1
|
Zerfas BL, Liu Y, Che J, Donovan KA, Hatcher JM, Huerta F, Metivier RJ, Nowak RP, Ragosta L, Tsang T, Fischer ES, Jones LH. Structure-guided design of a truncated heterobivalent chemical probe degrader of IRE1α. RSC Med Chem 2025:d5md00028a. [PMID: 40151563 PMCID: PMC11938282 DOI: 10.1039/d5md00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
IRE1α is an ER protein involved in the unfolded protein response (UPR) and dysregulation of the ER stress pathway has been implicated in several diseases. Inhibitors of the cytoplasmic endonuclease or kinase domains of the enzyme have limited utility and targeted degradation would address additional scaffolding functions of the protein. Here, we describe the design and development of IRE1α proteolysis targeting chimeras (PROTACs) based on a lysine-reactive salicylaldehyde RNase inhibitor, and present the structure-activity relationships (SARs) that delivered the first highly selective degraders of a native ER-membrane associated protein. Medicinal chemistry optimization exploited ternary complex computational modelling to inform design, HiBiT-SpyTag IRE1α degradation and NanoBRET cereblon occupancy cell-based assays to generate SARs, and mass spectrometry-based proteomics to assess broad selectivity in an unbiased manner. Merging IRE1α and CRBN ligand chemotypes provided the truncated chimera CPD-2828 with physicochemical properties more akin to an oral molecular glue degrader than a traditional PROTAC.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Yingpeng Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - John M Hatcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Fidel Huerta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Rebecca J Metivier
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Leah Ragosta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Tiffany Tsang
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Eric S Fischer
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| |
Collapse
|
2
|
SARIHAN M, ÖZEN FZ, KASAP M, AKPINAR G. A tetracycline-inducible Split TurboID system for specific biotinylation and identification of nuclear proteins from HEK293T cells. Turk J Biol 2025; 49:162-174. [PMID: 40365101 PMCID: PMC12068675 DOI: 10.55730/1300-0152.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 04/25/2025] [Accepted: 01/06/2025] [Indexed: 05/15/2025] Open
Abstract
Background/aim To overcome the limitations of conventional organelle isolation methods including low purity, low yield, sample degradation, scalability and the need for multiple centrifugation steps, an improved nuclear protein enrichment approach was developed using the modified Split TurboID biotin ligase enzyme. Materials and methods A construct was created in which the N-terminal domain of TurboID, fused to the FK506-binding protein (FKBP) was targeted to the nucleus. This construct was incorporated into a tetracycline-inducible gene expression vector. Similarly, the C-terminal domain of TurboID was fused to the rapamycin-binding domain of mTOR (FRB) and directed to the nucleus. This construct was introduced into a constitutive expression vector. A HEK-293T-TetR+ cell line, stably expressing both fusion proteins, was created. Activation of the N-terminal domain was achieved by tetracycline induction while an active Split-TurboID was formed within the nucleus only after the introduction of rapamycin into the culture medium which facilitated the formation of the FKBP-Rapamycin-FRB complex. Results The cells expressed N- and C-termini of Split-TurboID and produced an active biotin ligase enzyme in the nucleus, as demonstrated by Western blot and immunofluorescence microscopy analyses. The active enzyme biotinylated both residential nuclear proteins and the proteins that transiently interact with the nucleus. Enrichment and identification of the biotinylated proteins showed that 1518 proteins were identified, of which 78.4% were localized to or colocalized with the nucleus. Comparison with unenriched samples confirmed higher confidence in identification of resident nuclear proteins. Cross-referencing with the Human Protein Atlas highlighted the limitations of current databases, 820 proteins match known nuclear proteins and 698 have not been previously annotated. Conclusion Split-TurboID-based approach effectively minimized background noise arising from nonspecific labeling or imperfect localization and provided an appreciable level of specificity resulting identification of both residential and transiently interacting nuclear proteins.
Collapse
Affiliation(s)
- Mehmet SARIHAN
- Proteomics Laboratory, Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli,
Turkiye
| | - Fatma Zehra ÖZEN
- Proteomics Laboratory, Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli,
Turkiye
| | - Murat KASAP
- Proteomics Laboratory, Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli,
Turkiye
| | - Gürler AKPINAR
- Proteomics Laboratory, Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli,
Turkiye
| |
Collapse
|
3
|
Pereiro P, Tur R, García M, Figueras A, Novoa B. Unravelling turbot ( Scophthalmus maximus) resistance to Aeromonas salmonicida: transcriptomic insights from two full-sibling families with divergent susceptibility. Front Immunol 2024; 15:1522666. [PMID: 39712009 PMCID: PMC11659141 DOI: 10.3389/fimmu.2024.1522666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Furunculosis, caused by the gram-negative bacterium Aeromonas salmonicida subsp. salmonicida, remains a significant threat to turbot (Scophthalmus maximus) aquaculture. Identifying genetic backgrounds with enhanced disease resistance is critical for improving aquaculture health management, reducing antibiotic dependency, and mitigating economic losses. Methods In this study, five full-sibling turbot families were challenged with A. salmonicida, which revealed one family with significantly greater resistance. Transcriptomic analyses (RNA-Seq) were performed on resistant and susceptible families, examining both naïve and 24-h postinfection (hpi) samples from head kidney and liver tissues. Results In the absence of infection, differentially expressed genes (DEGs) were identified predominantly in the liver. Following infection, a marked increase in DEGs was observed in the head kidney, with many genes linked to immune functions. Interestingly, the resistant family displayed a more controlled inflammatory response and upregulation of genes related to antigen presentation and T-cell activity in the head kidney at early infection stages, which may have contributed to its increased survival rate. In the liver, transcriptomic differences between the families were associated mainly with cytoskeletal organization, cell cycle regulation, and metabolic processes, including insulin signalling and lipid metabolism, regardless of infection status. Additionally, many DEGs overlapped with previously identified quantitative trait loci (QTLs) associated with resistance to A. salmonicida, providing further insights into the genetic basis of disease resistance. Discussion This study represents the first RNA-Seq analysis comparing resistant and susceptible turbot families and contributes valuable knowledge for the development of selective breeding programs targeting disease resistance in turbot and other aquaculture species susceptible to A. salmonicida.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L., O Grove, Spain
| | - Miguel García
- Nueva Pescanova Biomarine Center, S.L., O Grove, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| |
Collapse
|
4
|
Ma Y, Li W, Liu X, Peng W, Qing B, Ren S, Liu W, Chen X. PTPRZ1 dephosphorylates and stabilizes RNF26 to reduce the efficacy of TKIs and PD-1 blockade in ccRCC. Oncogene 2024; 43:3633-3644. [PMID: 39443724 DOI: 10.1038/s41388-024-03198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma, often exhibits resistance to tyrosine kinase inhibitors (TKIs) when used as monotherapy. However, the integration of PD-1 blockade with TKIs has significantly improved patient survival, making it a leading therapeutic strategy for ccRCC. Despite these advancements, the efficacy of this combined therapy remains suboptimal, necessitating a deeper understanding of the underlying regulatory mechanisms. Through comprehensive analyses, including mass spectrometry, RNA sequencing, lipidomic profiling, immunohistochemical staining, and ex vivo experiments, we explored the interaction between PTPRZ1 and RNF26 and its impact on ccRCC cell behavior. Our results revealed a unique interaction where PTPRZ1 stabilized RNF26 protein expression by dephosphorylating it at the Y432 site. The modulation of RNF26 levels by PTPRZ1 was found to be mediated through the proteasome pathway. Additionally, PTPRZ1, via its interaction with RNF26, activated the TNF/NF-κB signaling pathway, thereby promoting cell proliferation, angiogenesis, and lipid metabolism in ccRCC cells. Importantly, inhibiting PTPRZ1 enhanced the sensitivity of ccRCC to TKIs and PD-1 blockade, an effect that was attenuated when RNF26 was simultaneously knocked down. These findings highlight the critical role of the PTPRZ1-RNF26 axis in ccRCC and suggest that combining PTPRZ1 inhibitors with current TKIs and PD-1 blockade therapies could significantly improve treatment outcomes for ccRCC patients.
Collapse
Affiliation(s)
- Yongkang Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Wentao Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China.
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China.
