1
|
Chari T, Hernandez A, Couto J, Portera-Cailliau C. A reduced ability to discriminate social from non-social touch at the circuit level may underlie social avoidance in autism. Nat Commun 2025; 16:4600. [PMID: 40382316 DOI: 10.1038/s41467-025-59852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Social touch is critical for communication to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch. Here, we used Neuropixels probes to record neural responses to social vs. non-social interactions in somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type mice show aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons are modulated especially by touch context (social vs. object), while striatal neurons change their preference depending on whether mice could choose or not to interact. In contrast, Fmr1 knockout (KO) mice, a model of autism, find social and non-social interactions equally aversive, especially at close proximity, and their cortical/striatal neurons are less able to discriminate social valence. A linear model shows that the encoding of certain avoidance/aversive behaviors in cortical neuron activity differed between genotypes. Thus, a reduced capacity to represent social stimuli at the circuit level may underlie social avoidance in autism.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - João Couto
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Zimmerman CA, Bolkan SS, Pan-Vazquez A, Wu B, Keppler EF, Meares-Garcia JB, Guthman EM, Fetcho RN, McMannon B, Lee J, Hoag AT, Lynch LA, Janarthanan SR, López Luna JF, Bondy AG, Falkner AL, Wang SSH, Witten IB. A neural mechanism for learning from delayed postingestive feedback. Nature 2025:10.1038/s41586-025-08828-z. [PMID: 40175547 DOI: 10.1038/s41586-025-08828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/21/2025] [Indexed: 04/04/2025]
Abstract
Animals learn the value of foods on the basis of their postingestive effects and thereby develop aversions to foods that are toxic1-10 and preferences to those that are nutritious11-13. However, it remains unclear how the brain is able to assign credit to flavours experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here we reveal an unexpected role for the postingestive reactivation of neural flavour representations in this temporal credit-assignment process. To begin, we leverage the fact that mice learn to associate novel14,15, but not familiar, flavours with delayed gastrointestinal malaise signals to investigate how the brain represents flavours that support aversive postingestive learning. Analyses of brain-wide activation patterns reveal that a network of amygdala regions is unique in being preferentially activated by novel flavours across every stage of learning (consumption, delayed malaise and memory retrieval). By combining high-density recordings in the amygdala with optogenetic stimulation of malaise-coding hindbrain neurons, we show that delayed malaise signals selectively reactivate flavour representations in the amygdala from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts the strengthening of flavour responses upon memory retrieval, which in turn leads to stabilization of the population-level representation of the recently consumed flavour. By contrast, flavour representations in the amygdala degrade in the absence of unexpected postingestive consequences. Thus, we demonstrate that postingestive reactivation and plasticity of neural flavour representations may support learning from delayed feedback.
Collapse
Affiliation(s)
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Emma F Keppler
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Eartha Mae Guthman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robert N Fetcho
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Hoag
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Juan F López Luna
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Adrian G Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
van Beest EH, Bimbard C, Fabre JMJ, Dodgson SW, Takács F, Coen P, Lebedeva A, Harris KD, Carandini M. Tracking neurons across days with high-density probes. Nat Methods 2025; 22:778-787. [PMID: 39333269 PMCID: PMC11978519 DOI: 10.1038/s41592-024-02440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Neural activity spans multiple time scales, from milliseconds to months. Its evolution can be recorded with chronic high-density arrays such as Neuropixels probes, which can measure each spike at tens of sites and record hundreds of neurons. These probes produce vast amounts of data that require different approaches for tracking neurons across recordings. Here, to meet this need, we developed UnitMatch, a pipeline that operates after spike sorting, based only on each unit's average spike waveform. We tested UnitMatch in Neuropixels recordings from the mouse brain, where it tracked neurons across weeks. Across the brain, neurons had distinctive inter-spike interval distributions. Their correlations with other neurons remained stable over weeks. In the visual cortex, the neurons' selectivity for visual stimuli remained similarly stable. In the striatum, however, neuronal responses changed across days during learning of a task. UnitMatch is thus a promising tool to reveal both invariance and plasticity in neural activity across days.
Collapse
Affiliation(s)
- Enny H van Beest
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Célian Bimbard
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Julie M J Fabre
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sam W Dodgson
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Flóra Takács
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Philip Coen
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Vollan AZ, Gardner RJ, Moser MB, Moser EI. Left-right-alternating theta sweeps in entorhinal-hippocampal maps of space. Nature 2025; 639:995-1005. [PMID: 39900625 PMCID: PMC11946909 DOI: 10.1038/s41586-024-08527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/12/2024] [Indexed: 02/05/2025]
Abstract
Place cells in the hippocampus and grid cells in the entorhinal cortex are elements of a neural map of self position1-5. For these cells to benefit navigation, their representation must be dynamically related to the surrounding locations2. A candidate mechanism for linking places along an animal's path has been described for place cells, in which the sequence of spikes in each cycle of the hippocampal theta oscillation encodes a trajectory from the animal's current location towards upcoming locations6-8. In mazes that bifurcate, such trajectories alternately traverse the two upcoming arms when the animal approaches the choice point9,10, raising the possibility that the trajectories express available forward paths encoded on previous trials10. However, to bridge the animal's path with the wider environment, beyond places previously or subsequently visited, an experience-independent spatial sampling mechanism might be required. Here we show in freely moving rats that in individual theta cycles, ensembles of grid cells and place cells encode a position signal that sweeps linearly outwards from the animal's location into the ambient environment, with sweep direction alternating stereotypically between left and right across successive theta cycles. These sweeps are accompanied by, and aligned with, a similarly alternating directional signal in a discrete population of parasubiculum cells that have putative connections to grid cells via conjunctive grid × direction cells. Sweeps extend into never-visited locations that are inaccessible to the animal. Sweeps persist during REM sleep. The sweep directions can be explained by an algorithm that maximizes the cumulative coverage of the surrounding manifold space. The sustained and unconditional expression of theta-patterned left-right-alternating sweeps in the entorhinal-hippocampal positioning system provides an efficient 'look around' mechanism for sampling locations beyond the travelled path.
Collapse
Affiliation(s)
- Abraham Z Vollan
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
5
|
Bimbard C, Takács F, Catarino JA, Fabre JMJ, Gupta S, Lenzi SC, Melin MD, O'Neill N, Orsolic I, Robacha M, Street JS, Gomes Teixeira JM, Townsend S, van Beest EH, Zhang AM, Churchland AK, Duan CA, Harris KD, Kullmann DM, Lignani G, Mainen ZF, Margrie TW, Rochefort NL, Wikenheiser A, Carandini M, Coen P. An adaptable, reusable, and light implant for chronic Neuropixels probes. eLife 2025; 13:RP98522. [PMID: 39964835 PMCID: PMC11835385 DOI: 10.7554/elife.98522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the 'Apollo Implant', an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a 'payload' module which is attached to the probe and is recoverable, and a 'docking' module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.
