1
|
Huang T, Ma X, Zhao Z, Qin D, Qin W, Wang J, Chen B, He X. Homeostasis of Calnexin Is Essential for the Growth, Virulence, and Hypovirus RNA Accumulation in the Chestnut Blight Fungus. Mol Microbiol 2025; 123:393-405. [PMID: 39935319 DOI: 10.1111/mmi.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/24/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Calnexin, a calcium-binding protein, promotes correct protein folding and prevents incompletely folded glycopolypeptides from premature oxidation and degradation. Cryphonectria parasitica, an ascomycete fungus responsible for chestnut blight, poses a significant threat to the chestnut forest or orchards worldwide. Although various aspects of calnexin have been investigated, little is known about the impact of fungal viruses. CpCne was identified and characterized in this study, encoding the calnexin in C. parasitica. Strains with deletion or interference of the CpCne gene had a significant reduction in biomass and pathogenicity, and strains with overexpression of the CpCne gene had retarded growth and reduced pathogenicity. Transcriptome analysis showed that the △CpCne mutant had significant changes in the expression of genes related to carbohydrate metabolism, cell wall polysaccharide synthesis and degradation, indicating that CpCne may reduce virulence by affecting the cell wall. Additionally, the △CpCne mutant was sensitive to endoplasmic reticulum (ER) stress, suggesting that CpCne plays an important role in maintaining ER homeostasis. Furthermore, CpCne was also involved in the interaction between C. parasitica and the CHV1-EP713. Deletion or overexpression of the CpCne gene reduced viral RNA accumulation, and deletion of the CpCne gene altered the lipid and carboxylic acid metabolic pathways, thereby interfering with virus replication and assembly. Together, we demonstrated that the homeostasis of calnexin in C. parasitica (CpCne) is essential for hyphal growth and virulence, and revealed its role in viral replication and virulence.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xiaoling Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Ziqi Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Danna Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Weiye Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jinzi Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Protection and Utilization of Marine Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xipu He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Zhang C, Lan X, Wang Q, Zheng Y, Cheng J, Han J, Li C, Cheng F, Wang X. Decoding ischemic stroke: Perspectives on the endoplasmic reticulum, mitochondria, and their crosstalk. Redox Biol 2025; 82:103622. [PMID: 40188640 PMCID: PMC12001122 DOI: 10.1016/j.redox.2025.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025] Open
Abstract
Stroke is known for its high disability and mortality rates. Ischemic stroke (IS), the most prevalent form, imposes a considerable burden on affected individuals. Nevertheless, existing treatment modalities are hindered by limitations, including narrow therapeutic windows, substantial adverse effects, and suboptimal neurological recovery. Clarifying the pathological mechanism of IS is a prerequisite for developing new therapeutic strategies. In this context, the functional disruption of mitochondria, the endoplasmic reticulum (ER), and the crosstalk mechanisms between them have garnered increasing attention for their contributory roles in the progression of IS. Therefore, this review provides a comprehensive summary of the current pathomechanisms associated with the involvement of the ER and mitochondria in IS, emphasising Ca2+ destabilization homeostasis, ER stress, oxidative stress, disordered mitochondrial quality control, and mitochondrial transfer. Additionally, this article highlights the functional interaction between the ER and mitochondria, as well as the mitochondrial-ER contacts (MERCs) that structurally connect mitochondria and the ER, aiming to provide ideas and references for the research and treatment of IS.