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China.
| |
Collapse
|
5
|
Cao J, Su B, Zhang C, Peng R, Tu D, Deng Q, Jiang G, Jin S, Wang Q, Bai DS. Degradation of PARP1 by MARCHF3 in tumor cells triggers cCAS-STING activation in dendritic cells to regulate antitumor immunity in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e010157. [PMID: 39608977 PMCID: PMC11605840 DOI: 10.1136/jitc-2024-010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitors (ICIs) significantly limits the efficacy of immunotherapy in patients with hepatocellular carcinoma (HCC). However, the mechanisms underlying immunotherapy resistance remain poorly understood. Our aim was to clarify the role of membrane-associated ring-CH-type finger 3 (MARCHF3) in HCC within the framework of anti-programmed cell death protein-1 (PD-1) therapy. METHODS MARCHF3 was identified in the transcriptomic profiles of HCC tumors exhibiting different responses to ICIs. In humans, the correlation between MARCHF3 expression and the tumor microenvironment (TME) was assessed via multiplex immunohistochemistry. In addition, MARCHF3 expression in tumor cells and immune cell infiltration were assessed by flow cytometry. RESULTS MARCHF3 was significantly upregulated in tumors from patients who responded to ICIs. Increased MARCHF3 expression in HCC cells promoted dendritic cell (DC) maturation and stimulated CD8+ T-cell activation, thereby augmenting tumor control. Mechanistically, we identified MARCHF3 as a pivotal regulator of the DNA damage response. It directly interacted with Poly(ADP-Ribose) Polymerase 1 (PARP1) via K48-linked ubiquitination, leading to PARP1 degradation. This process promoted the release of double-strand DNA and activated cCAS-STING in DCs, thereby initiating DC-mediated antigen cross-presentation and CD8+ T-cell activation. Additionally, ATF4 transcriptionally regulated MARCHF3 expression. Notably, the PARP1 inhibitor olaparib augmented the efficacy of anti-PD-1 immunotherapy in both subcutaneous and orthotopic HCC mouse models. CONCLUSIONS MARCHF3 has emerged as a pivotal regulator of the immune landscape in the HCC TME and is a potent predictive biomarker for HCC. Combining interventions targeting the DNA damage response with ICIs is a promising treatment strategy for HCC.
Collapse
Affiliation(s)
- Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Qiangwei Deng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| |
Collapse
|
6
|
Velasquez E, Savchenko E, Marmolejo-Martínez-Artesero S, Challuau D, Aebi A, Pomeshchik Y, Lamas NJ, Vihinen M, Rezeli M, Schneider B, Raoul C, Roybon L. TNFα prevents FGF4-mediated rescue of astrocyte dysfunction and reactivity in human ALS models. Neurobiol Dis 2024; 201:106687. [PMID: 39362568 DOI: 10.1016/j.nbd.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1G93A mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.
Collapse
Affiliation(s)
- Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | | | | | - Aline Aebi
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Nuno Jorge Lamas
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar e Universitário do Porto, Largo Professor Abel Salazar, 4099-001 Porto, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal.
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, 22184 Lund, Sweden..
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden; BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden.
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, 34091, Montpellier, France.
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Department of Neurodegenerative Science, the MiND program, Van Andel Institute, Grand Rapids, 49503, MI, USA.
| |
Collapse
|
7
|
Tang T, Fu J, Zhang C, Wang X, Cao H, Chen L. Exploring the role of endoplasmic reticulum stress in recurrent spontaneous abortion: Identification of diagnostic biomarkers and immune cell interactions. Heliyon 2024; 10:e38964. [PMID: 39430538 PMCID: PMC11490861 DOI: 10.1016/j.heliyon.2024.e38964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Dysregulated endoplasmic reticulum stress (ERS) is associated with recurrent spontaneous abortion (RSA) and is involved in the mechanisms that govern immune balance and vascular regulation at the maternal-fetal interface. The molecular intricacies of these mechanisms remain elusive. This study employed microarray and bioinformatics techniques to examine genetic abnormalities in endometrial tissues from RSA patients, with the objective of identifying potential ERS-related biomarkers. By integrating two publicly available microarray datasets, consisting of 88 RSA and 42 control samples, we conducted an extensive analysis, including differential expression, functional annotation, molecular interactions, and immune cell infiltration. Analysis of immune cell characteristics suggests an inflammatory immune imbalance as a potential contributor to RSA progression. Both innate and adaptive immunity were found to play roles in RSA development, with M1 macrophages constituting a significant proportion of immune infiltration. We identified five key ERS-associated genes (TMEM33, QRICH1, MBTPS2, ERN1, and BAK1) linked to immune-related mechanisms, with RT-qPCR results aligning with bioinformatics findings. Our research findings offer a fresh and comprehensive perspective on the ERS-related genes' pathways and interaction networks, offering significant insights for the advancement of innovative therapy techniques for RSA.
Collapse
Affiliation(s)
- Tao Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingyu Fu
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an, China
| | - Chong Zhang
- Department of General Surgery, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xue Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiming Cao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Center for Reproductive Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lin Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
van de Weijer ML, Samanta K, Sergejevs N, Jiang L, Dueñas ME, Heunis T, Huang TY, Kaufman RJ, Trost M, Sanyal S, Cowley SA, Carvalho P. Tapasin assembly surveillance by the RNF185/Membralin ubiquitin ligase complex regulates MHC-I surface expression. Nat Commun 2024; 15:8508. [PMID: 39353943 PMCID: PMC11445256 DOI: 10.1038/s41467-024-52772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Krishna Samanta
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Nikita Sergejevs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - LuLin Jiang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
- Altos Labs-Bay Institute of Science, Redwood City, CA, USA
| | - Maria Emilia Dueñas
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Telethon Kids Institute, Perth, Nedlands, WA, 6009, Australia
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Immunocore Ltd, 92 Park Drive, Abingdon, OX14 4RY, UK
| | - Timothy Y Huang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
9
|
Veronese M, Kallabis S, Kaczmarek AT, Das A, Robers L, Schumacher S, Lofrano A, Brodesser S, Müller S, Hofmann K, Krüger M, Rugarli EI. ERLIN1/2 scaffolds bridge TMUB1 and RNF170 and restrict cholesterol esterification to regulate the secretory pathway. Life Sci Alliance 2024; 7:e202402620. [PMID: 38782601 PMCID: PMC11116810 DOI: 10.26508/lsa.202402620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Complexes of ERLIN1 and ERLIN2 (ER lipid raft-associated 1 and 2) form large ring-like cup-shaped structures on the endoplasmic reticulum (ER) membrane and serve as platforms to bind cholesterol and E3 ubiquitin ligases, potentially defining functional nanodomains. Here, we show that ERLIN scaffolds mediate the interaction between the full-length isoform of TMUB1 (transmembrane and ubiquitin-like domain-containing 1) and RNF170 (RING finger protein 170). We identify a luminal N-terminal conserved region in TMUB1 and RNF170, which is required for this interaction. Three-dimensional modelling shows that this conserved motif binds the stomatin/prohibitin/flotillin/HflKC domain of two adjacent ERLIN subunits at different interfaces. Protein variants that preclude these interactions have been previously linked to hereditary spastic paraplegia. Using omics-based approaches in combination with phenotypic characterization of HeLa cells lacking both ERLINs, we demonstrate a role of ERLIN scaffolds in limiting cholesterol esterification, thereby favouring cholesterol transport from the ER to the Golgi apparatus and regulating Golgi morphology and the secretory pathway.
Collapse
Affiliation(s)
- Matteo Veronese
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Sebastian Kallabis
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Alexander Tobias Kaczmarek
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anushka Das
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Lennart Robers
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Simon Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alessia Lofrano
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stefan Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
11
|
Lv X, Chen R, Liang T, Peng H, Fang Q, Xiao S, Liu S, Hu M, Yu F, Cao L, Zhang Y, Pan T, Xi Z, Ding Y, Feng L, Zeng T, Huang W, Zhang H, Ma X. NSP6 inhibits the production of ACE2-containing exosomes to promote SARS-CoV-2 infectivity. mBio 2024; 15:e0335823. [PMID: 38303107 PMCID: PMC10936183 DOI: 10.1128/mbio.03358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global pandemic, which severely endangers public health. Our and others' works have shown that the angiotensin-converting enzyme 2 (ACE2)-containing exosomes (ACE2-exos) have superior antiviral efficacies, especially in response to emerging variants. However, the mechanisms of how the virus counteracts the host and regulates ACE2-exos remain unclear. Here, we identified that SARS-CoV-2 nonstructural protein 6 (NSP6) inhibits the production of ACE2-exos by affecting the protein level of ACE2 as well as tetraspanin-CD63 which is a key factor for exosome biogenesis. We further found that the protein stability of CD63 and ACE2 is maintained by the deubiquitination of proteasome 26S subunit, non-ATPase 12 (PSMD12). NSP6 interacts with PSMD12 and counteracts its function, consequently promoting the degradation of CD63 and ACE2. As a result, NSP6 diminishes the antiviral efficacy of ACE2-exos and facilitates the virus to infect healthy bystander cells. Overall, our study provides a valuable target for the discovery of promising drugs for the treatment of coronavirus disease 2019. IMPORTANCE The outbreak of coronavirus disease 2019 (COVID-19) severely endangers global public health. The efficacy of vaccines and antibodies declined with the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants. Angiotensin-converting enzyme 2-containing exosomes (ACE2-exos) therapy exhibits a broad neutralizing activity, which could be used against various viral mutations. Our study here revealed that SARS-CoV-2 nonstructural protein 6 inhibited the production of ACE2-exos, thereby promoting viral infection to the adjacent bystander cells. The identification of a new target for blocking SARS-CoV-2 depends on fully understanding the virus-host interaction networks. Our study sheds light on the mechanism by which the virus resists the host exosome defenses, which would facilitate the study and design of ACE2-exos-based therapeutics for COVID-19.