Collapse
Affiliation(s)
- Célian Bimbard
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
| | - Flóra Takács
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Joana A Catarino
- Champalimaud Research, Champalimaud Centre for the UnknownLisbonPortugal
| | - Julie MJ Fabre
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Sukriti Gupta
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Stephen C Lenzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Maxwell D Melin
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
| | - Nathanael O'Neill
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Ivana Orsolic
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Magdalena Robacha
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
| | - James S Street
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | | | - Simon Townsend
- The FabLab, Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Enny H van Beest
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
| | - Arthur M Zhang
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Anne K Churchland
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
| | - Chunyu A Duan
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | | | - Gabriele Lignani
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the UnknownLisbonPortugal
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Andrew Wikenheiser
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
| | - Philip Coen
- UCL Institute of Ophthalmology, University College LondonLondonUnited Kingdom
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
Sun Y, Chen X, Liu B, Liang L, Wang Y, Gao S, Gao X. Signal acquisition of brain-computer interfaces: A medical-engineering crossover perspective review. FUNDAMENTAL RESEARCH 2025; 5:3-16. [PMID: 40166113 PMCID: PMC11955058 DOI: 10.1016/j.fmre.2024.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/02/2025] Open
Abstract
Brain-computer interface (BCI) technology represents a burgeoning interdisciplinary domain that facilitates direct communication between individuals and external devices. The efficacy of BCI systems is largely contingent upon the progress in signal acquisition methodologies. This paper endeavors to provide an exhaustive synopsis of signal acquisition technologies within the realm of BCI by scrutinizing research publications from the last ten years. Our review synthesizes insights from both clinical and engineering viewpoints, delineating a comprehensive two-dimensional framework for understanding signal acquisition in BCIs. We delineate nine discrete categories of technologies, furnishing exemplars for each and delineating the salient challenges pertinent to these modalities. This review furnishes researchers and practitioners with a broad-spectrum comprehension of the signal acquisition landscape in BCI, and deliberates on the paramount issues presently confronting the field. Prospective enhancements in BCI signal acquisition should focus on harmonizing a multitude of disciplinary perspectives. Achieving equilibrium between signal fidelity, invasiveness, biocompatibility, and other pivotal considerations is imperative. By doing so, we can propel BCI technology forward, bolstering its effectiveness, safety, and dependability, thereby contributing to an auspicious future for human-technology integration.
Collapse
Affiliation(s)
- Yike Sun
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Bingchuan Liu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Liyan Liang
- Center for Intellectual Property and Innovation Development, China Academy of Information and Communications Technology, Beijing 100161, China
| | - Yijun Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Shangkai Gao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Bimbard C, Takács F, Catarino JA, Fabre JMJ, Gupta S, Lenzi SC, Melin MD, O’Neill N, Orsolic I, Robacha M, Street JS, Teixeira J, Townsend S, van Beest EH, Zhang AM, Churchland AK, Duan CA, Harris KD, Kullmann DM, Lignani G, Mainen ZF, Margrie TW, Rochefort N, Wikenheiser AM, Carandini M, Coen P. An adaptable, reusable, and light implant for chronic Neuropixels probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551752. [PMID: 37577563 PMCID: PMC10418246 DOI: 10.1101/2023.08.03.551752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the "Apollo Implant", an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a "payload" module which is attached to the probe and is recoverable, and a "docking" module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.
Collapse
Affiliation(s)
- C. Bimbard
- UCL Institute of Ophthalmology, University College London, London, UK
| | - F. Takács
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - J. A. Catarino
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Lisbon, Portugal
| | - J. M. J. Fabre
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - S. Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - S. C. Lenzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - M. D. Melin
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - N. O’Neill
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - I. Orsolic
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - M. Robacha
- UCL Institute of Ophthalmology, University College London, London, UK
| | - J. S. Street
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - J. Teixeira
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Lisbon, Portugal
| | - S. Townsend
- The FabLab, Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, UK
| | - E. H. van Beest
- UCL Institute of Ophthalmology, University College London, London, UK
| | - A. M. Zhang
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, UK
| | - A. K. Churchland
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - C. A. Duan
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - K. D. Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - D. M. Kullmann
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - G. Lignani
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Z. F. Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Lisbon, Portugal
| | - T. W. Margrie
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - N.L. Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - A. M. Wikenheiser
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - M. Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - P. Coen
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, UK
| |
Collapse
|
8
|
Schiereck SS, Pérez-Rivera DT, Mah A, DeMaegd ML, Ward RM, Hocker D, Savin C, Constantinople CM. Neural dynamics in the orbitofrontal cortex reveal cognitive strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620879. [PMID: 39554155 PMCID: PMC11565993 DOI: 10.1101/2024.10.29.620879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Behavior is sloppy: a multitude of cognitive strategies can produce similar behavioral read-outs. An underutilized approach is to combine multifaceted behavioral analyses with neural recordings to resolve cognitive strategies. Here we show that rats performing a decision-making task exhibit distinct strategies over training, and these cognitive strategies are decipherable from orbitofrontal cortex (OFC) neural dynamics. We trained rats to perform a temporal wagering task with hidden reward states. While naive rats passively adapted to reward statistics, expert rats inferred reward states. Electrophysiological recordings and novel methods for characterizing population dynamics identified latent neural factors that reflected inferred states in expert but not naive rats. In experts, these factors showed abrupt changes following single trials that were informative of state transitions. These dynamics were driven by neurons whose firing rates reflected single trial inferences, and OFC inactivations showed they were causal to behavior. These results reveal the neural signatures of inference.
Collapse
Affiliation(s)
| | | | - Andrew Mah
- Center for Neural Science, New York University; New York, NY 10003
| | | | | | - David Hocker
- Center for Neural Science, New York University; New York, NY 10003
| | - Cristina Savin
- Center for Neural Science, New York University; New York, NY 10003
- Center for Data Science, New York University; New York, NY 10003
| | | |
Collapse
|
9
|
Hartner JP, Yi D, Zhu HL, Watson BO, Chen L. Three-dimensional-printed headcap with embedded microdrive system for customizable multi-region brain recordings with neural probes. Front Neurosci 2024; 18:1478421. [PMID: 39483323 PMCID: PMC11524913 DOI: 10.3389/fnins.2024.1478421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Electrophysiological recordings from single neurons are crucial for understanding the complex functioning of the brain and for developing eventual therapeutic interventions. For electrophysiology, the accuracy and fidelity of invasive implantations of small devices remains unmatched. This study introduces an innovative, cost-efficient, 3D-printed headcap with embedded microdrive (THEM) system designed to streamline the manual labor-intensive in-vivo electrode implantation process for efficient and precise multi-region brain neural probe implantations. A custom bregma-referenced headcap design and fabrication, embedded microdrive integration, and upper support structure for probe packaging are described. With the Sprague Dawley rat as test species and medial prefrontal cortex and CA1 of the dorsal hippocampus as targets, surgeries and electrophysiological recordings were conducted to test the capability of the THEM system as compared to conventional surgical methods. By shifting manual stereotaxic alignment work to pre-surgical preparation of a fully assembled headcap system, incorporating fully preassembled upper support framework for packaging management, and easy customization for specific experiment designs and probe types, our system significantly reduces the surgical time, simplifies multi-implant procedures, and enhances procedural accuracy and repeatability. The THEM system demonstrates a significant improvement over conventional surgical implantation methods and offers a promising tool for future neuroscience research.
Collapse
Affiliation(s)
- Jeremiah P. Hartner
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Harrison L. Zhu
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Brendon O. Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
10
|
Zimmerman CA, Bolkan SS, Pan-Vazquez A, Wu B, Keppler EF, Meares-Garcia JB, Guthman EM, Fetcho RN, McMannon B, Lee J, Hoag AT, Lynch LA, Janarthanan SR, López Luna JF, Bondy AG, Falkner AL, Wang SSH, Witten IB. A neural mechanism for learning from delayed postingestive feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561214. [PMID: 37873112 PMCID: PMC10592633 DOI: 10.1101/2023.10.06.561214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Animals learn the value of foods based on their postingestive effects and thereby develop aversions to foods that are toxic1-6 and preferences to those that are nutritious7-14. However, it remains unclear how the brain is able to assign credit to flavors experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here, we reveal an unexpected role for postingestive reactivation of neural flavor representations in this temporal credit assignment process. To begin, we leverage the fact that mice learn to associate novel15-18, but not familiar, flavors with delayed gastric malaise signals to investigate how the brain represents flavors that support aversive postingestive learning. Surveying cellular resolution brainwide activation patterns reveals that a network of amygdala regions is unique in being preferentially activated by novel flavors across every stage of the learning process: the initial meal, delayed malaise, and memory retrieval. By combining high-density recordings in the amygdala with optogenetic stimulation of genetically defined hindbrain malaise cells, we find that postingestive malaise signals potently and specifically reactivate amygdalar novel flavor representations from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts strengthening of flavor responses upon memory retrieval, leading to stabilization of the population-level representation of the recently consumed flavor. In contrast, meals without postingestive consequences degrade neural flavor representations as flavors become familiar and safe. Thus, our findings demonstrate that interoceptive reactivation of amygdalar flavor representations provides a neural mechanism to resolve the temporal credit assignment problem inherent to postingestive learning.
