra- (L5 IT) and extra-telencephalic (L5 ET) neurons express unique transcriptional programs, allowing them to shape parvalbumin- (PV+) and cholecystokinin-positive (CCK+) interneuron wiring. We identified Cdh12 and Cdh13, two cadherin superfamily members, as underpinnings of cell type- and input-specific inhibitory patterns of L5 pyramidal cell populations. Multiplex monosynaptic tracing revealed a minimal overlap between IT and ET presynaptic inhibitory networks and suggests that different PV+ basket cell populations innervate distinct L5 pyramidal cell types. Here, we unravel the contribution of cadherins in shaping cell-type-specific cortical interneuron wiring.
Collapse
Affiliation(s)
- Julie Jézéquel
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giuseppe Condomitti
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Tim Kroon
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stella Sanalidou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Teresa Garcés
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Maddalena Balia
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Zhaohui Hu
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Setsuko Sahara
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
2
|
Nadeem A, Sharma P, Gupta P, Sandeep P, Sharma B, Sharma N, Yadav M, Dhiman N. Exploring Neuregulin3: From physiology to pathology, a novel target for rational drug design. Biochem Pharmacol 2025; 238:116964. [PMID: 40320052 DOI: 10.1016/j.bcp.2025.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Neuregulin 3 (NRG3) is an epidermal growth factor related protein that binds to and stimulates the Erb-B2 receptor tyrosine kinase 4 (ErbB4). NRG3 is a multifunctional protein with fifteen alternative splicing isoforms categorized into four classes. Numerous physiological processes, such as the formation of cortical plate, cortical patterning, synaptic development, neuronal proliferation, regulation of neurotransmission, control of impulsive behavior, mammary gland morphogenesis, spermatogonial proliferation and cardiac homeostasis are influenced by NRG3. Besides its physiological roles, NRG3 also modulates anxiogenic phenotypes. It is a susceptibility gene for schizophrenia, autism spectrum disorder and Hirschsprung's Disease. Furthermore, anxiety during nicotine withdrawal is dependent on NRG3-ErbB4 signaling. Research on a range of solid carcinomas, such as brain tumors, ovarian cancer, gastrointestinal cancer and breast cancer, has demonstrated NRG3 gene as a therapeutic target. NRG3 also has potential involvement in epilepsy, angular limb malformation in Rambouillet rams, amyotrophic lateral sclerosis and polythelia. Nevertheless, little is known about the molecular characteristics, activities specific to isoforms, and molecular mechanisms of NRG3. Examining its potential involvement in a range of physiological processes and pathological states is a unique area that needs in-depth study and may offer new mechanistic insights and comprehension of these elements. Thus, the purpose of this review is to shed light on the utility of NRG3 as a potential target in various health and disease conditions.
Collapse
Affiliation(s)
- Aqsa Nadeem
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh 201306, India.
| | - Palak Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| | - Nitin Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mahendra Yadav
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Turner-Ivey B, Jenkins DP, Carroll SL. Multiple Roles for Neuregulins and Their ERBB Receptors in Neurodegenerative Disease Pathogenesis and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00119-1. [PMID: 40254133 DOI: 10.1016/j.ajpath.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
The role that neurotrophins, such as nerve growth factor, play in the pathogenesis of neurodegenerative diseases has long been appreciated. However, the neuregulin (NRG) family of growth factors and/or their v-erb-B2 avian erythroblastic leukemia viral oncogene homolog (ERBB) receptors have also been implicated in the pathogenesis of conditions, such as Alzheimer disease (AD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). In this review, we consider i) the structural variability of NRG isoforms generated by alternative RNA splicing, the use of multiple promoters and proteolysis, and the impact that this structural variability has on neuronal and glial physiology during development and adulthood. We discuss ii) the NRG receptors ERBB2, ERBB3, and ERBB4, how activation of each of these receptors further diversifies NRG actions in the central nervous system, and how dementia-related proteins, such as γ-secretase modulate the action of NRGs and their ERBB receptors. We then iii) turn to the abnormalities in NRG and ERBB expression and function evident in human AD and mouse AD models, how these abnormalities affect brain function, and attempts to use NRGs to treat AD. Finally, iv) we discuss NRG effects on the survival and function of neurons relevant to FTLD and ALS, alterations in NRG/ERBB signaling identified in these conditions, and the recent discovery of multiple human pedigrees in which autosomal dominant FTLD/ALS potentially results from point mutations in ERBB4.