Collapse
Affiliation(s)
- Chuxin Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Lan
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jialin Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinhua Han
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changxiang Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
4
|
Kavyashree S, Harithpriya K, Ramkumar KM. Miro1- a key player in β-cell function and mitochondrial dynamics under diabetes mellitus. Mitochondrion 2025; 84:102039. [PMID: 40204078 DOI: 10.1016/j.mito.2025.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Mitochondrial health is crucial for the survival and function of β-cells, preserving glucose homeostasis and effective insulin production. Miro1, a mitochondrial Rho GTPase1 protein, plays an essential role in maintaining thequality of mitochondria by regulating calcium homeostasis and mitophagy. In this review, we aim to explore the dysfunction of Miro1 in type 2 diabetes mellitus (T2DM) and its contribution to impaired Ca2+ signaling, which increases oxidative stress in β-cells. This dysfunction is the hallmark of T2DM pathogenesis, leading to insufficient insulin production and poor glycemic control. Additionally, we discuss the role of Miro1 in modulating insulin secretion and inflammation, highlighting its effect on modulating key signaling cascades in β-cells. Altogether, enhancing Miro1 function and activity could alleviate mitochondrial dysfunction, reducing oxidative stress-mediated damage, and improving pancreatic β-cell survival. Targeting Miro1 with small molecules or gene-editing approaches could provide effective strategies for restoring cell function and insulin secretion in diabetic individuals. Exploring the deeper knowledge of Miro1 functions and interactions could lead to novel therapeutic advances in T2DM management.
Collapse
Affiliation(s)
- Srikanth Kavyashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India.
| |
Collapse
|
5
|
Zavarzadeh PG, Panchal K, Bishop D, Gilbert E, Trivedi M, Kee T, Ranganathan S, Arunagiri A. Exploring proinsulin proteostasis: insights into beta cell health and diabetes. Front Mol Biosci 2025; 12:1554717. [PMID: 40109403 PMCID: PMC11919908 DOI: 10.3389/fmolb.2025.1554717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Proinsulin misfolding is central to diabetes. This review examines the cellular mechanisms regulating proinsulin proteostasis in pancreatic β-cells, encompassing genetic factors such as insulin gene mutations, and exploring the roles of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), ER redox balance, mitochondrial function, and the influence of extrinsic factors. Mutations in the INS gene, particularly those affecting cysteine residues, impair folding and disulfide bond formation, often exhibiting dominant-negative effects on the wild-type proinsulin. The importance of ER quality control mechanisms, including chaperones and oxidoreductases, in facilitating proper folding and degradation of misfolded proinsulin is emphasized. Disruptions in these systems, due to genetic mutations, ER stress, or impaired ER-to-Golgi trafficking, lead to proinsulin accumulation and β-cell dysfunction. The unfolded protein response (UPR), especially the PERK and IRE1α-XBP1 pathways, emerges as a central regulator of protein synthesis and ER stress management. The review also discusses the role of mitochondrial health, ER redox state, and extrinsic factors such as diet and medications in influencing proinsulin proteostasis. Finally, the structural insights from NMR and molecular dynamics simulations are discussedhighlighting the dynamics of misfolding and underscoring the importance of disulfide bonds. These mechanistic insights suggest innovative strategies targeting thiol/disulfide redox systems in cells to mitigate protein misfolding diseases including diabetes.
Collapse
Affiliation(s)
| | - Kathigna Panchal
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Dylan Bishop
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Elizabeth Gilbert
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Mahi Trivedi
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Tovaria Kee
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | | | - Anoop Arunagiri
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
6
|
Hilan G, Daniel G, Collak F, Sabatino D, Willmore W. Cancer-Targeting Peptides Functionalized With Polyarginine Enables GRP78-Dependent Cell Uptake and siRNA Delivery Within the DU145 Prostate Cancer Cells. J Pept Sci 2025; 31:e70007. [PMID: 39967318 PMCID: PMC11836551 DOI: 10.1002/psc.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
This study investigated a peptide-based GRP78-targeting strategy for short-interfering (si) RNA delivery in cancer cells. Synthetic fluorescein-labeled amphiphilic peptides composed of the hydrophobic cell surface (cs) GRP78-targeting and hydrophilic, polycationic arginine-rich cell penetrating peptides demonstrated GRP78-dependent cell uptake in the DU145 prostate cancer cells, and to a lesser extent in the non-cancerous human lung fibroblast WI-38 cell line. Mechanistic studies revealed energy-dependent GRP78 receptor-mediated endocytosis of the GRP78-targeting peptide with polyarginine (W1-R9). The cytosolic accumulation of this peptide underscored its potential utility in siRNA delivery. Peptide:siRNA complexes formed stably condensed nanoparticles, with calcium functioning as an ionic stabilizer and additive promoting endosomal siRNA escape for RNA interference (RNAi) activity. Preliminary peptide-based siRNA transfections in the DU145 cells demonstrated that GRP78 knockdown led to an interplay in between pro-survival and cell death outcomes under ER stress induction. Thus, the GRP78-targeting polyarginine peptides enables efficient cell uptake for specific siRNA delivery in the DU145 cells. This class of bio-active synthetic peptides is important for the investigation of cancer biology, leading to the innovation of cancer-targeted gene delivery and therapy approaches.