Collapse
Affiliation(s)
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Emma F Keppler
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Eartha Mae Guthman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robert N Fetcho
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Hoag
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Juan F López Luna
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Adrian G Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
DePasquale B, Brody CD, Pillow JW. Neural population dynamics underlying evidence accumulation in multiple rat brain regions. eLife 2024; 13:e84955. [PMID: 39162374 PMCID: PMC12005723 DOI: 10.7554/elife.84955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions-the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)-while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal's choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.
Collapse
Affiliation(s)
- Brian DePasquale
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Howard Hughes Medical Institute, Princeton UniversityPrincetonUnited States
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Psychology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
12
|
Gupta D, Kopec CD, Bondy AG, Luo TZ, Elliott VA, Brody CD. A multi-region recurrent circuit for evidence accumulation in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602544. [PMID: 39026895 PMCID: PMC11257434 DOI: 10.1101/2024.07.08.602544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Decision-making based on noisy evidence requires accumulating evidence and categorizing it to form a choice. Here we evaluate a proposed feedforward and modular mapping of this process in rats: evidence accumulated in anterodorsal striatum (ADS) is categorized in prefrontal cortex (frontal orienting fields, FOF). Contrary to this, we show that both regions appear to be indistinguishable in their encoding/decoding of accumulator value and communicate this information bidirectionally. Consistent with a role for FOF in accumulation, silencing FOF to ADS projections impacted behavior throughout the accumulation period, even while nonselective FOF silencing did not. We synthesize these findings into a multi-region recurrent neural network trained with a novel approach. In-silico experiments reveal that multiple scales of recurrence in the cortico-striatal circuit rescue computation upon nonselective FOF perturbations. These results suggest that ADS and FOF accumulate evidence in a recurrent and distributed manner, yielding redundant representations and robustness to certain perturbations.
Collapse
Affiliation(s)
- Diksha Gupta
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
- Present address: Sainsbury Wellcome Centre, University College London, London, UK
| | - Charles D. Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Adrian G. Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Thomas Z. Luo
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Verity A. Elliott
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
| | - Carlos D. Brody
- Princeton Neuroscience Institute, Princeton University, Princeton NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton NJ, USA
| |
Collapse
|
13
|
Yuan AX, Colonell J, Lebedeva A, Okun M, Charles AS, Harris TD. Multi-day neuron tracking in high-density electrophysiology recordings using earth mover's distance. eLife 2024; 12:RP92495. [PMID: 38985568 PMCID: PMC11236416 DOI: 10.7554/elife.92495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.
Collapse
Affiliation(s)
- Augustine Xiaoran Yuan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Biomedical Engineering, Center for Imaging Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College LondonLondonUnited Kingdom
| | - Michael Okun
- Department of Psychology and Neuroscience Institute, University of SheffieldSheffieldUnited Kingdom
| | - Adam S Charles
- Department of Biomedical Engineering, Center for Imaging Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Biomedical Engineering, Center for Imaging Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
14
|
Melin MD, Khanal A, Vasquez M, Ryan MB, Churchland AK, Couto J. Large scale, simultaneous, chronic neural recordings from multiple brain areas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572441. [PMID: 38187681 PMCID: PMC10769364 DOI: 10.1101/2023.12.22.572441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Understanding how brain activity is related to animal behavior requires measuring multi-area interactions on multiple timescales. However, methods to perform chronic, simultaneous recordings of neural activity from many brain areas are lacking. Here, we introduce a novel approach for independent chronic probe implantation that enables flexible, simultaneous interrogation of neural activity from many brain regions during head restrained or freely moving behavior. The approach, that we called indie (independent dovetail implants for electrophysiology), enables repeated retrieval and reimplantation of probes. The chronic implantation approach can be combined with other modalities such as skull clearing for cortex wide access and optogenetics with optic fibers. Using this approach, we implanted 6 probes chronically in one hemisphere of the mouse brain. The implant is lightweight, allows flexible targeting with different angles, and offers enhanced stability. Our approach broadens the applications of chronic recording while retaining its main advantages over acute recordings (superior stability, longitudinal monitoring of activity and freely moving interrogations) and provides an appealing venue to study processes not accessible by acute methods, such as the neural substrate of learning across multiple areas.
Collapse
Affiliation(s)
- Maxwell D Melin
- Department of Neurobiology, University of California Los Angeles
- UCLA-Caltech Medical Scientist Training Program
| | - Anup Khanal
- Department of Neurobiology, University of California Los Angeles
| | - Marvin Vasquez
- Department of Neurobiology, University of California Los Angeles
| | - Michael B Ryan
- Department of Neurobiology, University of California Los Angeles
| | | | - Joao Couto
- Department of Neurobiology, University of California Los Angeles
| |
Collapse
|
15
|
Chari T, Hernandez A, Couto J, Portera-Cailliau C. A failure to discriminate social from non-social touch at the circuit level may underlie social avoidance in autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599778. [PMID: 38948773 PMCID: PMC11212975 DOI: 10.1101/2024.06.19.599778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Social touch is critical for communication and to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch, especially when it is unwanted. We used a novel social touch assay and Neuropixels probes to compare neural responses to social vs. non-social interactions in three relevant brain regions: vibrissal somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type (WT) mice showed aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons cared most about touch context (social vs. object) and showed a preference for social interactions, while striatal neurons changed their preference depending on whether mice could choose or not to interact. Amygdalar and striatal neurons were preferentially modulated by forced object touch, which was the most aversive. In contrast, the Fmr1 knockout (KO) model of autism found social and non-social interactions equally aversive and displayed more aversive facial expressions to social touch when it invaded their personal space. Importantly, when Fmr1 KO mice could choose to interact, neurons in all three regions did not discriminate social valence. Thus, a failure to differentially encode social from non-social stimuli at the circuit level may underlie social avoidance in autism.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - João Couto
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
16
|
Yasar TB, Gombkoto P, Vyssotski AL, Vavladeli AD, Lewis CM, Wu B, Meienberg L, Lundegardh V, Helmchen F, von der Behrens W, Yanik MF. Months-long tracking of neuronal ensembles spanning multiple brain areas with Ultra-Flexible Tentacle Electrodes. Nat Commun 2024; 15:4822. [PMID: 38844769 PMCID: PMC11156863 DOI: 10.1038/s41467-024-49226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.