Collapse
Affiliation(s)
- Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
4
|
Pollitt SL, Levy AD, Anderson MC, Blanpied TA. Large Donor CRISPR for Whole-Coding Sequence Replacement of Cell Adhesion Molecule LRRTM2. J Neurosci 2025; 45:e1461242024. [PMID: 39824639 PMCID: PMC11823385 DOI: 10.1523/jneurosci.1461-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 01/20/2025] Open
Abstract
The cell adhesion molecule leucine-rich repeat transmembrane neuronal protein 2 (LRRTM2) is crucial for synapse development and function. However, our understanding of its endogenous trafficking has been limited due to difficulties in manipulating its coding sequence (CDS) using standard genome editing techniques. Instead, we replaced the entire LRRTM2 CDS by adapting a two-guide CRISPR knock-in method, enabling complete control of LRRTM2. In primary rat hippocampal cultures dissociated from embryos of both sexes, N-terminally tagged, endogenous LRRTM2 was found in 80% of synapses, and synaptic LRRTM2 content correlated with PSD-95 and AMPAR levels. LRRTM2 was also enriched with AMPARs outside synapses, demonstrating the sensitivity of this method to detect relevant new biology. Finally, we leveraged total genomic control to increase the synaptic levels of LRRTM2 via simultaneous mutation of its C-terminal domain, which did not correspondingly increase AMPAR enrichment. The coding region of thousands of genes span lengths suitable for whole-CDS replacement, suggesting this simple approach will enable straightforward structure-function analysis in neurons.
Collapse
Affiliation(s)
- Stephanie L Pollitt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
- University of Maryland-Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
- University of Maryland-Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
| | - Michael C Anderson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
- University of Maryland-Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
- University of Maryland-Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509
| |
Collapse
|
5
|
Mackenzie SC, Rahmioglu N, Romaniuk L, Collins F, Coxon L, Whalley HC, Vincent K, Zondervan KT, Horne AW, Whitaker LH. Genome-wide association reveals a locus in neuregulin 3 associated with gabapentin efficacy in women with chronic pelvic pain. iScience 2024; 27:110370. [PMID: 39258169 PMCID: PMC11384074 DOI: 10.1016/j.isci.2024.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/13/2024] [Accepted: 06/21/2024] [Indexed: 09/12/2024] Open
Abstract
Chronic pelvic pain (CPP) in women with no obvious pelvic pathology has few evidence-based treatment options. Our recent multicenter randomized controlled trial (GaPP2) in women with CPP and no obvious pelvic pathology showed that gabapentin did not relieve pain overall and was associated with more side effects than placebo. We conducted an exploratory genome-wide association study using eligible GaPP2 participants aiming to identify genetic variants associated with gabapentin response. One genome-wide significant association with gabapentin analgesic response was identified, rs4442490, an intron variant located in Neuregulin 3 (NRG3) (p = 2·11×10-8; OR = 18·82 (95% CI 4·86-72·83). Analysis of a large sample of UK Biobank participants demonstrated phenome-wide significant brain imaging features of rs4442490, particularly implicating the orbitofrontal cortex. NRG3 is expressed predominantly in central nervous system tissues and plays a critical role in nervous system development, maintenance, and repair, suggesting a neurobiologically plausible role in gabapentin efficacy and potential for personalized analgesic treatment.
Collapse
Affiliation(s)
- Scott C. Mackenzie
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Frances Collins
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lydia Coxon
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh EH10 5HF, UK
- Generation Scotland, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katy Vincent
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Krina T. Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Andrew W. Horne
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lucy H.R. Whitaker
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
6
|
Mòdol L, Moissidis M, Selten M, Oozeer F, Marín O. Somatostatin interneurons control the timing of developmental desynchronization in cortical networks. Neuron 2024; 112:2015-2030.e5. [PMID: 38599213 DOI: 10.1016/j.neuron.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Synchronous neuronal activity is a hallmark of the developing brain. In the mouse cerebral cortex, activity decorrelates during the second week of postnatal development, progressively acquiring the characteristic sparse pattern underlying the integration of sensory information. The maturation of inhibition seems critical for this process, but the interneurons involved in this crucial transition of network activity in the developing cortex remain unknown. Using in vivo longitudinal two-photon calcium imaging during the period that precedes the change from highly synchronous to decorrelated activity, we identify somatostatin-expressing (SST+) interneurons as critical modulators of this switch in mice. Modulation of the activity of SST+ cells accelerates or delays the decorrelation of cortical network activity, a process that involves regulating the maturation of parvalbumin-expressing (PV+) interneurons. SST+ cells critically link sensory inputs with local circuits, controlling the neural dynamics in the developing cortex while modulating the integration of other interneurons into nascent cortical circuits.