Collapse
Affiliation(s)
- Xi Lv
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Sen Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lixue Cao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhihui Xi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Ding
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Linyuan Feng
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Zeng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjing Huang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiancai Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Guo X, Zhou W, Jin J, Lin J, Zhang W, Zhang L, Luan X. Integrative Multi-Omics Analysis Identifies Transmembrane p24 Trafficking Protein 1 (TMED1) as a Potential Prognostic Marker in Colorectal Cancer. BIOLOGY 2024; 13:83. [PMID: 38392302 PMCID: PMC10886729 DOI: 10.3390/biology13020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Several TMED protein family members are overexpressed in malignant tumors and associated with tumor progression. TMED1 belongs to the TMED protein family and is involved in protein vesicular trafficking. However, the expression level and biological role of TMED1 in colorectal cancer (CRC) have yet to be fully elucidated. In this study, the integration of patient survival and multi-omics data (immunohistochemical staining, transcriptomics, and proteomics) revealed that the highly expressed TMED1 was related to the poor prognosis in CRC. Crystal violet staining indicated the cell growth was reduced after knocking down TMED1. Moreover, the flow cytometry results showed that TMED1 knockdown could increase cell apoptosis. The expression of TMED1 was positively correlated with other TMED family members (TMED2, TMED4, TMED9, and TMED10) in CRC, and the protein-protein interaction network suggested its potential impact on immune regulation. Furthermore, TMED1 expression was positively associated with the infiltration levels of regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and endothelial cells and negatively correlated with the infiltration levels of CD4+ T cells, CD8+ T cells, and B cells. At last, the CTRP and GDSC datasets on the GSCA platform were used to analyze the relationship between TMED1 expression and drug sensitivity (IC50). The result found that the elevation of TMED1 was positively correlated with IC50 and implied it could increase the drug resistance of cancer cells. This research revealed that TMED1 is a novel prognostic biomarker in CRC and provided a valuable strategy for analyzing potential therapeutic targets of malignant tumors.
Collapse
Affiliation(s)
- Xin Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Wei Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lijun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Wei X, Lu Y, Lin LL, Zhang C, Chen X, Wang S, Wu SA, Li ZJ, Quan Y, Sun S, Qi L. Proteomic screens of SEL1L-HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis. Nat Commun 2024; 15:659. [PMID: 38253565 PMCID: PMC10803770 DOI: 10.1038/s41467-024-44948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays indispensable roles in many physiological processes; however, the nature of endogenous substrates remains largely elusive. Here we report a proteomics strategy based on the intrinsic property of the SEL1L-HRD1 ERAD complex to identify endogenous ERAD substrates both in vitro and in vivo. Following stringent filtering using a machine learning algorithm, over 100 high-confidence potential substrates are identified in human HEK293T and mouse brown adipose tissue, among which ~88% are cell type-specific. One of the top shared hits is the catalytic subunit of the glycosylphosphatidylinositol (GPI)-transamidase complex, PIGK. Indeed, SEL1L-HRD1 ERAD attenuates the biogenesis of GPI-anchored proteins by specifically targeting PIGK for proteasomal degradation. Lastly, several PIGK disease variants in inherited GPI deficiency disorders are also SEL1L-HRD1 ERAD substrates. This study provides a platform and resources for future effort to identify proteome-wide endogenous substrates in vivo, and implicates SEL1L-HRD1 ERAD in many cellular processes including the biogenesis of GPI-anchored proteins.
Collapse
Affiliation(s)
- Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xinxin Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Siwen Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yujun Quan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
14
|
Botsch JJ, Junker R, Sorgenfrei M, Ogger PP, Stier L, von Gronau S, Murray PJ, Seeger MA, Schulman BA, Bräuning B. Doa10/MARCH6 architecture interconnects E3 ligase activity with lipid-binding transmembrane channel to regulate SQLE. Nat Commun 2024; 15:410. [PMID: 38195637 PMCID: PMC10776854 DOI: 10.1038/s41467-023-44670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Transmembrane E3 ligases play crucial roles in homeostasis. Much protein and organelle quality control, and metabolic regulation, are determined by ER-resident MARCH6 E3 ligases, including Doa10 in yeast. Here, we present Doa10/MARCH6 structural analysis by cryo-EM and AlphaFold predictions, and a structure-based mutagenesis campaign. The majority of Doa10/MARCH6 adopts a unique circular structure within the membrane. This channel is established by a lipid-binding scaffold, and gated by a flexible helical bundle. The ubiquitylation active site is positioned over the channel by connections between the cytosolic E3 ligase RING domain and the membrane-spanning scaffold and gate. Here, by assaying 95 MARCH6 variants for effects on stability of the well-characterized substrate SQLE, which regulates cholesterol levels, we reveal crucial roles of the gated channel and RING domain consistent with AlphaFold-models of substrate-engaged and ubiquitylation complexes. SQLE degradation further depends on connections between the channel and RING domain, and lipid binding sites, revealing how interconnected Doa10/MARCH6 elements could orchestrate metabolic signals, substrate binding, and E3 ligase activity.
Collapse
Affiliation(s)
- J Josephine Botsch
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Roswitha Junker
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Patricia P Ogger
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Peter J Murray
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
15
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Cremer T, Voortman LM, Bos E, Jongsma MLM, ter Haar LR, Akkermans JJLL, Talavera Ormeño CMP, Wijdeven RHM, de Vries J, Kim RQ, Janssen GMC, van Veelen PA, Koning RI, Neefjes J, Berlin I. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J 2023; 42:e111252. [PMID: 37519262 PMCID: PMC10505911 DOI: 10.15252/embj.2022111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marlieke LM Jongsma
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jimmy JLL Akkermans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Cami MP Talavera Ormeño
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud HM Wijdeven
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jelle de Vries
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - George MC Janssen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter A van Veelen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roman I Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
17
|
Audibert S, Soutoglou E. Guiding DNA repair at the nuclear periphery. Nat Cell Biol 2023; 25:928-930. [PMID: 37322290 DOI: 10.1038/s41556-023-01164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Sylvain Audibert
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
18
|
McKenna MJ, Shao S. The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization. Cold Spring Harb Perspect Biol 2023; 15:a041249. [PMID: 36041782 PMCID: PMC9979852 DOI: 10.1101/cshperspect.a041249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Berlin I, Sapmaz A, Stévenin V, Neefjes J. Ubiquitin and its relatives as wizards of the endolysosomal system. J Cell Sci 2023; 136:288517. [PMID: 36825571 PMCID: PMC10022685 DOI: 10.1242/jcs.260101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.
Collapse
Affiliation(s)
- Ilana Berlin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Virginie Stévenin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
21
|
Bhaduri S, Aguayo A, Ohno Y, Proietto M, Jung J, Wang I, Kandel R, Singh N, Ibrahim I, Fulzele A, Bennett EJ, Kihara A, Neal SE. An ERAD-independent role for rhomboid pseudoprotease Dfm1 in mediating sphingolipid homeostasis. EMBO J 2023; 42:e112275. [PMID: 36350249 PMCID: PMC9929635 DOI: 10.15252/embj.2022112275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Analine Aguayo
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Marco Proietto
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Jasmine Jung
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Isabel Wang
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Rachel Kandel
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Narinderbir Singh
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Ikran Ibrahim
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Amit Fulzele
- Present address:
Institute of Molecular BiologyMainzGermany
| | - Eric J Bennett
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Sonya E Neal
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
22
|
Azizogli AR, Pai V, Coppola F, Jafari R, Dodd-o JB, Harish R, Balasubramanian B, Kashyap J, Acevedo-Jake AM, Král P, Kumar VA. Scalable Inhibitors of the Nsp3-Nsp4 Coupling in SARS-CoV-2. ACS OMEGA 2023; 8:5349-5360. [PMID: 36798146 PMCID: PMC9923439 DOI: 10.1021/acsomega.2c06384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
The human Betacoronavirus SARS-CoV-2 is a novel pathogen claiming millions of lives and causing a global pandemic that has disrupted international healthcare systems, economies, and communities. The virus is fast mutating and presenting more infectious but less lethal versions. Currently, some small-molecule therapeutics have received FDA emergency use authorization for the treatment of COVID-19, including Lagevrio (molnupiravir) and Paxlovid (nirmaltrevir/ritonavir), which target the RNA-dependent RNA polymerase and the 3CLpro main protease, respectively. Proteins downstream in the viral replication process, specifically the nonstructural proteins (Nsps1-16), are potential drug targets due to their crucial functions. Of these Nsps, Nsp4 is a particularly promising drug target due to its involvement in the SARS-CoV viral replication and double-membrane vesicle formation (mediated via interaction with Nsp3). Given the degree of sequence conservation of these two Nsps across the Betacoronavirus clade, their protein-protein interactions and functions are likely to be conserved as well in SARS-CoV-2. Through AlphaFold2 and its recent advancements, protein structures were generated of Nsp3 and 4 lumenal loops of interest. Then, using a combination of molecular docking suites and an existing library of lead-like compounds, we virtually screened 7 million ligands to identify five putative ligand inhibitors of Nsp4, which could present an alternative pharmaceutical approach against SARS-CoV-2. These ligands exhibit promising lead-like properties (ideal molecular weight and log P profiles), maintain fixed-Nsp4-ligand complexes in molecular dynamics (MD) simulations, and tightly associate with Nsp4 via hydrophobic interactions. Additionally, alternative peptide inhibitors based on Nsp3 were designed and shown in MD simulations to provide a highly stable binding to the Nsp4 protein. Finally, these therapeutics were attached to dendrimer structures to promote their multivalent binding with Nsp4, especially its large flexible luminal loop (Nsp4LLL). The therapeutics tested in this study represent many different approaches for targeting large flexible protein structures, especially those localized to the ER. This study is the first work targeting the membrane rearrangement system of viruses and will serve as a potential avenue for treating viruses with similar replicative function.