Collapse
Affiliation(s)
- Tansel Baran Yasar
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Peter Gombkoto
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Angeliki D Vavladeli
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Christopher M Lewis
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Bifeng Wu
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linus Meienberg
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Valter Lundegardh
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Oesch LT, Ryan MB, Churchland AK. From innate to instructed: A new look at perceptual decision-making. Curr Opin Neurobiol 2024; 86:102871. [PMID: 38569230 PMCID: PMC11162954 DOI: 10.1016/j.conb.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Understanding how subjects perceive sensory stimuli in their environment and use this information to guide appropriate actions is a major challenge in neuroscience. To study perceptual decision-making in animals, researchers use tasks that either probe spontaneous responses to stimuli (often described as "naturalistic") or train animals to associate stimuli with experimenter-defined responses. Spontaneous decisions rely on animals' pre-existing knowledge, while trained tasks offer greater versatility, albeit often at the cost of extensive training. Here, we review emerging approaches to investigate perceptual decision-making using both spontaneous and trained behaviors, highlighting their strengths and limitations. Additionally, we propose how trained decision-making tasks could be improved to achieve faster learning and a more generalizable understanding of task rules.
Collapse
Affiliation(s)
- Lukas T Oesch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Michael B Ryan
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States. https://twitter.com/NeuroMikeRyan
| | - Anne K Churchland
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.
| |
Collapse
|
18
|
Yuan A, Colonell J, Lebedeva A, Okun M, Charles AS, Harris TD. Multi-day Neuron Tracking in High Density Electrophysiology Recordings using EMD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551724. [PMID: 38260339 PMCID: PMC10802241 DOI: 10.1101/2023.08.03.551724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from one to 47 days, with an 84% average recovery rate.
Collapse
Affiliation(s)
- Augustine(Xiaoran) Yuan
- Janelia Research Campus, Howard Hughes Medical Institute, USA
- Department of Biomedical Engineering, Center for Imaging Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, USA
| | | | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, UK
| | - Michael Okun
- Department of Psychology and Neuroscience Institute, University of Sheffield, UK
| | - Adam S. Charles
- Department of Biomedical Engineering, Center for Imaging Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, USA
| | - Timothy D. Harris
- Janelia Research Campus, Howard Hughes Medical Institute, USA
- Department of Biomedical Engineering, Center for Imaging Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, USA
| |
Collapse
|
19
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
20
|
Namima T, Kempkes E, Smith B, Smith L, Orsborn AL, Pasupathy A. Inserting a Neuropixels probe into awake monkey cortex: two probes, two methods. J Neurosci Methods 2024; 402:110016. [PMID: 37995854 PMCID: PMC10843751 DOI: 10.1016/j.jneumeth.2023.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Neuropixels probes have revolutionized neurophysiological studies in the rodent, but inserting these probes through the much thicker primate dura remains a challenge. NEW METHODS Here we describe two methods we have developed for the insertion of two types of Neuropixels probes acutely into the awake macaque monkey cortex. For the fine rodent probe (Neuropixels 1.0, IMEC), which is unable to pierce native primate dura, we developed a dural-eyelet method to insert the probe repeatedly without breakage. For the thicker short NHP probe (Neuropixels NP1010), we developed an artificial dura system to insert the probe. RESULTS AND COMPARISON WITH EXISTING METHODS We have now conducted successful experiments in 3 animals across 7 recording chambers with the procedures described here and have achieved recordings with similar yields over several months in each case. CONCLUSION We hope that our hardware, surgical preparation, methods for insertion and methods for removal of broken probe parts are of value to primate physiologists everywhere.
Collapse
Affiliation(s)
- Tomoyuki Namima
- Department of Biological Structure and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Graduate School of Frontier Biosciences, Osaka University, and Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan
| | - Erin Kempkes
- Department of Biological Structure and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Bob Smith
- Washington National Primate Research Center Instrumentation Services, University of Washington, Seattle, WA 98195, USA
| | - Lydia Smith
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Amy L Orsborn
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Anitha Pasupathy
- Department of Biological Structure and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
22
|
Song Z, Alpers A, Warner K, Iacobucci F, Hoskins E, Disterhoft JF, Voss JL, Widge AS. Chronic, Reusable, Multiday Neuropixels Recordings during Free-Moving Operant Behavior. eNeuro 2024; 11:ENEURO.0245-23.2023. [PMID: 38253540 PMCID: PMC10849027 DOI: 10.1523/eneuro.0245-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Electrophysiological recording is a powerful technique to examine neuronal substrates underlying cognition and behavior. Neuropixels probes provide a unique capacity to capture neuronal activity across many brain areas with high spatiotemporal resolution. Neuropixels are also expensive and optimized for acute, head-fixed use, both of which limit the types of behaviors and manipulations that can be studied. Recent advances have addressed the cost issue by showing chronic implant, explant, and reuse of Neuropixels probes, but the methods were not optimized for use in free-moving behavior. There were specific needs for improvement in cabling/connection stability. Here, we extend that work to demonstrate chronic Neuropixels recording, explant, and reuse in a rat model during fully free-moving operant behavior. Similar to prior approaches, we house the probe and headstage within a 3D-printed housing that avoids direct fixation of the probe to the skull, enabling eventual explant. We demonstrate innovations to allow chronic headstage connection with protection against environmental factors and a more stable cabling setup to reduce the tension that can interrupt recording. We demonstrate this approach with rats performing two different behavioral tasks, in each case showing: (1) chronic single- or dual-probe recordings in free-moving rats in operant chambers and (2) reusability of Neuropixels 1.0 probes with continued good single-unit yield after retrieval and reimplant. We thus demonstrate the potential for Neuropixels recordings in a wider range of species and preparations.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Psychiatry, University of Minnesota, Minneapolis, 55455 Minnesota
| | - Abigail Alpers
- Department of Psychiatry, University of Minnesota, Minneapolis, 55455 Minnesota
| | - Kasey Warner
- Department of Psychiatry, University of Minnesota, Minneapolis, 55455 Minnesota
| | - Francesca Iacobucci
- Department of Psychiatry, University of Minnesota, Minneapolis, 55455 Minnesota
| | - Eric Hoskins
- Department of Psychiatry, University of Minnesota, Minneapolis, 55455 Minnesota
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University, Evanston, 60208 Illinois
| | - Joel L Voss
- Department of Neurology, University of Chicago, Chicago, 60637 Illinois
| | - Alik S Widge
- Department of Psychiatry, University of Minnesota, Minneapolis, 55455 Minnesota
| |
Collapse
|
23
|
Xue F, Li F, Zhang KM, Ding L, Wang Y, Zhao X, Xu F, Zhang D, Sun M, Lau PM, Zhu Q, Zhou P, Bi GQ. Multi-region calcium imaging in freely behaving mice with ultra-compact head-mounted fluorescence microscopes. Natl Sci Rev 2024; 11:nwad294. [PMID: 38288367 PMCID: PMC10824555 DOI: 10.1093/nsr/nwad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024] Open
Abstract
To investigate the circuit-level neural mechanisms of behavior, simultaneous imaging of neuronal activity in multiple cortical and subcortical regions is highly desired. Miniature head-mounted microscopes offer the capability of calcium imaging in freely behaving animals. However, implanting multiple microscopes on a mouse brain remains challenging due to space constraints and the cumbersome weight of the equipment. Here, we present TINIscope, a Tightly Integrated Neuronal Imaging microscope optimized for electronic and opto-mechanical design. With its compact and lightweight design of 0.43 g, TINIscope enables unprecedented simultaneous imaging of behavior-relevant activity in up to four brain regions in mice. Proof-of-concept experiments with TINIscope recorded over 1000 neurons in four hippocampal subregions and revealed concurrent activity patterns spanning across these regions. Moreover, we explored potential multi-modal experimental designs by integrating additional modules for optogenetics, electrical stimulation or local field potential recordings. Overall, TINIscope represents a timely and indispensable tool for studying the brain-wide interregional coordination that underlies unrestrained behaviors.