Collapse
Affiliation(s)
- Laura Mòdol
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Monika Moissidis
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
7
|
Bragg-Gonzalo L, Aguilera A, González-Arias C, De León Reyes NS, Sánchez-Cruz A, Carballeira P, Leroy F, Perea G, Nieto M. Early cortical GABAergic interneurons determine the projection patterns of L4 excitatory neurons. SCIENCE ADVANCES 2024; 10:eadj9911. [PMID: 38728406 PMCID: PMC11086621 DOI: 10.1126/sciadv.adj9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.
Collapse
Affiliation(s)
- Lorena Bragg-Gonzalo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alfonso Aguilera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Candela González-Arias
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Noelia S. De León Reyes
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Alonso Sánchez-Cruz
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Paula Carballeira
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Félix Leroy
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Gertrudis Perea
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
8
|
Marín O. Parvalbumin interneuron deficits in schizophrenia. Eur Neuropsychopharmacol 2024; 82:44-52. [PMID: 38490084 PMCID: PMC11413553 DOI: 10.1016/j.euroneuro.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Parvalbumin-expressing (PV+) interneurons represent one of the most abundant subclasses of cortical interneurons. Owing to their specific electrophysiological and synaptic properties, PV+ interneurons are essential for gating and pacing the activity of excitatory neurons. In particular, PV+ interneurons are critically involved in generating and maintaining cortical rhythms in the gamma frequency, which are essential for complex cognitive functions. Deficits in PV+ interneurons have been frequently reported in postmortem studies of schizophrenia patients, and alterations in gamma oscillations are a prominent electrophysiological feature of the disease. Here, I summarise the main features of PV+ interneurons and review clinical and preclinical studies linking the developmental dysfunction of cortical PV+ interneurons with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
9
|
Fisher ML, Prantzalos ER, O'Donovan B, Anderson TL, Sahoo PK, Twiss JL, Ortinski PI, Turner JR. Dynamic effects of ventral hippocampal NRG3/ERBB4 signaling on nicotine withdrawal-induced responses. Neuropharmacology 2024; 247:109846. [PMID: 38211698 PMCID: PMC10923109 DOI: 10.1016/j.neuropharm.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Tobacco smoking remains a leading cause of preventable death in the United States, with approximately a 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH) of male and female mice. We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Emily R Prantzalos
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Bernadette O'Donovan
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, SC, USA
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA.
| |
Collapse
|
10
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
11
|
Batista-Brito R, Majumdar A, Nuño A, Ward C, Barnes C, Nikouei K, Vinck M, Cardin JA. Developmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics. Mol Psychiatry 2023; 28:3133-3143. [PMID: 37069344 PMCID: PMC10618960 DOI: 10.1038/s41380-023-02066-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Department of Psychiatry and Behavioral Sciences, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Genetics, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
| | - Antara Majumdar
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, OX1 3PT, England
| | - Alejandro Nuño
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Claire Ward
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA
| | - Clayton Barnes
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Kasra Nikouei
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528, Frankfurt, Germany
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
- Wu Tsai Institute, Yale University, 100 College St., New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Fisher ML, Prantzalos ER, O'Donovan B, Anderson T, Sahoo PK, Twiss JL, Ortinski PI, Turner JR. Dynamic Effects of Ventral Hippocampal NRG3/ERBB4 Signaling on Nicotine Withdrawal-Induced Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524432. [PMID: 36711798 PMCID: PMC9882308 DOI: 10.1101/2023.01.17.524432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tobacco smoking remains a leading cause of preventable death in the United States, with a less than 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH). We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Emily R Prantzalos
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Bernadette O'Donovan
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tanner Anderson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Abstract
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
- Current affiliation: Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
| |
Collapse
|
14
|
Bernard C, Exposito-Alonso D, Selten M, Sanalidou S, Hanusz-Godoy A, Aguilera A, Hamid F, Oozeer F, Maeso P, Allison L, Russell M, Fleck RA, Rico B, Marín O. Cortical wiring by synapse type-specific control of local protein synthesis. Science 2022; 378:eabm7466. [PMID: 36423280 DOI: 10.1126/science.abm7466] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Neurons use local protein synthesis to support their morphological complexity, which requires independent control across multiple subcellular compartments up to the level of individual synapses. We identify a signaling pathway that regulates the local synthesis of proteins required to form excitatory synapses on parvalbumin-expressing (PV+) interneurons in the mouse cerebral cortex. This process involves regulation of the TSC subunit 2 (Tsc2) by the Erb-B2 receptor tyrosine kinase 4 (ErbB4), which enables local control of messenger RNA {mRNA} translation in a cell type-specific and synapse type-specific manner. Ribosome-associated mRNA profiling reveals a molecular program of synaptic proteins downstream of ErbB4 signaling required to form excitatory inputs on PV+ interneurons. Thus, specific connections use local protein synthesis to control synapse formation in the nervous system.