Collapse
Affiliation(s)
- George Hilan
- Department of BiologyCarleton UniversityOttawaONCanada
| | - Grace Daniel
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| | - Filiz Collak
- Department of BiologyCarleton UniversityOttawaONCanada
- Department of ChemistryCarleton UniversityOttawaONCanada
| | - David Sabatino
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| | - William G. Willmore
- Department of BiologyCarleton UniversityOttawaONCanada
- Department of ChemistryCarleton UniversityOttawaONCanada
- Institute of BiochemistryCarleton UniversityOttawaONCanada
| |
Collapse
|
7
|
Manikanta K, NaveenKumar SK, Hemshekhar M, Thushara RM, Mugesh G, Kemparaju K, Girish KS. Quercetin inhibits platelet activation and ER-stress mediated autophagy in response to extracellular histone. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156386. [PMID: 39842372 DOI: 10.1016/j.phymed.2025.156386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Cellular histones are DNA-binding nuclear proteins involved in chromatin remodelling and regulation of gene expression. However, extracellular histones act as damage-associated molecular patterns (DAMPs) and contribute to multiorgan damage in conditions with sepsis and diseases with acute critical illnesses. Alongside, histones are associated with thrombocytopenia due to dysfunctional platelets that regulate hemostasis and thrombosis. There is no drug available to prevent histone-induced platelet toxicity. Therefore, we for the first time examined quercetin (QUE) as a novel therapeutic to protect histone-induced platelet toxicity. PURPOSE To delineate how histones induce platelet toxicity and investigate the protective efficacy of quercetin (QUE), a natural dietary phytochemical. STUDY DESIGN/METHOD Histone-treated platelets were evaluated for platelet aggregation/activation markers, various autophagy-related signaling proteins, and cytotoxicity in vitro. For the inhibition study, QUE and other standard inhibitors were pre-treated before stimulation with histones. Further, we injected histones into mice in the presence or absence of QUE and evaluated the tail bleeding, lung toxicity, and circulatory platelet stress markers. Additionally, QUE-treated mice were challenged for histone-primed Collagen-epinephrine-induced pulmonary thromboembolism. RESULT Extracellular histones induce platelet activation and aggregation by interacting with sialic acid in TLR1/2 or TLR4. Also, we have demonstrated for the first time that histones induce ER stress-mediated autophagy in platelets. QUE inhibited histone-induced platelet activation, aggregation, and ER-stress-mediated autophagy in response to histone treatment. Ex vivo experiments indicate that oral administration of QUE can safeguard platelets while concurrently mitigating their response to histone stimulation. In addition, quercetin increased the survival rates of histone-primed, collagen-epinephrine-induced acute pulmonary thromboembolism in mice. CONCLUSION In summary, this study demonstrated the beneficial effect of QUE in protecting platelets with possible implications for addressing histone-accelerated pathologies.