Collapse
Affiliation(s)
- Feng Xue
- Department of Precision Machinery and Precision Instruments, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ke-ming Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Lufeng Ding
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xingtao Zhao
- Department of Modern Life Sciences and Biotecnology, Xiongan Institute of Innovation, Xiongan New Area, Xiongan 071899, China
| | - Fang Xu
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Danke Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingzhai Sun
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Pak-Ming Lau
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Qingyuan Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Zhou
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
24
|
Gloveli N, Simonnet J, Tang W, Concha-Miranda M, Maier E, Dvorzhak A, Schmitz D, Brecht M. Play and tickling responses map to the lateral columns of the rat periaqueductal gray. Neuron 2023; 111:3041-3052.e7. [PMID: 37516112 PMCID: PMC10552647 DOI: 10.1016/j.neuron.2023.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/31/2023]
Abstract
The persistence of play after decortication points to a subcortical mechanism of play control. We found that global blockade of the rat periaqueductal gray with either muscimol or lidocaine interfered with ticklishness and play. We recorded vocalizations and neural activity from the periaqueductal gray of young, playful rats during interspecific touch, play, and tickling. Rats vocalized weakly to touch and more strongly to play and tickling. Periaqueductal gray units showed diverse but strong modulation to tickling and play. Hierarchical clustering based on neuronal responses to play and tickling revealed functional clusters mapping to different periaqueductal gray columns. Specifically, we observed play-neutral/tickling-inhibited and tickling/play-neutral units in dorsolateral and dorsomedial periaqueductal gray columns. In contrast, strongly play/tickling-excited units mapped to the lateral columns and were suppressed by anxiogenic conditions. Optogenetic inactivation of lateral periaqueductal columns disrupted ticklishness and play. We conclude that the lateral periaqueductal gray columns are decisive for play and laughter.
Collapse
Affiliation(s)
- Natalie Gloveli
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, 10117 Berlin, Germany
| | - Jean Simonnet
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Wei Tang
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Eduard Maier
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anton Dvorzhak
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, 10117 Berlin, Germany.
| |
Collapse
|
25
|
Yan P, Akhoundi A, Shah NP, Tandon P, Muratore DG, Chichilnisky EJ, Murmann B. Data Compression Versus Signal Fidelity Tradeoff in Wired-OR Analog-to-Digital Compressive Arrays for Neural Recording. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:754-767. [PMID: 37402181 DOI: 10.1109/tbcas.2023.3292058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Future high-density and high channel count neural interfaces that enable simultaneous recording of tens of thousands of neurons will provide a gateway to study, restore and augment neural functions. However, building such technology within the bit-rate limit and power budget of a fully implantable device is challenging. The wired-OR compressive readout architecture addresses the data deluge challenge of a high channel count neural interface using lossy compression at the analog-to-digital interface. In this article, we assess the suitability of wired-OR for several steps that are important for neuroengineering, including spike detection, spike assignment and waveform estimation. For various wiring configurations of wired-OR and assumptions about the quality of the underlying signal, we characterize the trade-off between compression ratio and task-specific signal fidelity metrics. Using data from 18 large-scale microelectrode array recordings in macaque retina ex vivo, we find that for an event SNR of 7-10, wired-OR correctly detects and assigns at least 80% of the spikes with at least 50× compression. The wired-OR approach also robustly encodes action potential waveform information, enabling downstream processing such as cell-type classification. Finally, we show that by applying an LZ77-based lossless compressor (gzip) to the output of the wired-OR architecture, 1000× compression can be achieved over the baseline recordings.
Collapse
|
26
|
Namima T, Kempkes E, Smith B, Pasupathy A. Inserting a Neuropixels probe into awake monkey cortex: two probes, two methods. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546631. [PMID: 37425930 PMCID: PMC10326968 DOI: 10.1101/2023.06.26.546631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neuropixels probes have revolutionized neurophysiological studies in the rodent, but inserting these probes through the much thicker primate dura remains a challenge. Here we describe two methods we have developed for the insertion of two types of Neuropixels probes acutely into the awake monkey cortex. For the fine rodent probe, which is unable to pierce native primate dura, we developed a dural-eyelet method to insert the probe repeatedly without breakage. For the thicker NHP probe, we developed an artificial dura system to insert the probe. We have now conducted successful experiments in 3 animals across 7 recording chambers with the procedures described here and have achieved stable recordings over several months in each case. Here we describe our hardware, surgical preparation, methods for insertion and methods for removal of broken probe parts. We hope that our methods are of value to primate physiologists everywhere.
Collapse
Affiliation(s)
- Tomoyuki Namima
- Department of Biological Structure and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
- Graduate School of Frontier Biosciences, Osaka University, and Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka, 565-0871, Japan
| | - Erin Kempkes
- Department of Biological Structure and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Bob Smith
- Washington National Primate Research Center Instrumentation Services, University of Washington, Seattle, WA 98195, USA
| | - Anitha Pasupathy
- Department of Biological Structure and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Abstract
Penetrating neural electrodes provide a powerful approach to decipher brain circuitry by allowing for time-resolved electrical detections of individual action potentials. This unique capability has contributed tremendously to basic and translational neuroscience, enabling both fundamental understandings of brain functions and applications of human prosthetic devices that restore crucial sensations and movements. However, conventional approaches are limited by the scarce number of available sensing channels and compromised efficacy over long-term implantations. Recording longevity and scalability have become the most sought-after improvements in emerging technologies. In this review, we discuss the technological advances in the past 5-10 years that have enabled larger-scale, more detailed, and longer-lasting recordings of neural circuits at work than ever before. We present snapshots of the latest advances in penetration electrode technology, showcase their applications in animal models and humans, and outline the underlying design principles and considerations to fuel future technological development.
Collapse
Affiliation(s)
- Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
28
|
Li SY, Tseng HY, Chen BW, Lo YC, Shao HH, Wu YT, Li SJ, Chang CW, Liu TC, Hsieh FY, Yang Y, Lai YB, Chen PC, Chen YY. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. BIOSENSORS 2023; 13:280. [PMID: 36832046 PMCID: PMC9953957 DOI: 10.3390/bios13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Increasing requirements for neural implantation are helping to expand our understanding of nervous systems and generate new developmental approaches. It is thanks to advanced semiconductor technologies that we can achieve the high-density complementary metal-oxide-semiconductor electrode array for the improvement of the quantity and quality of neural recordings. Although the microfabricated neural implantable device holds much promise in the biosensing field, there are some significant technological challenges. The most advanced neural implantable device relies on complex semiconductor manufacturing processes, which are required for the use of expensive masks and specific clean room facilities. In addition, these processes based on a conventional photolithography technique are suitable for mass production, which is not applicable for custom-made manufacturing in response to individual experimental requirements. The microfabricated complexity of the implantable neural device is increasing, as is the associated energy consumption, and corresponding emissions of carbon dioxide and other greenhouse gases, resulting in environmental deterioration. Herein, we developed a fabless fabricated process for a neural electrode array that was simple, fast, sustainable, and customizable. An effective strategy to produce conductive patterns as the redistribution layers (RDLs) includes implementing microelectrodes, traces, and bonding pads onto the polyimide (PI) substrate by laser micromachining techniques combined with the drop coating of the silver glue to stack the laser grooving lines. The process of electroplating platinum on the RDLs was performed to increase corresponding conductivity. Sequentially, Parylene C was deposited onto the PI substrate to form the insulation layer for the protection of inner RDLs. Following the deposition of Parylene C, the via holes over microelectrodes and the corresponding probe shape of the neural electrode array was also etched by laser micromachining. To increase the neural recording capability, three-dimensional microelectrodes with a high surface area were formed by electroplating gold. Our eco-electrode array showed reliable electrical characteristics of impedance under harsh cyclic bending conditions of over 90 degrees. For in vivo application, our flexible neural electrode array demonstrated more stable and higher neural recording quality and better biocompatibility as well during the 2-week implantation compared with those of the silicon-based neural electrode array. In this study, our proposed eco-manufacturing process for fabricating the neural electrode array reduced 63 times of carbon emissions compared to the traditional semiconductor manufacturing process and provided freedom in the customized design of the implantable electronic devices as well.