Collapse
Affiliation(s)
- Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Stella Sanalidou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfonso Aguilera
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Leanne Allison
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Matthew Russell
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| |
Collapse
|
15
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
16
|
Lysko DE, Meireles AM, Folland C, McNamara E, Laing NG, Lamont PJ, Ravenscroft G, Talbot WS. Partial loss-of-function variant in neuregulin 1 identified in family with heritable peripheral neuropathy. Hum Mutat 2022; 43:1216-1223. [PMID: 35485770 PMCID: PMC9357049 DOI: 10.1002/humu.24393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Neuregulin 1 signals are essential for the development and function of Schwann cells, which form the myelin sheath on peripheral axons. Disruption of myelin in the peripheral nervous system can lead to peripheral neuropathy, which is characterized by reduced axonal conduction velocity and sensorimotor deficits. Charcot-Marie-Tooth disease is a group of heritable peripheral neuropathies that may be caused by variants in nearly 100 genes. Despite the evidence that Neuregulin 1 is essential for many aspects of Schwann cell development, previous studies have not reported variants in the neuregulin 1 gene (NRG1) in patients with peripheral neuropathy. We have identified a rare missense variant in NRG1 that is homozygous in a patient with sensory and motor deficits consistent with mixed axonal and de-myelinating peripheral neuropathy. Our in vivo functional studies in zebrafish indicate that the patient variant partially reduces NRG1 function. This study tentatively suggests that variants at the NRG1 locus may cause peripheral neuropathy and that NRG1 should be investigated in families with peripheral neuropathy of unknown cause.
Collapse
Affiliation(s)
- Daniel E Lysko
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ana M Meireles
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Elyshia McNamara
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
| | | | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
18
|
Białoń M, Wąsik A. Advantages and Limitations of Animal Schizophrenia Models. Int J Mol Sci 2022; 23:5968. [PMID: 35682647 PMCID: PMC9181262 DOI: 10.3390/ijms23115968] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Mental illness modeling is still a major challenge for scientists. Animal models of schizophrenia are essential to gain a better understanding of the disease etiopathology and mechanism of action of currently used antipsychotic drugs and help in the search for new and more effective therapies. We can distinguish among pharmacological, genetic, and neurodevelopmental models offering various neuroanatomical disorders and a different spectrum of symptoms of schizophrenia. Modeling schizophrenia is based on inducing damage or changes in the activity of relevant regions in the rodent brain (mainly the prefrontal cortex and hippocampus). Such artificially induced dysfunctions approximately correspond to the lesions found in patients with schizophrenia. However, notably, animal models of mental illness have numerous limitations and never fully reflect the disease state observed in humans.