Collapse
Affiliation(s)
- Abdul-Rahman Azizogli
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Varun Pai
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Roya Jafari
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Joseph B. Dodd-o
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Rohan Harish
- Department
of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Bhavani Balasubramanian
- Department
of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jatin Kashyap
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Amanda M. Acevedo-Jake
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
- Departments
of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vivek A. Kumar
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Chemical and Materials Engineering, New
Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department
of Endodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
23
|
Zhu Z, Chen X, Wang C, Zhang S, Yu R, Xie Y, Yuan S, Cheng L, Shi L, Zhang X. An integrated strategy to identify COVID-19 causal genes and characteristics represented by LRRC37A2. J Med Virol 2023; 95:e28585. [PMID: 36794676 DOI: 10.1002/jmv.28585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Genome-wide association study (GWAS) could identify host genetic factors associated with coronavirus disease 2019 (COVID-19). The genes or functional DNA elements through which genetic factors affect COVID-19 remain uncharted. The expression quantitative trait locus (eQTL) provides a path to assess the correlation between genetic variations and gene expression. Here, we firstly annotated GWAS data to describe genetic effects, obtaining genome-wide mapped genes. Subsequently, the genetic mechanisms and characteristics of COVID-19 were investigated by an integrated strategy that included three GWAS-eQTL analysis approaches. It was found that 20 genes were significantly associated with immunity and neurological disorders, including prior and novel genes such as OAS3 and LRRC37A2. The findings were then replicated in single-cell datasets to explore the cell-specific expression of causal genes. Furthermore, associations between COVID-19 and neurological disorders were assessed as a causal relationship. Finally, the effects of causal protein-coding genes of COVID-19 were discussed using cell experiments. The results revealed some novel COVID-19-related genes to emphasize disease characteristics, offering a broader insight into the genetic architecture underlying the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yubin Xie
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Shi
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
- 3McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Guo M, Lu Z, Xiong Y. Enhancer RNA-based modeling of adverse events and objective responses of cancer immunotherapy reveals associated key enhancers and target genes. Front Oncol 2023; 12:1048127. [PMID: 36741695 PMCID: PMC9893284 DOI: 10.3389/fonc.2022.1048127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 or CTLA-4 are emerging and effective immunotherapy strategies. However, ICI-treated patients present heterogeneous responses and adverse events, thus demanding effective ways to assess benefit over risk before treatment. Here, by integrating pan-cancer clinical and molecular data, we tried to predict immune-related adverse events (irAEs, risk) and objective response rates (ORRs, benefit) based on enhancer RNAs (eRNAs) expression among patients receiving anti-PD-1/PD-L1 therapies. We built two tri-variate (eRNAs) regression models, one (with ENSR00000326714, ENSR00000148786, and ENSR00000005553) explaining 71% variance (R=0.84) of irAEs and the other (with ENSR00000164478, ENSR00000035913, and ENSR00000167231) explaining 79% (R=0.89) of ORRs. Interestingly, target genes of irAE-related enhancers, including upstream regulators of MYC, were involved in metabolism, inflammation, and immune activation, while ORR-related enhancers target PAK2 and DLG1 which participate in T cell activation. More importantly, we found that ENSR00000148786 probably enhanced TMEM43/LUMA expression mainly in B cells to induce irAEs in ICI-treated patients. Our study provides references for the identification of immunotherapy-related biomarkers and potential therapeutic targets during immunotherapy.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiya Lu
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China,*Correspondence: Yuanyan Xiong,
| |
Collapse
|
25
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
26
|
Zanotti A, Coelho JPL, Kaylani D, Singh G, Tauber M, Hitzenberger M, Avci D, Zacharias M, Russell RB, Lemberg MK, Feige MJ. The human signal peptidase complex acts as a quality control enzyme for membrane proteins. Science 2022; 378:996-1000. [DOI: 10.1126/science.abo5672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cells need to detect and degrade faulty membrane proteins to maintain homeostasis. In this study, we identify a previously unknown function of the human signal peptidase complex (SPC)—the enzyme that removes endoplasmic reticulum (ER) signal peptides—as a membrane protein quality control factor. We show that the SPC cleaves membrane proteins that fail to correctly fold or assemble into their native complexes at otherwise hidden cleavage sites, which our study reveals to be abundant in the human membrane proteome. This posttranslocational cleavage synergizes with ER-associated degradation to sustain membrane protein homeostasis and contributes to cellular fitness. Cryptic SPC cleavage sites thus serve as predetermined breaking points that, when exposed, help to target misfolded or surplus proteins for degradation, thereby maintaining a healthy membrane proteome.
Collapse
Affiliation(s)
- Andrea Zanotti
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - João P. L. Coelho
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dinah Kaylani
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Gurdeep Singh
- BioQuant and Biochemistry Center (BZH), Heidelberg University, 69120 Heidelberg, Germany
| | - Marina Tauber
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Manuel Hitzenberger
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dönem Avci
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Robert B. Russell
- BioQuant and Biochemistry Center (BZH), Heidelberg University, 69120 Heidelberg, Germany
| | - Marius K. Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
27
|
Rusilowicz-Jones EV, Brazel AJ, Frigenti F, Urbé S, Clague MJ. Membrane compartmentalisation of the ubiquitin system. Semin Cell Dev Biol 2022; 132:171-184. [PMID: 34895815 DOI: 10.1016/j.semcdb.2021.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
We now have a comprehensive inventory of ubiquitin system components. Understanding of any system also needs an appreciation of how components are organised together. Quantitative proteomics has provided us with a census of their relative populations in several model cell types. Here, by examining large scale unbiased data sets, we seek to identify and map those components, which principally reside on the major organelles of the endomembrane system. We present the consensus distribution of > 50 ubiquitin modifying enzymes, E2s, E3s and DUBs, that possess transmembrane domains. This analysis reveals that the ER and endosomal compartments have a diverse cast of resident E3s, whilst the Golgi and mitochondria operate with a more restricted palette. We describe key functions of ubiquitylation that are specific to each compartment and relate this to their signature complement of ubiquitin modifying components.
Collapse
Affiliation(s)
- Emma V Rusilowicz-Jones
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ailbhe J Brazel
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; Department of Biology, Maynooth University, Maynooth W23 F2K6, Ireland
| | - Francesca Frigenti
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Sylvie Urbé
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | - Michael J Clague
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
28
|
Tsai PL, Cameron CJF, Forni MF, Wasko RR, Naughton BS, Horsley V, Gerstein MB, Schlieker C. Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins. Cell Rep 2022; 41:111675. [PMID: 36417855 PMCID: PMC9827541 DOI: 10.1016/j.celrep.2022.111675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Many human diseases are caused by mutations in nuclear envelope (NE) proteins. How protein homeostasis and disease etiology are interconnected at the NE is poorly understood. Specifically, the identity of local ubiquitin ligases that facilitate ubiquitin-proteasome-dependent NE protein turnover is presently unknown. Here, we employ a short-lived, Lamin B receptor disease variant as a model substrate in a genetic screen to uncover key elements of NE protein turnover. We identify the ubiquitin-conjugating enzymes (E2s) Ube2G2 and Ube2D3, the membrane-resident ubiquitin ligases (E3s) RNF5 and HRD1, and the poorly understood protein TMEM33. RNF5, but not HRD1, requires TMEM33 both for efficient biosynthesis and function. Once synthesized, RNF5 responds dynamically to increased substrate levels at the NE by departing from the endoplasmic reticulum, where HRD1 remains confined. Thus, mammalian protein quality control machinery partitions between distinct cellular compartments to address locally changing substrate loads, establishing a robust cellular quality control system.
Collapse
Affiliation(s)
- Pei-Ling Tsai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Christopher J F Cameron
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Renee R Wasko
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Brigitte S Naughton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Computer Science, Yale University, New Haven, CT 06511, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Ruan J, Liang D, Yan W, Zhong Y, Talley DC, Rai G, Tao D, LeClair CA, Simeonov A, Zhang Y, Chen F, Quinney NL, Boyles SE, Cholon DM, Gentzsch M, Henderson MJ, Xue F, Fang S. A small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase. Mol Biol Cell 2022; 33:ar120. [PMID: 36074076 PMCID: PMC9634977 DOI: 10.1091/mbc.e22-06-0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNF5 E3 ubiquitin ligase has multiple biological roles and has been linked to the development of severe diseases such as cystic fibrosis, acute myeloid leukemia, and certain viral infections, emphasizing the importance of discovering small-molecule RNF5 modulators for research and drug development. The present study describes the synthesis of a new benzo[b]thiophene derivative, FX12, that acts as a selective small-molecule inhibitor and degrader of RNF5. We initially identified the previously reported STAT3 inhibitor, Stattic, as an inhibitor of dislocation of misfolded proteins from the endoplasmic reticulum (ER) lumen to the cytosol in ER-associated degradation. A concise structure-activity relationship campaign (SAR) around the Stattic chemotype led to the synthesis of FX12, which has diminished activity in inhibition of STAT3 activation and retains dislocation inhibitory activity. FX12 binds to RNF5 and inhibits its E3 activity in vitro as well as promoting proteasomal degradation of RNF5 in cells. RNF5 as a molecular target for FX12 was supported by the facts that FX12 requires RNF5 to inhibit dislocation and negatively regulates RNF5 function. Thus, this study developed a small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase, providing a chemical biology tool for RNF5 research and therapeutic development.