Collapse
Affiliation(s)
- Szu-Ying Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ta-Chung Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Fu-Yu Hsieh
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, Johns Hopkins University, No. 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Yan-Bo Lai
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| |
Collapse
|
29
|
Qin S, Farashahi S, Lipshutz D, Sengupta AM, Chklovskii DB, Pehlevan C. Coordinated drift of receptive fields in Hebbian/anti-Hebbian network models during noisy representation learning. Nat Neurosci 2023; 26:339-349. [PMID: 36635497 DOI: 10.1038/s41593-022-01225-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2022] [Indexed: 01/13/2023]
Abstract
Recent experiments have revealed that neural population codes in many brain areas continuously change even when animals have fully learned and stably perform their tasks. This representational 'drift' naturally leads to questions about its causes, dynamics and functions. Here we explore the hypothesis that neural representations optimize a representational objective with a degenerate solution space, and noisy synaptic updates drive the network to explore this (near-)optimal space causing representational drift. We illustrate this idea and explore its consequences in simple, biologically plausible Hebbian/anti-Hebbian network models of representation learning. We find that the drifting receptive fields of individual neurons can be characterized by a coordinated random walk, with effective diffusion constants depending on various parameters such as learning rate, noise amplitude and input statistics. Despite such drift, the representational similarity of population codes is stable over time. Our model recapitulates experimental observations in the hippocampus and posterior parietal cortex and makes testable predictions that can be probed in future experiments.
Collapse
Affiliation(s)
- Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Shiva Farashahi
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - David Lipshutz
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Anirvan M Sengupta
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ, USA
| | - Dmitri B Chklovskii
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- NYU Langone Medical Center, New York, NY, USA
| | - Cengiz Pehlevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
30
|
Monsees A, Voit KM, Wallace DJ, Sawinski J, Charyasz E, Scheffler K, Macke JH, Kerr JND. Estimation of skeletal kinematics in freely moving rodents. Nat Methods 2022; 19:1500-1509. [PMID: 36253644 PMCID: PMC9636019 DOI: 10.1038/s41592-022-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
Forming a complete picture of the relationship between neural activity and skeletal kinematics requires quantification of skeletal joint biomechanics during free behavior; however, without detailed knowledge of the underlying skeletal motion, inferring limb kinematics using surface-tracking approaches is difficult, especially for animals where the relationship between the surface and underlying skeleton changes during motion. Here we developed a videography-based method enabling detailed three-dimensional kinematic quantification of an anatomically defined skeleton in untethered freely behaving rats and mice. This skeleton-based model was constrained using anatomical principles and joint motion limits and provided skeletal pose estimates for a range of body sizes, even when limbs were occluded. Model-inferred limb positions and joint kinematics during gait and gap-crossing behaviors were verified by direct measurement of either limb placement or limb kinematics using inertial measurement units. Together we show that complex decision-making behaviors can be accurately reconstructed at the level of skeletal kinematics using our anatomically constrained model.
Collapse
Affiliation(s)
- Arne Monsees
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| | - Kay-Michael Voit
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Damian J Wallace
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Juergen Sawinski
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Edyta Charyasz
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jakob H Macke
- Machine Learning in Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Jason N D Kerr
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| |
Collapse
|
31
|
Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022; 23:683-704. [PMID: 36192596 PMCID: PMC10327445 DOI: 10.1038/s41583-022-00634-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.
Collapse
Affiliation(s)
- Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Driscoll LN, Duncker L, Harvey CD. Representational drift: Emerging theories for continual learning and experimental future directions. Curr Opin Neurobiol 2022; 76:102609. [PMID: 35939861 DOI: 10.1016/j.conb.2022.102609] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Recent work has revealed that the neural activity patterns correlated with sensation, cognition, and action often are not stable and instead undergo large scale changes over days and weeks-a phenomenon called representational drift. Here, we highlight recent observations of drift, how drift is unlikely to be explained by experimental confounds, and how the brain can likely compensate for drift to allow stable computation. We propose that drift might have important roles in neural computation to allow continual learning, both for separating and relating memories that occur at distinct times. Finally, we present an outlook on future experimental directions that are needed to further characterize drift and to test emerging theories for drift's role in computation.
Collapse
Affiliation(s)
- Laura N Driscoll
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Lea Duncker
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
33
|
Masset P, Qin S, Zavatone-Veth JA. Drifting neuronal representations: Bug or feature? BIOLOGICAL CYBERNETICS 2022; 116:253-266. [PMID: 34993613 DOI: 10.1007/s00422-021-00916-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
The brain displays a remarkable ability to sustain stable memories, allowing animals to execute precise behaviors or recall stimulus associations years after they were first learned. Yet, recent long-term recording experiments have revealed that single-neuron representations continuously change over time, contravening the classical assumption that learned features remain static. How do unstable neural codes support robust perception, memories, and actions? Here, we review recent experimental evidence for such representational drift across brain areas, as well as dissections of its functional characteristics and underlying mechanisms. We emphasize theoretical proposals for how drift need not only be a form of noise for which the brain must compensate. Rather, it can emerge from computationally beneficial mechanisms in hierarchical networks performing robust probabilistic computations.
Collapse
Affiliation(s)
- Paul Masset
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Shanshan Qin
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
34
|
Spivak L, Levi A, Sloin HE, Someck S, Stark E. Deconvolution improves the detection and quantification of spike transmission gain from spike trains. Commun Biol 2022; 5:520. [PMID: 35641587 PMCID: PMC9156687 DOI: 10.1038/s42003-022-03450-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Accurate detection and quantification of spike transmission between neurons is essential for determining neural network mechanisms that govern cognitive functions. Using point process and conductance-based simulations, we found that existing methods for determining neuronal connectivity from spike times are highly affected by burst spiking activity, resulting in over- or underestimation of spike transmission. To improve performance, we developed a mathematical framework for decomposing the cross-correlation between two spike trains. We then devised a deconvolution-based algorithm for removing effects of second-order spike train statistics. Deconvolution removed the effect of burst spiking, improving the estimation of neuronal connectivity yielded by state-of-the-art methods. Application of deconvolution to neuronal data recorded from hippocampal region CA1 of freely-moving mice produced higher estimates of spike transmission, in particular when spike trains exhibited bursts. Deconvolution facilitates the precise construction of complex connectivity maps, opening the door to enhanced understanding of the neural mechanisms underlying brain function.