Collapse
Affiliation(s)
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland;
| |
Collapse
|
19
|
Ahmad T, Vullhorst D, Chaudhuri R, Guardia CM, Chaudhary N, Karavanova I, Bonifacino JS, Buonanno A. Transcytosis and trans-synaptic retention by postsynaptic ErbB4 underlie axonal accumulation of NRG3. J Cell Biol 2022; 221:213222. [PMID: 35579602 PMCID: PMC9118086 DOI: 10.1083/jcb.202110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023] Open
Abstract
Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Haryana, India
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Irina Karavanova
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Correspondence to Andres Buonanno:
| |
Collapse
|
20
|
Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci 2021; 24:1648-1659. [PMID: 34848882 PMCID: PMC9798607 DOI: 10.1038/s41593-021-00967-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
The mechanistic underpinnings of autism remain a subject of debate and controversy. Why do individuals with autism share an overlapping set of atypical behaviors and symptoms, despite having different genetic and environmental risk factors? A major challenge in developing new therapies for autism has been the inability to identify convergent neural phenotypes that could explain the common set of symptoms that result in the diagnosis. Although no striking macroscopic neuropathological changes have been identified in autism, there is growing evidence that inhibitory interneurons (INs) play an important role in its neural basis. In this Review, we evaluate and interpret this evidence, focusing on recent findings showing reduced density and activity of the parvalbumin class of INs. We discuss the need for additional studies that investigate how genes and the environment interact to change the developmental trajectory of INs, permanently altering their numbers, connectivity and circuit engagement.
Collapse
Affiliation(s)
- Anis Contractor
- Department of Neuroscience Feinberg School of Medicine, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, UC Riverside School of Medicine, Riverside, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Lau CG, Zhang H, Murthy VN. Deletion of TrkB in parvalbumin interneurons alters cortical neural dynamics. J Cell Physiol 2021; 237:949-964. [PMID: 34491578 PMCID: PMC8810709 DOI: 10.1002/jcp.30571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Signaling by neurotrophins such as the brain‐derived neurotrophic factor (BDNF) is known to modulate development of interneurons, but the circuit effects of this modulation remain unclear. Here, we examined the impact of deleting TrkB, a BDNF receptor, in parvalbumin‐expressing (PV) interneurons on the balance of excitation and inhibition (E‐I) in cortical circuits. In the mouse olfactory cortex, TrkB deletion impairs multiple aspects of PV neuronal function including synaptic excitation, intrinsic excitability, and the innervation pattern of principal neurons. Impaired PV cell function resulted in aberrant spiking patterns in principal neurons in response to stimulation of sensory inputs. Surprisingly, dampened PV neuronal function leads to a paradoxical decrease in overall excitability in cortical circuits. Our study demonstrates that, by modulating PV circuit plasticity and development, TrkB plays a critical role in shaping the evoked pattern of activity in a cortical network.
Collapse
Affiliation(s)
- Chunyue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.,Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Huiqi Zhang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Echeazarra L, García Del Caño G, Barrondo S, González-Burguera I, Saumell-Esnaola M, Aretxabala X, López de Jesús M, Borrega-Román L, Mato S, Ledent C, Matute C, Goicolea MA, Sallés J. Fit-for-purpose based testing and validation of antibodies to amino- and carboxy-terminal domains of cannabinoid receptor 1. Histochem Cell Biol 2021; 156:479-502. [PMID: 34453219 PMCID: PMC8604870 DOI: 10.1007/s00418-021-02025-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Specific and selective anti-CB1 antibodies are among the most powerful research tools to unravel the complex biological processes mediated by the CB1 receptor in both physiological and pathological conditions. However, low performance of antibodies remains a major source of inconsistency between results from different laboratories. Using a variety of techniques, including some of the most commonly accepted ones for antibody specificity testing, we identified three of five commercial antibodies against different regions of CB1 receptor as the best choice for specific end-use purposes. Specifically, an antibody against a long fragment of the extracellular amino tail of CB1 receptor (but not one against a short sequence of the extreme amino-terminus) detected strong surface staining when applied to live cells, whereas two different antibodies against an identical fragment of the extreme carboxy-terminus of CB1 receptor (but not one against an upstream peptide) showed acceptable performance on all platforms, although they behaved differently in immunohistochemical assays depending on the tissue fixation procedure used and showed different specificity in Western blot assays, which made each of them particularly suitable for one of those techniques. Our results provide a framework to interpret past and future results derived from the use of different anti-CB1 antibodies in the context of current knowledge about the CB1 receptor at the molecular level, and highlight the need for an adequate validation for specific purposes, not only before antibodies are placed on the market, but also before the decision to discontinue them is made.
Collapse
Affiliation(s)
- Leyre Echeazarra
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Dispositivos Móviles para el Control de Enfermedades Crónicas, 01008, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Imanol González-Burguera
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Román
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Susana Mato
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Multiple Sclerosis and Other Demyelinating Diseases Unit, Biocruces Bizkaia, Barakaldo, Spain
| | | | - Carlos Matute
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - María Aranzazu Goicolea
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| |
Collapse
|