Collapse
Affiliation(s)
- Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Somanathapura K NaveenKumar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Mahadevappa Hemshekhar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Ram M Thushara
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India.
| |
Collapse
|
8
|
Yang C, Du Z, Mei L, Chen X, Liao Y, Ge L, Kang J, Gu Z, Fan X, Xu H. Influences of lead-based perovskite nanoparticles exposure on early development of human retina. J Nanobiotechnology 2025; 23:144. [PMID: 40001141 PMCID: PMC11863764 DOI: 10.1186/s12951-025-03245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Lead-based perovskite nanoparticles (Pb-PNPs) are widely utilized in the photovoltaic industry. However, due to their poor stability and high water solubility, lead often gets released into the environment, which can negatively impact the development of the central nervous system (CNS). As an extension of the CNS, the effects and mechanisms of Pb-PNPs on human retinal development have remained elusive. OBJECTIVES We aimed to investigate the effects of Pb-PNPs on human retinal development. METHODS Human embryonic stem cell-derived three-dimensional floating retinal organoids (hEROs) were established to simulate early retinal development. Using immunofluorescence staining, biological-transmission electron microscopy analysis, inductively coupled plasma-mass spectrometry, two-dimensional element distribution detection, and RNA sequencing, we evaluated and compared the toxicity of CsPbBr3 nanoparticles (a representative substance of Pb-PNPs) and Pb(AC)2 and investigated the toxicity-reducing effects of SiO2 encapsulation. RESULTS Our findings revealed that CsPbBr3 nanoparticles exposure resulted in a concentration-dependent decrease in the area and thickness of the neural retina in hEROs. Additionally, CsPbBr3 nanoparticles exposure hindered cell proliferation and promoted cell apoptosis while suppressing the retinal ganglion cell differentiation, an alteration that further led to the disruption of retinal structure. By contrast, CsPbBr3 nanoparticles exposure to hEROs was slightly less toxic than Pb(AC)2. Mechanistically, CsPbBr3 nanoparticles exposure activated endoplasmic reticulum stress, which promoted apoptosis by up-regulating Caspase-3 and inhibited retinal ganglion cell development by down-regulating Pax6. Interestingly, after coating CsPbBr3 nanoparticles with silica, it exhibited lower toxicities to hEROs by alleviating endoplasmic reticulum stress. CONCLUSION Overall, our study provides evidence of Pb-PNPs-induced developmental toxicity in the human retina, explores the potential mechanisms of CsPbBr3 nanoparticles' developmental toxicity, and suggests a feasible strategy to reduce toxicity.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhulin Du
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Linqiang Mei
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - You Liao
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Jiahui Kang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhanjun Gu
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China.
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaotang Fan
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
9
|
Li Y, Zhang Q, Liu X, Wang Y, Yang C, Wu Y, Xiao B, Feng Y, Wu A, Yi J, Wu J, Liang Z, Yuan Z. Citrinin-Induced Intestinal Onset of Pyroptosis via the IP3R1-GRP75-VDAC1 Complex-Mediated Mitochondrial Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40000072 DOI: 10.1021/acs.jafc.4c11218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Citrinin (CTN) is commonly found in animal feed and stored grains and poses a serious threat to human and animal health. Formation of the IP3R1-GRP75-VDAC1 complex has been shown to play a key role in intestinal defense against harmful stimuli, but the mechanism of its action in CTN-exposure-induced enterotoxicity is not clear. Therefore, the aim of this study was to investigate the role of the IP3R1-GRP75-VDAC1 complex in CTN-exposure-induced intestinal and IPEC-J2 monolayer cell damage in mice. It was shown that CTN exposure triggered intestinal cell pyroptosis and increased IP3R1-GRP75-VDAC1 complex formation as well as mitochondrial levels of calcium ions and mitochondrial reactive oxygen species (mtROS). And mtROS is considered to be a key factor in cellular pyroptosis. Therefore, the removal of mtROS by using Mito-Tempo was found to attenuate CTN-exposure-induced cellular pyroptosis but failed to attenuate mitochondrial calcium ion overload. However, silencing of GRP75 alleviated CTN-exposure-induced increases in the level of mtROS, mitochondrial calcium ions, and subsequent cellular pyroptosis. Therefore, this study confirms that CTN exposure induces cellular juxtaposition in intestinal tissues and points out that mitochondrial oxidative stress mediated by the IP3R1-GRP75-VDAC1 complex is a key mechanism by which CTN exposure triggers intestinal cellular pyroptosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Qike Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Xiaofang Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Bo Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yiya Feng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