Collapse
Affiliation(s)
- Lidor Spivak
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Hadas E Sloin
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
35
|
Peng Y, Schöneberg N, Esposito MS, Geiger JRP, Sharott A, Tovote P. Current approaches to characterize micro- and macroscale circuit mechanisms of Parkinson's disease in rodent models. Exp Neurol 2022; 351:114008. [PMID: 35149118 PMCID: PMC7612860 DOI: 10.1016/j.expneurol.2022.114008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson’s disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom.
| | - Nina Schöneberg
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany
| | - Maria Soledad Esposito
- Medical Physics Department, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Av. E. Bustillo 9500, R8402AGP San Carlos de Bariloche, Rio Negro, Argentina
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, United Kingdom
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany.
| |
Collapse
|
36
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
37
|
Accurate Localization of Linear Probe Electrode Arrays across Multiple Brains. eNeuro 2021; 8:ENEURO.0241-21.2021. [PMID: 34697075 PMCID: PMC8597948 DOI: 10.1523/eneuro.0241-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Recently developed probes for extracellular electrophysiological recordings have large numbers of electrodes on long linear shanks. Linear electrode arrays, such as Neuropixels probes, have hundreds of recording electrodes distributed over linear shanks that span several millimeters. Because of the length of the probes, linear probe recordings in rodents usually cover multiple brain areas. Typical studies collate recordings across several recording sessions and animals. Neurons recorded in different sessions and animals thus have to be aligned to each other and to a standardized brain coordinate system. Here, we evaluate two typical workflows for localization of individual electrodes in standardized coordinates. These workflows rely on imaging brains with fluorescent probe tracks and warping 3D image stacks to standardized brain atlases. One workflow is based on tissue clearing and selective plane illumination microscopy (SPIM), whereas the other workflow is based on serial block-face two-photon (SBF2P) microscopy. In both cases electrophysiological features are then used to anchor particular electrodes along the reconstructed tracks to specific locations in the brain atlas and therefore to specific brain structures. We performed groundtruth experiments, in which motor cortex outputs are labeled with ChR2 and a fluorescence protein. Light-evoked electrical activity and fluorescence can be independently localized. Recordings from brain regions targeted by the motor cortex reveal better than 0.1-mm accuracy for electrode localization, independent of workflow used.
Collapse
|
38
|
Vöröslakos M, Miyawaki H, Royer S, Diba K, Yoon E, Petersen PC, Buzsáki G. 3D-printed Recoverable Microdrive and Base Plate System for Rodent Electrophysiology. Bio Protoc 2021; 11:e4137. [PMID: 34541053 DOI: 10.21769/bioprotoc.4137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/02/2022] Open
Abstract
Extracellular recordings in freely moving animals allow the monitoring of brain activity from populations of neurons at single-spike temporal resolution. While state-of-the-art electrophysiological recording devices have been developed in recent years (e.g., µLED and Neuropixels silicon probes), implantation methods for silicon probes in rats and mice have not advanced substantially for a decade. The surgery is complex, takes time to master, and involves handling expensive devices and valuable animal subjects. In addition, chronic silicon neural probes are practically single implant devices due to the current low success rate of probe recovery. To successfully recover silicon probes, improve upon the quality of electrophysiological recording, and make silicon probe recordings more accessible, we have designed a miniature, low cost, and recoverable microdrive system. The addition of a novel 3D-printed skull baseplate makes the surgery less invasive, faster, and simpler for both rats and mice. We provide detailed procedural instructions and print designs, allowing researchers to adapt and flexibly customize our designs to their experimental usage.
Collapse
Affiliation(s)
- Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hiroyuki Miyawaki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Sebastien Royer
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kamran Diba
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul, Korea
| | - Peter C Petersen
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA.,Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
39
|
Francoeur MJ, Tang T, Fakhraei L, Wu X, Hulyalkar S, Cramer J, Buscher N, Ramanathan DR. Chronic, Multi-Site Recordings Supported by Two Low-Cost, Stationary Probe Designs Optimized to Capture Either Single Unit or Local Field Potential Activity in Behaving Rats. Front Psychiatry 2021; 12:678103. [PMID: 34421671 PMCID: PMC8374626 DOI: 10.3389/fpsyt.2021.678103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Rodent models of cognitive behavior have greatly contributed to our understanding of human neuropsychiatric disorders. However, to elucidate the neurobiological underpinnings of such disorders or impairments, animal models are more useful when paired with methods for measuring brain function in awake, behaving animals. Standard tools used for systems-neuroscience level investigations are not optimized for large-scale and high-throughput behavioral battery testing due to various factors including cost, time, poor longevity, and selective targeting limited to measuring only a few brain regions at a time. Here we describe two different "user-friendly" methods for building extracellular electrophysiological probes that can be used to measure either single units or local field potentials in rats performing cognitive tasks. Both probe designs leverage several readily available, yet affordable, commercial products to facilitate ease of production and offer maximum flexibility in terms of brain-target locations that can be scalable (32-64 channels) based on experimental needs. Our approach allows neural activity to be recorded simultaneously with behavior and compared between micro (single unit) and more macro (local field potentials) levels of brain activity in order to gain a better understanding of how local brain regions and their connected networks support cognitive functions in rats. We believe our novel probe designs make collecting electrophysiology data easier and will begin to fill the gap in knowledge between basic and clinical research.
Collapse
Affiliation(s)
- Miranda J. Francoeur
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Tianzhi Tang
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Leila Fakhraei
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Xuanyu Wu
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Sidharth Hulyalkar
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Jessica Cramer
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Nathalie Buscher
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Dhakshin R. Ramanathan
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
40
|
Transection of the Superior Sagittal Sinus Enables Bilateral Access to the Rodent Midline Brain Structures. eNeuro 2021; 8:ENEURO.0146-21.2021. [PMID: 34210659 PMCID: PMC8281263 DOI: 10.1523/eneuro.0146-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Stereotaxic access to brain areas underneath the superior sagittal sinus (SSS) is notoriously challenging. As a major drainage vessel, covering the whole extension of the sagittal fissure, the SSS impedes direct bilateral access to underlying regions for recording and stimulation probes, drug-delivery cannulas, and injection devices. We now describe a new method for transection and retraction of the SSS in rats, that allows the accurate placement of microinjection devices, or chronic electrode probes, while avoiding hemorrhage and the ensuing deleterious consequences for local structures, animal health, and behavior. To demonstrate the feasibility of this approach we evaluated its consequences acutely during surgery, and thereafter during surgical survival, recovery, behavioral testing, as well as postmortem analysis of histologic impact in the related brain structures of male rats. This method provides a new approach enabling direct access for manipulation and recording of activity in brain areas previously obstructed by the SSS.
Collapse
|
41
|
Chen ZS, Pesaran B. Improving scalability in systems neuroscience. Neuron 2021; 109:1776-1790. [PMID: 33831347 PMCID: PMC8178195 DOI: 10.1016/j.neuron.2021.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022]
Abstract
Emerging technologies to acquire data at increasingly greater scales promise to transform discovery in systems neuroscience. However, current exponential growth in the scale of data acquisition is a double-edged sword. Scaling up data acquisition can speed up the cycle of discovery but can also misinterpret the results or possibly slow down the cycle because of challenges presented by the curse of high-dimensional data. Active, adaptive, closed-loop experimental paradigms use hardware and algorithms optimized to enable time-critical computation to provide feedback that interprets the observations and tests hypotheses to actively update the stimulus or stimulation parameters. In this perspective, we review important concepts of active and adaptive experiments and discuss how selectively constraining the dimensionality and optimizing strategies at different stages of discovery loop can help mitigate the curse of high-dimensional data. Active and adaptive closed-loop experimental paradigms can speed up discovery despite an exponentially increasing data scale, offering a road map to timely and iterative hypothesis revision and discovery in an era of exponential growth in neuroscience.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Bijan Pesaran
- Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
42
|
Vöröslakos M, Petersen PC, Vöröslakos B, Buzsáki G. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent. eLife 2021; 10:e65859. [PMID: 34009122 PMCID: PMC8177890 DOI: 10.7554/elife.65859] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
High-yield electrophysiological extracellular recording in freely moving rodents provides a unique window into the temporal dynamics of neural circuits. Recording from unrestrained animals is critical to investigate brain activity during natural behaviors. The use and implantation of high-channel-count silicon probes represent the largest cost and experimental complexity associated with such recordings making a recoverable and reusable system desirable. To address this, we have designed and tested a novel 3D printed head-gear system for freely moving mice and rats. The system consists of a recoverable microdrive printed in stainless steel and a plastic head cap system, allowing researchers to reuse the silicon probes with ease, decreasing the effective cost, and the experimental effort and complexity. The cap designs are modular and provide structural protection and electrical shielding to the implanted hardware and electronics. We provide detailed procedural instructions allowing researchers to adapt and flexibly modify the head-gear system.