Collapse
Affiliation(s)
- Jingjing Ruan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201,First Affiliated Hospital and
| | - Dongdong Liang
- University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Daniel C. Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Christopher A. LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yinghua Zhang
- Center for Innovative Biomedical Resources, Biosensor Core, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | | | | | | | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center,Department of Pediatric Pulmonology, and,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| | - Fengtian Xue
- University of Maryland School of Pharmacy, Baltimore, MD 21201,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Department of Physiology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201,*Address corespondence to: Shengyun Fang (lead contact) (); Mark J. Henderson (); Fengtian Xue ()
| |
Collapse
|
30
|
RNF185 regulates proteostasis in Ebolavirus infection by crosstalk between the calnexin cycle, ERAD, and reticulophagy. Nat Commun 2022; 13:6007. [PMID: 36224200 PMCID: PMC9554868 DOI: 10.1038/s41467-022-33805-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Virus infection affects cellular proteostasis and provides an opportunity to study this cellular process under perturbation. The proteostasis network in the endoplasmic reticulum (ER) is composed of the calnexin cycle, and the two protein degradation pathways ER-associated protein degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD/ER-phagy/reticulophagy). Here we show that calnexin and calreticulin trigger Zaire Ebolavirus (EBOV) glycoprotein GP1,2 misfolding. Misfolded EBOV-GP1,2 is targeted by ERAD machinery, but this results in lysosomal instead of proteasomal degradation. Moreover, the ER Ub ligase RNF185, usually associated with ERAD, polyubiquitinates EBOV-GP1,2 on lysine 673 via ubiquitin K27-linkage. Polyubiquinated GP1,2 is subsequently recruited into autophagosomes by the soluble autophagy receptor sequestosome 1 (SQSTM1/p62), in an ATG3- and ATG5-dependent manner. We conclude that EBOV hijacks all three proteostasis mechanisms in the ER to downregulate GP1,2 via polyubiquitination and show that this increases viral fitness. This study identifies linkages among proteostasis network components previously thought to function independently. Little is known about how proteostasis is maintained during viral infection. Here, the authors identify unexpected crosstalk between the calnexin cycle, ERAD, and reticulophagy, resulting in suppression of ebolavirus glycoprotein expression.
Collapse
|
31
|
Cheng LC, Zhang X, Abhinav K, Nguyen JA, Baboo S, Martinez-Bartolomé S, Branon TC, Ting AY, Loose E, Yates JR, Gerace L. Shared and Distinctive Neighborhoods of Emerin and Lamin B Receptor Revealed by Proximity Labeling and Quantitative Proteomics. J Proteome Res 2022; 21:2197-2210. [PMID: 35972904 PMCID: PMC9442789 DOI: 10.1021/acs.jproteome.2c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Emerin and lamin B receptor (LBR) are abundant transmembrane
proteins
of the nuclear envelope that are concentrated at the inner nuclear
membrane (INM). Although both proteins interact with chromatin and
nuclear lamins, they have distinctive biochemical and functional properties.
Here, we have deployed proximity labeling using the engineered biotin
ligase TurboID (TbID) and quantitative proteomics to compare the neighborhoods
of emerin and LBR in cultured mouse embryonic fibroblasts. Our analysis
revealed 232 high confidence proximity partners that interact selectively
with emerin and/or LBR, 49 of which are shared by both. These included
previously characterized NE-concentrated proteins, as well as a host
of additional proteins not previously linked to emerin or LBR functions.
Many of these are TM proteins of the ER, including two E3 ubiquitin
ligases. Supporting these results, we found that 11/12 representative
proximity relationships identified by TbID also were detected at the
NE with the proximity ligation assay. Overall, this work presents
methodology that may be used for large-scale mapping of the landscape
of the INM and reveals a group of new proteins with potential functional
connections to emerin and LBR.
Collapse
Affiliation(s)
- Li-Chun Cheng
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Xi Zhang
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Kanishk Abhinav
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Julie A Nguyen
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Sabyasachi Baboo
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Salvador Martinez-Bartolomé
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, California 94305, United States
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, California 94305, United States
| | - Esther Loose
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Larry Gerace
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
| |
Collapse
|
32
|
Lv B, Zhang XO, Pazour GJ. Arih2 regulates Hedgehog signaling through smoothened ubiquitylation and ER-associated degradation. J Cell Sci 2022; 135:jcs260299. [PMID: 35899529 PMCID: PMC9481925 DOI: 10.1242/jcs.260299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
During Hedgehog signaling, the ciliary levels of Ptch1 and Smo are regulated by the pathway. At the basal state, Ptch1 localizes to cilia and prevents the ciliary accumulation and activation of Smo. Upon binding a Hedgehog ligand, Ptch1 exits cilia, relieving inhibition of Smo. Smo then concentrates in cilia, becomes activated and activates downstream signaling. Loss of the ubiquitin E3 ligase Arih2 elevates basal Hedgehog signaling, elevates the cellular level of Smo and increases basal levels of ciliary Smo. Mice express two isoforms of Arih2 with Arih2α found primarily in the nucleus and Arih2β found on the cytoplasmic face of the endoplasmic reticulum (ER). Re-expression of ER-localized Arih2β but not nuclear-localized Arih2α rescues the Arih2 mutant phenotypes. When Arih2 is defective, protein aggregates accumulate in the ER and the unfolded protein response is activated. Arih2β appears to regulate the ER-associated degradation (ERAD) of Smo preventing excess and potentially misfolded Smo from reaching the cilium and interfering with pathway regulation.
Collapse
Affiliation(s)
- Bo Lv
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| | - Xiao-Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China200092
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
33
|
Karlowitz R, Stanifer ML, Roedig J, Andrieux G, Bojkova D, Bechtel M, Smith S, Kowald L, Schubert R, Boerries M, Cinatl J, Boulant S, van Wijk SJL. USP22 controls type III interferon signaling and SARS-CoV-2 infection through activation of STING. Cell Death Dis 2022; 13:684. [PMID: 35933402 PMCID: PMC9357023 DOI: 10.1038/s41419-022-05124-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023]
Abstract
Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Megan L. Stanifer
- grid.7700.00000 0001 2190 4373Department of Infectious Diseases/Molecular Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany ,grid.15276.370000 0004 1936 8091Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL USA
| | - Jens Roedig
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Geoffroy Andrieux
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Denisa Bojkova
- grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Marco Bechtel
- grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sonja Smith
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Lisa Kowald
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Ralf Schubert
- grid.411088.40000 0004 0578 8220Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Melanie Boerries
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, 79110 Freiburg, Germany
| | - Jindrich Cinatl
- grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Steeve Boulant
- grid.15276.370000 0004 1936 8091Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL USA ,grid.7700.00000 0001 2190 4373Department of Infectious Diseases, Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Sjoerd J. L. van Wijk
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany ,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Nozawa K, Fujihara Y, Devlin DJ, Deras RE, Kent K, Larina IV, Umezu K, Yu Z, Sutton CM, Ye Q, Dean LK, Emori C, Ikawa M, Garcia TX, Matzuk MM. The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice. BMC Biol 2022; 20:161. [PMID: 35831855 PMCID: PMC9277888 DOI: 10.1186/s12915-022-01368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/05/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Ubiquitination is a post-translational modification required for a number of physiological functions regulating protein homeostasis, such as protein degradation. The endoplasmic reticulum (ER) quality control system recognizes and degrades proteins no longer needed in the ER through the ubiquitin-proteasome pathway. E2 and E3 enzymes containing a transmembrane domain have been shown to function in ER quality control. The ER transmembrane protein UBE2J1 is a E2 ubiquitin-conjugating enzyme reported to be essential for spermiogenesis at the elongating spermatid stage. Spermatids from Ube2j1 KO male mice are believed to have defects in the dislocation step of ER quality control. However, associated E3 ubiquitin-protein ligases that function during spermatogenesis remain unknown. RESULTS We identified four evolutionarily conserved testis-specific E3 ubiquitin-protein ligases [RING finger protein 133 (Rnf133); RING finger protein 148 (Rnf148); RING finger protein 151 (Rnf151); and Zinc finger SWIM-type containing 2 (Zswim2)]. Using the CRISPR/Cas9 system, we generated and analyzed the fertility of mutant mice with null alleles for each of these E3-encoding genes, as well as double and triple knockout (KO) mice. Male fertility, male reproductive organ, and sperm-associated parameters were analyzed in detail. Fecundity remained largely unaffected in Rnf148, Rnf151, and Zswim2 KO males; however, Rnf133 KO males displayed severe subfertility. Additionally, Rnf133 KO sperm exhibited abnormal morphology and reduced motility. Ultrastructural analysis demonstrated that cytoplasmic droplets were retained in Rnf133 KO spermatozoa. Although Rnf133 and Rnf148 encode paralogous genes that are chromosomally linked and encode putative ER transmembrane E3 ubiquitin-protein ligases based on their protein structures, there was limited functional redundancy of these proteins. In addition, we identified UBE2J1 as an E2 ubiquitin-conjugating protein that interacts with RNF133. CONCLUSIONS Our studies reveal that RNF133 is a testis-expressed E3 ubiquitin-protein ligase that plays a critical role for sperm function during spermiogenesis. Based on the presence of a transmembrane domain in RNF133 and its interaction with the ER containing E2 protein UBE2J1, we hypothesize that these ubiquitin-regulatory proteins function together in ER quality control during spermatogenesis.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yoshitaka Fujihara
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan
| | - Darius J Devlin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ricardo E Deras
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katarzyna Kent
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kohei Umezu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Courtney M Sutton
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laura K Dean
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Chen H, Zhao X, Li Y, Zhang S, Wang Y, Wang L, Ma W. High Expression of TMEM33 Predicts Poor Prognosis and Promotes Cell Proliferation in Cervical Cancer. Front Genet 2022; 13:908807. [PMID: 35832191 PMCID: PMC9271802 DOI: 10.3389/fgene.2022.908807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
Background: The prognosis of patients with advanced cervical cancer remains unsatisfactory. A study indicated that transmembrane protein 33 (TMEM33) was implicated in tumor recurrence, while its role in cervical cancer has not been elucidated. Methods: TMEM33 expression in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) was primarily screened in The Cancer Genome Atlas (TCGA), and further validated in Gene Expression Omnibus (GEO) database. The Kaplan–Meier plotter analysis and Cox regression were constructed to evaluate the prognostic value of TMEM33 in CESC. Functional enrichment analysis was performed with GO, KEGG and GSEA tools. CCK-8 assay and colony formation assay were performed to investigate the carcinogenesis role of TMEM33 in cervical cancer cell proliferation. Results: TMEM33 expression was significantly elevated in CESC compared with normal tissues. High expression of TMEM33 was associated with poor prognostic clinical characteristics in CESC patients. KM-plotter analysis revealed that patients with increased TMEM33 had shorter overall survival (OS), progress free interval (PFI), and disease specific survival (DSS). Moreover, Multivariate Cox analysis confirmed that high TMEM33 expression was an independent risk factor for OS in patients with CESC. TMEM33 was associated with immune infiltrates, and its expression was correlated with tumorigenesis-related genes RNF4, OCIAD1, TMED5, DHX15, MED28 and LETM1. More importantly, knockdown of TMEM33 in cervical cancer cells decreased the expression of those genes and inhibited cell proliferation. Conclusion: Increased TMEM33 in cervical cancer can serve as an independent prognostic marker and might play a role in tumorigenesis by promoting cell proliferation.
Collapse
Affiliation(s)
- Hanxiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong LaiBo Biotechnology Co., Ltd., Jinan, China
| | - Xia Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yongqing Li
- Department of Clinical Laboratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Lili Wang, ; Wanshan Ma,
| | - Wanshan Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Lili Wang, ; Wanshan Ma,
| |
Collapse
|
36
|
Tang Z, Zeng M, Wang X, Guo C, Yue P, Zhang X, Lou H, Chen J, Mu D, Kong D, Carr AM, Liu C. Synthetic lethality between TP53 and ENDOD1. Nat Commun 2022; 13:2861. [PMID: 35606358 PMCID: PMC9126970 DOI: 10.1038/s41467-022-30311-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2022] [Indexed: 01/22/2023] Open
Abstract
The atypical nuclease ENDOD1 functions with cGAS-STING in innate immunity. Here we identify a previously uncharacterized ENDOD1 function in DNA repair. ENDOD1 is enriched in the nucleus following H2O2 treatment and ENDOD1-/- cells show increased PARP chromatin-association. Loss of ENDOD1 function is synthetic lethal with homologous recombination defects, with affected cells accumulating DNA double strand breaks. Remarkably, we also uncover an additional synthetic lethality between ENDOD1 and p53. ENDOD1 depletion in TP53 mutated tumour cells, or p53 depletion in ENDOD1-/- cells, results in rapid single stranded DNA accumulation and cell death. Because TP53 is mutated in ~50% of tumours, ENDOD1 has potential as a wide-spectrum target for synthetic lethal treatments. To support this we demonstrate that systemic knockdown of mouse EndoD1 is well tolerated and whole-animal siRNA against human ENDOD1 restrains TP53 mutated tumour progression in xenograft models. These data identify ENDOD1 as a potential cancer-specific target for SL drug discovery.
Collapse
Affiliation(s)
- Zizhi Tang
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Ming Zeng
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaojun Wang
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Chang Guo
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Peng Yue
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaohu Zhang
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Huiqiang Lou
- School of Life Sciences, China Agricultural University, 100193, Beijing, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Dezhi Mu
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Daochun Kong
- School of Life Sciences, Peking University, 100871, Beijing, China
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Science, University of Sussex, Falmer, BN1 9RQ, UK.
| | - Cong Liu
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
- Genome Damage and Stability Centre, School of Life Science, University of Sussex, Falmer, BN1 9RQ, UK.
| |
Collapse
|
37
|
Woo J, Clair GC, Williams SM, Feng S, Tsai CF, Moore RJ, Chrisler WB, Smith RD, Kelly RT, Paša-Tolić L, Ansong C, Zhu Y. Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering. Cell Syst 2022; 13:426-434.e4. [PMID: 35298923 PMCID: PMC9119937 DOI: 10.1016/j.cels.2022.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Single-cell proteomics (scProteomics) promises to advance our understanding of cell functions within complex biological systems. However, a major challenge of current methods is their inability to identify and provide accurate quantitative information for low-abundance proteins. Herein, we describe an ion-mobility-enhanced mass spectrometry acquisition and peptide identification method, transferring identification based on FAIMS filtering (TIFF), to improve the sensitivity and accuracy of label-free scProteomics. TIFF extends the ion accumulation times for peptide ions by filtering out singly charged ions. The peptide identities are assigned by a three-dimensional MS1 feature matching approach (retention time, accurate mass, and FAIMS compensation voltage). The TIFF method enabled unbiased proteome analysis to a depth of >1,700 proteins in single HeLa cells, with >1,100 proteins consistently identified. As a demonstration, we applied the TIFF method to obtain temporal proteome profiles of >150 single murine macrophage cells during lipopolysaccharide stimulation and identified time-dependent proteome changes. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jongmin Woo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
38
|
Anjum F, Mohammad T, Asrani P, Shafie A, Singh S, Yadav DK, Uversky VN, Hassan MI. Identification of intrinsically disorder regions in non-structural proteins of SARS-CoV-2: New insights into drug and vaccine resistance. Mol Cell Biochem 2022; 477:1607-1619. [PMID: 35211823 PMCID: PMC8869350 DOI: 10.1007/s11010-022-04393-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 2019 and caused coronavirus disease 2019 (COVID-19), which causes pneumonia and severe acute respiratory distress syndrome. It is a highly infectious pathogen that promptly spread. Like other beta coronaviruses, SARS-CoV-2 encodes some non-structural proteins (NSPs), playing crucial roles in viral transcription and replication. NSPs likely have essential roles in viral pathogenesis by manipulating many cellular processes. We performed a sequence-based analysis of NSPs to get insights into their intrinsic disorders, and their functions in viral replication were annotated and discussed in detail. Here, we provide newer insights into the structurally disordered regions of SARS-CoV-2 NSPs. Our analysis reveals that the SARS-CoV-2 proteome has a chunk of the disordered region that might be responsible for increasing its virulence. In addition, mutations in these regions are presumably responsible for drug and vaccine resistance. These findings suggested that the structurally disordered regions of SARS-CoV-2 NSPs might be invulnerable in COVID-19.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Purva Asrani
- Department of Microbiology, University of Delhi, New Delhi, 110021, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP, Pune University Campus, Pune, 411007, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
39
|
Effects of Epigenetic Modification of PGC-1α by a Chemical Chaperon on Mitochondria Biogenesis and Visual Function in Retinitis Pigmentosa. Cells 2022; 11:cells11091497. [PMID: 35563803 PMCID: PMC9099608 DOI: 10.3390/cells11091497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by gradual photoreceptor death, which lacks a definitive treatment. Here, we demonstrated the effect of 4-phenylbutyric acid (PBA), a chemical chaperon that can suppress endoplasmic reticulum (ER) stress, in P23H mutant rhodopsin knock-in RP models. In the RP models, constant PBA treatment led to the retention of a greater number of photoreceptors, preserving the inner segment (IS), a mitochondrial- and ER-rich part of the photoreceptors. Electroretinography showed that PBA treatment preserved photoreceptor function. At the early point, ER-associated degradation markers, xbp1s, vcp, and derl1, mitochondrial kinetic-related markers, fis1, lc3, and mfn1 and mfn2, as well as key mitochondrial regulators, pgc-1α and tfam, were upregulated in the retina of the models treated with PBA. In vitro analyses showed that PBA upregulated pgc-1α and tfam transcription, leading to an increase in the mitochondrial membrane potential, cytochrome c oxidase activity, and ATP levels. Histone acetylation of the PGC-1α promoter was increased by PBA, indicating that PBA affected the mitochondrial condition through epigenetic changes. Our findings constituted proof of concept for the treatment of ER stress-related RP using PBA and revealed PBA’s neuroprotective effects, paving the way for its future clinical application.