Collapse
Affiliation(s)
| | - Peter C Petersen
- Neuroscience Institute, New York UniversityNew YorkUnited States
| | - Balázs Vöröslakos
- Budapest University of Technology and Economics, Faculty of Mechanical EngineeringBudapestHungary
| | - György Buzsáki
- Neuroscience Institute, New York UniversityNew YorkUnited States
- Department of Neurology, Langone Medical Center, New York UniversityNew YorkUnited States
| |
Collapse
|
43
|
Raam T, Hong W. Organization of neural circuits underlying social behavior: A consideration of the medial amygdala. Curr Opin Neurobiol 2021; 68:124-136. [PMID: 33940499 DOI: 10.1016/j.conb.2021.02.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
The medial amygdala (MeA) is critical for the expression of a broad range of social behaviors, and is also connected to many other brain regions that mediate those same behaviors. Here, we summarize recent advances toward elucidating mechanisms that enable the MeA to regulate a diversity of social behaviors, and also consider what role the MeA plays within the broader network of regions that orchestrate social sensorimotor transformations. We outline the molecular, anatomical, and electrophysiological features of the MeA that segregate distinct social behaviors, propose experimental strategies to disambiguate sensory representations from behavioral function in the context of a social interaction, and consider to what extent MeA function may overlap with other regions mediating similar behaviors.
Collapse
Affiliation(s)
- Tara Raam
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
44
|
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 2021. [PMID: 33859006 DOI: 10.1101/2020.10.27.358291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- UCL Institute of Ophthalmology, University College London, London, UK.
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Michael Okun
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marius Pachitariu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marius Bauza
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Jai Bhagat
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia Böhm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders, Leuven, Belgium
- IMEC, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Britton Sauerbrei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rik J J van Daal
- ATLAS Neuroengineering, Leuven, Belgium
- Neuroelectronics Research Flanders, Leuven, Belgium
- Micro- and Nanosystems, KU Leuven, Leuven, Belgium
| | - Abraham Z Vollan
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - John O'Keefe
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sebastian Haesler
- Neuroelectronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
45
|
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 2021; 372:eabf4588. [PMID: 33859006 PMCID: PMC8244810 DOI: 10.1126/science.abf4588] [Citation(s) in RCA: 475] [Impact Index Per Article: 118.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- UCL Institute of Ophthalmology, University College London, London, UK.
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Michael Okun
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marius Pachitariu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marius Bauza
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Jai Bhagat
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia Böhm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders, Leuven, Belgium
- IMEC, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Britton Sauerbrei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rik J J van Daal
- ATLAS Neuroengineering, Leuven, Belgium
- Neuroelectronics Research Flanders, Leuven, Belgium
- Micro- and Nanosystems, KU Leuven, Leuven, Belgium
| | - Abraham Z Vollan
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - John O'Keefe
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sebastian Haesler
- Neuroelectronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
46
|
Fiáth R, Meszéna D, Somogyvári Z, Boda M, Barthó P, Ruther P, Ulbert I. Recording site placement on planar silicon-based probes affects signal quality in acute neuronal recordings. Sci Rep 2021; 11:2028. [PMID: 33479289 PMCID: PMC7819990 DOI: 10.1038/s41598-021-81127-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Multisite, silicon-based probes are widely used tools to record the electrical activity of neuronal populations. Several physical features of these devices are designed to improve their recording performance. Here, our goal was to investigate whether the position of recording sites on the silicon shank might affect the quality of the recorded neural signal in acute experiments. Neural recordings obtained with five different types of high-density, single-shank, planar silicon probes from anesthetized rats were analyzed. Wideband data were filtered to extract spiking activity, then the amplitude distribution of samples and quantitative properties of the recorded brain activity (single unit yield, spike amplitude and isolation distance) were compared between sites located at different positions of the silicon shank, focusing particularly on edge and center sites. Edge sites outperformed center sites: for all five probe types there was a significant difference in the signal power computed from the amplitude distributions, and edge sites recorded significantly more large amplitude samples both in the positive and negative range. Although the single unit yield was similar between site positions, the difference in spike amplitudes was noticeable in the range corresponding to high-amplitude spikes. Furthermore, the advantage of edge sites slightly decreased with decreasing shank width. Our results might aid the design of novel neural implants in enhancing their recording performance by identifying more efficient recording site placements.
Collapse
Affiliation(s)
- Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary. .,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Domokos Meszéna
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Somogyvári
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Mihály Boda
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster of Excellence, BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
47
|
Fiáth R, Meszéna D, Somogyvári Z, Boda M, Barthó P, Ruther P, Ulbert I. Recording site placement on planar silicon-based probes affects signal quality in acute neuronal recordings. Sci Rep 2021; 11:2028. [PMID: 33479289 DOI: 10.1101/2020.06.01.127308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023] Open
Abstract
Multisite, silicon-based probes are widely used tools to record the electrical activity of neuronal populations. Several physical features of these devices are designed to improve their recording performance. Here, our goal was to investigate whether the position of recording sites on the silicon shank might affect the quality of the recorded neural signal in acute experiments. Neural recordings obtained with five different types of high-density, single-shank, planar silicon probes from anesthetized rats were analyzed. Wideband data were filtered to extract spiking activity, then the amplitude distribution of samples and quantitative properties of the recorded brain activity (single unit yield, spike amplitude and isolation distance) were compared between sites located at different positions of the silicon shank, focusing particularly on edge and center sites. Edge sites outperformed center sites: for all five probe types there was a significant difference in the signal power computed from the amplitude distributions, and edge sites recorded significantly more large amplitude samples both in the positive and negative range. Although the single unit yield was similar between site positions, the difference in spike amplitudes was noticeable in the range corresponding to high-amplitude spikes. Furthermore, the advantage of edge sites slightly decreased with decreasing shank width. Our results might aid the design of novel neural implants in enhancing their recording performance by identifying more efficient recording site placements.
Collapse
Affiliation(s)
- Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Domokos Meszéna
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Somogyvári
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Mihály Boda
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- Cluster of Excellence, BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
48
|
Luo TZ, Bondy AG, Gupta D, Elliott VA, Kopec CD, Brody CD. An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats. eLife 2020; 9:e59716. [PMID: 33089778 PMCID: PMC7721443 DOI: 10.7554/elife.59716] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The use of Neuropixels probes for chronic neural recordings is in its infancy and initial studies leave questions about long-term stability and probe reusability unaddressed. Here, we demonstrate a new approach for chronic Neuropixels recordings over a period of months in freely moving rats. Our approach allows multiple probes per rat and multiple cycles of probe reuse. We found that hundreds of units could be recorded for multiple months, but that yields depended systematically on anatomical position. Explanted probes displayed a small increase in noise compared to unimplanted probes, but this was insufficient to impair future single-unit recordings. We conclude that cost-effective, multi-region, and multi-probe Neuropixels recordings can be carried out with high yields over multiple months in rats or other similarly sized animals. Our methods and observations may facilitate the standardization of chronic recording from Neuropixels probes in freely moving animals.
Collapse
Affiliation(s)
| | | | - Diksha Gupta
- Princeton Neuroscience InstitutePrincetonUnited States
| | | | | | - Carlos D Brody
- Princeton Neuroscience InstitutePrincetonUnited States
- Howard Hughes Medical Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|