Collapse
|
40
|
Lin J, McCann AP, Sereesongsaeng N, Burden JM, Alsa'd AA, Burden RE, Micu I, Williams R, Van Schaeybroeck S, Evergren E, Mullan P, Simpson JC, Scott CJ, Burrows JF. USP17 is required for peripheral trafficking of lysosomes. EMBO Rep 2022; 23:e51932. [PMID: 35080333 PMCID: PMC8982589 DOI: 10.15252/embr.202051932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL‐4/6), chemokines (IL‐8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore‐forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.
Collapse
Affiliation(s)
- Jia Lin
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Aidan P McCann
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | | | | - Ileana Micu
- Advanced Imaging Core Technology Unit, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, UK
| | - Richard Williams
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Sandra Van Schaeybroeck
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Emma Evergren
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Paul Mullan
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Jeremy C Simpson
- School of Biology and Environmental Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Christopher J Scott
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
41
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
42
|
Wang Z, Lu C, Zhang K, Lin C, Wu F, Tang X, Wu D, Dou Y, Han R, Wang Y, Hou C, Ouyang Q, Feng M, He Y, Li L. Metformin Combining PD-1 Inhibitor Enhanced Anti-Tumor Efficacy in STK11 Mutant Lung Cancer Through AXIN-1-Dependent Inhibition of STING Ubiquitination. Front Mol Biosci 2022; 9:780200. [PMID: 35281267 PMCID: PMC8905189 DOI: 10.3389/fmolb.2022.780200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Non-small-cell lung cancer (NSCLC) with STK11 mutation showed primary resistance to immune checkpoint inhibitors (ICIs). The glucose-lowering drug metformin exerted anti-cancer effect and enhanced efficacy of chemotherapy in NSCLC with KRAS/STK11 co-mutation, yet it is unknown whether metformin may enhance ICI efficacy in STK11 mutant NSCLC.Methods: We studied the impact of metformin on ICI efficacy in STK11 mutant NSCLC in vitro and in vivo using colony formation assay, cell viability assay, Ki67 staining, ELISA, CRISPR/Cas9-mediated knockout, and animal experiments.Results: Through colony formation assay, Ki67 incorporation assay, and CCK-8 assay, we found that metformin significantly enhanced the killing of H460 cells and A549 cells by T cells. In NOD-SCID xenografts, metformin in combination with PD-1 inhibitor pembrolizumab effectively decreased tumor growth and increased infiltration of CD8+ T cells. Metformin enhanced stabilization of STING and activation of its downstream signaling pathway. siRNA-mediated knockdown of STING abolished the effect of metformin on T cell-mediated killing of tumor cells. Next, we found that CRISPR/Cas9-mediated knockout of the scaffold protein AXIN-1 abolished the effect of metformin on T cell-mediated killing and STING stabilization. Immunoprecipitation and confocal macroscopy revealed that metformin enhanced the interaction and colocalization between AXIN-1 and STING. Protein-protein interaction modeling indicated that AXIN-1 may directly bind to STING at its K150 site. Next, we found that metformin decreased K48-linked ubiquitination of STING and inhibited the interaction of E3-ligand RNF5 and STING. Moreover, in AXIN-1−/− H460 cells, metformin failed to alter the interaction of RNF5 and STING.Conclusion: Metformin combining PD-1 inhibitor enhanced anti-tumor efficacy in STK11 mutant lung cancer through inhibition of RNF5-mediated K48-linked ubiquitination of STING, which was dependent on AXIN-1.
Collapse
Affiliation(s)
- Zhiguo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kejun Zhang
- Department of Outpatients, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Wu
- Department of Oncology, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Tang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Hou
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingxia Feng
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Mingxia Feng, ; Yong He, ; Li Li,
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Mingxia Feng, ; Yong He, ; Li Li,
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Mingxia Feng, ; Yong He, ; Li Li,
| |
Collapse
|
43
|
Chen S, Wang C, Chen Q, Zhao D, Liu Y, Zhao S, Fu S, He X, Yang B, Zhao Q, An Q, Zhang Z, Cheng Y, Man C, Liu G, Wei X, Zhang W, Du L, Wang F. Downregulation of Three Novel miRNAs in the Lymph Nodes of Sheep Immunized With the Brucella suis Strain 2 Vaccine. Front Vet Sci 2022; 9:813170. [PMID: 35274021 PMCID: PMC8902169 DOI: 10.3389/fvets.2022.813170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 02/02/2023] Open
Abstract
Ovine and caprine brucellosis, both caused by Brucella melitensis, lead to substantial economic losses in the animal industry and health problems in human populations. Brucella suis strain 2 (B.suis S2), as a live attenuated vaccine, is used extensively in China to prevent brucellosis. It has been proven that microRNA (miRNAs) are involved in the immunopathogenesis of brucellosis; however, the miRNA-driven mechanism of immune response to B.suis S2 in vivo remains unknown. To determine which new miRNAs are involved in the host immune response to B.suis S2 and elucidate the function of these miRNAs, we performed a comprehensive analysis of miRNA expression profiles in sheep immunized with B.suis S2 using the high-throughput sequencing approach. The submandibular lymphatic nodes from sheep seropositive for Brucella were collected at 7, 14, 21, 30, 60 and 90 days post-immunization. MiRNA sequencing analysis revealed that 282 differentially expressed miRNAs (|log2 fold-change |>0.5 and p < 0.05) were significantly enriched in the immune pathways, including the NF-kappa B signaling pathway, B cell receptor signaling pathway, p53 signaling pathway and complement and coagulation cascades. Increasing the threshold to |log2 fold change|>1 and p < 0.01 revealed 48 differentially expressed miRNAs, 31 of which were novel miRNAs. Thirteen of these novel miRNAs, which were differentially expressed for at least two time points, were detected via RT-qPCR assays. The novel_229, novel_609, novel_973 and oar-miR-181a assessed by RT-qPCR were detectable and consistent with the expression patterns obtained by miRNA sequencing. Functional analyses of these miRNAs demonstrated that their target genes participated in the immune response pathways, including the innate and adaptive immunity pathways. The immune-related target genes of novel_229 included ENSOARG00000000649 and TMED1, as well as LCN2, PDPK1 and LPO were novel_609 target genes. The immune-related target genes of novel_973 included C6orf58, SPPL3, BPIFB1, ENSOARG00000021083, MPTX1, CCL28, FGB, IDO1, OLR1 and ENSOARG00000020393. The immune-related target genes of oar-miR-181a included ENSOARG00000002722, ARHGEF2, MFAP4 and DOK2. These results will deepen our understanding of the host miRNA-driven defense mechanism in sheep immunized with B.suis S2 vaccine, and provide the valuable information for optimizing vaccines and developing molecular diagnostic targets.
Collapse
Affiliation(s)
- Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Chengqiang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Dantong Zhao
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, China
| | | | - Shihua Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shaoyin Fu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Xiaolong He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bin Yang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Qinan Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Guoying Liu
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, China
| | - Xuefeng Wei
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Li Du
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
- Li Du
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
- *Correspondence: Fengyang Wang
| |
Collapse
|
44
|
From Drosophila to Human: Biological Function of E3 Ligase Godzilla and Its Role in Disease. Cells 2022; 11:cells11030380. [PMID: 35159190 PMCID: PMC8834447 DOI: 10.3390/cells11030380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin–proteasome system is of fundamental importance in all fields of biology due to its impact on proteostasis and in regulating cellular processes. Ubiquitination, a type of protein post-translational modification, involves complex enzymatic machinery, such as E3 ubiquitin ligases. The E3 ligases regulate the covalent attachment of ubiquitin to a target protein and are involved in various cellular mechanisms, including the cell cycle, cell division, endoplasmic reticulum stress, and neurotransmission. Because the E3 ligases regulate so many physiological events, they are also associated with pathologic conditions, such as cancer, neurological disorders, and immune-related diseases. This review focuses specifically on the protease-associated transmembrane-containing the Really Interesting New Gene (RING) subset of E3 ligases. We describe the structure, partners, and physiological functions of the Drosophila Godzilla E3 ligase and its human homologues, RNF13, RNF167, and ZNRF4. Also, we summarize the information that has emerged during the last decade regarding the association of these E3 ligases with pathophysiological conditions, such as cancer, asthma, and rare genetic disorders. We conclude by highlighting the limitations of the current knowledge and pinpointing the unresolved questions relevant to RNF13, RNF167, and ZNRF4 ubiquitin ligases.
Collapse
|
45
|
Lebensohn AM, Bazan JF, Rohatgi R. Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis. Curr Top Dev Biol 2022; 150:25-89. [PMID: 35817504 DOI: 10.1016/bs.ctdb.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.
Collapse
|
46
|
Gu Q, Xu F, Orgil BO, Khuchua Z, Munkhsaikhan U, Johnson JN, Alberson NR, Pierre JF, Black DD, Dong D, Brennan JA, Cathey BM, Efimov IR, Towbin JA, Purevjav E, Lu L. Systems genetics analysis defines importance of TMEM43/ LUMA for cardiac- and metabolic-related pathways. Physiol Genomics 2022; 54:22-35. [PMID: 34766515 PMCID: PMC8721901 DOI: 10.1152/physiolgenomics.00066.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Broad cellular functions and diseases including muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy (ARVC5) and cancer are associated with transmembrane protein43 (TMEM43/LUMA). The study aimed to investigate biological roles of TMEM43 through genetic regulation, gene pathways and gene networks, candidate interacting genes, and up- or downstream regulators. Cardiac transcriptomes from 40 strains of recombinant inbred BXD mice and two parental strains representing murine genetic reference population (GRP) were applied for genetic correlation, functional enrichment, and coexpression network analysis using systems genetics approach. The results were validated in a newly created knock-in Tmem43-S358L mutation mouse model (Tmem43S358L) that displayed signs of cardiac dysfunction, resembling ARVC5 phenotype seen in humans. We found high Tmem43 levels among BXDs with broad variability in expression. Expression of Tmem43 highly negatively correlated with heart mass and heart rate among BXDs, whereas levels of Tmem43 highly positively correlated with plasma high-density lipoproteins (HDL). Through finding differentially expressed genes (DEGs) between Tmem43S358L mutant and wild-type (Tmem43WT) lines, 18 pathways (out of 42 found in BXDs GRP) that are involved in ARVC, hypertrophic cardiomyopathy, dilated cardiomyopathy, nonalcoholic fatty liver disease, Alzheimer's disease, Parkinson's disease, and Huntington's disease were verified. We further constructed Tmem43-mediated gene network, in which Ctnna1, Adcy6, Gnas, Ndufs6, and Uqcrc2 were significantly altered in Tmem43S358L mice versus Tmem43WT controls. Our study defined the importance of Tmem43 for cardiac- and metabolism-related pathways, suggesting that cardiovascular disease-relevant risk factors may also increase risk of metabolic and neurodegenerative diseases via TMEM43-mediated pathways.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Cardiology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Buyan-Ochir Orgil
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jason N Johnson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Neely R Alberson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Dennis D Black
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Deli Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Brianna M Cathey
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
- Department of Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
47
|
Cheng YS, Zhang T, Ma X, Pratuangtham S, Zhang GC, Ondrus AA, Mafi A, Lomenick B, Jones JJ, Ondrus AE. A proteome-wide map of 20(S)-hydroxycholesterol interactors in cell membranes. Nat Chem Biol 2021; 17:1271-1280. [PMID: 34799735 PMCID: PMC8607797 DOI: 10.1038/s41589-021-00907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Oxysterols (OHCs) are hydroxylated cholesterol metabolites that play ubiquitous roles in health and disease. Due to the non-covalent nature of their interactions and their unique partitioning in membranes, the analysis of live-cell, proteome-wide interactions of OHCs remains an unmet challenge. Here, we present a structurally precise chemoproteomics probe for the biologically active molecule 20(S)-hydroxycholesterol (20(S)-OHC) and provide a map of its proteome-wide targets in the membranes of living cells. Our target catalog consolidates diverse OHC ontologies and demonstrates that OHC-interacting proteins cluster with specific processes in immune response and cancer. Competition experiments reveal that 20(S)-OHC is a chemo-, regio- and stereoselective ligand for the protein transmembrane protein 97 (Tmem97/the σ2 receptor), enabling us to reconstruct the 20(S)-OHC-Tmem97 binding site. Our results demonstrate that multiplexed, quantitative analysis of cellular target engagement can expose new dimensions of metabolite activity and identify actionable targets for molecular therapy.
Collapse
Affiliation(s)
- Yu-Shiuan Cheng
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tianyi Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xiang Ma
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sarida Pratuangtham
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grace C Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander A Ondrus
- Mathematics Department, Northern Alberta Institute of Technology, Edmonton, Alberta, Canada
| | - Amirhossein Mafi
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Jeffrey J Jones
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Alison E Ondrus
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
48
|
Andresen AMS, Gjøen T. Chitosan nanoparticle formulation attenuates poly (I:C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100915. [PMID: 34634571 DOI: 10.1016/j.cbd.2021.100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Many vaccine formulations, in particular vaccines based on inactivated virus, needs adjuvants to boost immunogenicity. In aquaculture, mineral and plant oil are used as adjuvant in commercial vaccines, and the advent of oil-adjuvanted vaccines was crucial to aquaculture development. Nevertheless, some of these approved vaccines display suboptimal performance in the field compared to experimental conditions. Therefore, there is a need to improve adjuvants and delivery methods for fish vaccines against viruses. We used RNA sequencing of Atlantic salmon head kidney to analyse the difference in gene expression 24 h after injection of different experimental vaccine formulations. We compared five different formulations in addition to a PBS control: inactivated virus alone (group V), soluble poly (I:C) (group P), nanoparticles containing poly (I:C) (group N), soluble poly (I:C) + inactivated virus (group PV) and finally nanoparticles containing poly (I:C) + inactivated virus (group NV). Our results showed poly (I:C)'s ability as adjuvant and its capacity influence innate immune genes expression in Atlantic salmon. Soluble poly (I:C) upregulated multiple immune related genes and was more effective compared to poly (I:C) formulated into chitosan nanoparticles (more than 10 fold increase in differentially expressed genes, DEGs). However, inclusion of inactivated ISA virus in the nanoparticle vaccine, increased the number of DEGs fivefold suggesting a synergistic effect of adjuvant and antigen. Our results indicate that the way poly (I:C) is formulated and the presence of antigen is important for the magnitude of the innate immune response in Atlantic salmon.
Collapse
Affiliation(s)
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
49
|
Yi L, Wang H, Li W, Ye K, Xiong W, Yu H, Jin X. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer. Cell Death Dis 2021; 12:944. [PMID: 34650035 PMCID: PMC8516991 DOI: 10.1038/s41419-021-04260-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Bladder cancer is one of the most lethal cancers in the world. Despite the continuous development of medical technologies and therapeutic strategies, the overall survival rate of bladder cancer has not changed significantly. Targeted therapy is a new promising method for bladder cancer treatment. Thus, an in-depth study of the molecular mechanism of the occurrence and development of bladder cancer is urgently needed to identify novel therapeutic candidates for bladder cancer. Here, bioinformatics analysis demonstrated that RNF26 was one of the risk factors for bladder cancer. Then, we showed that RNF26 is abnormally upregulated in bladder cancer cells and tissues and that higher RNF26 expression is an unfavorable prognostic factor for bladder cancer. Moreover, we found that RNF26 promotes bladder cancer progression. In addition, we showed that RNF26 expression is promoted by FOXM1 at the transcriptional level through MuvB complex. The upregulated RNF26 in turn degrades p57 (CDKN1C) to regulate the cell cycle process. Collectively, we uncovered a novel FOXM1/RNF26/p57 axis that modulates the cell cycle process and enhances the progression of bladder cancer. Thus, the FOXM1/RNF26/p57 signaling axis could be a candidate target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Lu Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Haohui Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Kun Ye
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China.
| |
Collapse
|
50
|
Ju G, Xu C, Zeng K, Zhou T, Zang L. High expression of transmembrane P24 trafficking protein 9 predicts poor prognosis in breast carcinoma. Bioengineered 2021; 12:8965-8979. [PMID: 34635011 PMCID: PMC8806988 DOI: 10.1080/21655979.2021.1990673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over the years, molecular subtypes based on estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) status have been observed to effectively guide decision-making for the optimal treatment of patients with breast carcinoma (BRCA). However, despite this progress, there are still more than 41,000 BRCA-related fatalities each year in the United States. Moreover, effective drug targets for triple-negative breast carcinoma (TNBC) are still lacking. Given its high mortality rate, it is necessary to investigate more biomarkers with prognostic and pathological relevance in BRCA. In our study, we examined the expression patterns and prognostic implications of transmembrane P24 trafficking protein 9 (TMED9) in BRCA using multiple public cohorts and BRCA specimens collected from Shanghai General Hospital. In addition to this, in vitro experiments were also performed to evaluate the effects of TMED9 expression in BRCA cell proliferation and migration. Our results have demonstrated that a high expression of TMED9 promoted BRCA cell proliferation and migration and predicted poor prognosis in patients with BRCA. In conclusion, TMED9 is a potential prognostic indicator and a possible drug target of BRCA.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Cheng Xu
- Department of Pathology Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kai Zeng
- Department of Thyroid Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tianhao Zhou
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Lijuan Zang
- Department of Pathology Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|