- Institute of Yunnan Circular Agricultural Industry, Puer 665000, P. R. China
| | - Zengenni Liang
- Dongting Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P. R. China
- Yulushan Laboratory, Changsha 410128, P. R. China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, P. R. China
- Institute of Yunnan Circular Agricultural Industry, Puer 665000, P. R. China
| |
Collapse
|
10
|
Hernández-Velázquez ED, Granados-López AJ, López JA, Solorio-Alvarado CR. Multidrug Resistance Reversed by Maleimide Interactions. A Biological and Synthetic Overview for an Emerging Field. Chembiochem 2025; 26:e202400640. [PMID: 39383297 DOI: 10.1002/cbic.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Multidrug Resistance (MDR) can be considered one of the most frightening adaptation types in bacteria, fungi, protozoa, and eukaryotic cells. It allows the organisms to survive the attack of many drugs used in the daily basis. This forces the development of new and more complex, highly specific drugs to fight diseases. Given the high usage of medicaments, poor variation in active chemical cores, and self-medication, the appearance of MDR is more frequent each time, and has been established as a serious medical and social problem. Over the years it has been possible the identification of several genes and proteins responsible for MDR and with that the development of blockers of them to reach MDR reversion and try to avoid a global problem. These mechanisms also have been observed in cancer cells, and several calcium channel blockers have been successful in MDR reversion, and the maleimide can be found included in them. In this review, we explore particularly the tree main proteins involved in cancer chemoresistance, MRP1 (encoded by ABCC1), BCRP (encoded by ABCG2) and P-gp (encoded by ABCB1). The participation of P-gp is remarkably important, and several aspects of its regulations are discussed. Additionally, we address the history, mechanisms, reversion efforts, and we specifically focused on the maleimide synthesis as MDR-reversers in co-administration, as well as on how their biological applications are imperative to expand the available information and explore a very plausible MDR reversion source.
Collapse
Affiliation(s)
- Edson D Hernández-Velázquez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| | | | - Jesús Adrián López
- Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, 98066, Zacatecas, México
| | - César R Solorio-Alvarado
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| |
Collapse
|
11
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2025; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
12
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 PMCID: PMC11920964 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
13
|
Silva NSM, Siebeneichler B, Oliveira CS, Dores-Silva PR, Borges JC. The regulation of the thermal stability and affinity of the HSPA5 (Grp78/BiP) by clients and nucleotides is modulated by domains coupling. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141034. [PMID: 39009203 DOI: 10.1016/j.bbapap.2024.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The HSPA5 protein (BiP/Grp78) serves as a pivotal chaperone in maintaining cellular protein quality control. As a member of the human HSP70 family, HSPA5 comprises two distinct domains: a nucleotide-binding domain (NBD) and a peptide-binding domain (PBD). In this study, we investigated the interdomain interactions of HSPA5, aiming to elucidate how these domains regulate its function as a chaperone. Our findings revealed that HSPA5-FL, HSPA5-T, and HSPA5-N exhibit varying affinities for ATP and ADP, with a noticeable dependency on Mg2+ for optimal interactions. Interestingly, in ADP assays, the presence of the metal ion seems to enhance NBD binding only for HSPA5-FL and HSPA5-T. Moreover, while the truncation of the C-terminus does not significantly impact the thermal stability of HSPA5, experiments involving MgATP underscore its essential role in mediating interactions and nucleotide hydrolysis. Thermal stability assays further suggested that the NBD-PBD interface enhances the stability of the NBD, more pronounced for HSPA5 than for the orthologous HSPA1A, and prevents self-aggregation through interdomain coupling. Enzymatic analyses indicated that the presence of PBD enhances NBD ATPase activity and augments its nucleotide affinity. Notably, the intrinsic chaperone activity of the PBD is dependent on the presence of the NBD, potentially due to the propensity of the PBD for self-oligomerization. Collectively, our data highlight the pivotal role of allosteric mechanisms in modulating thermal stability, nucleotide interaction, and ATPase activity of HSPA5, underscoring its significance in protein quality control within cellular environments.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| | - Bruna Siebeneichler
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Carlos S Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
14
|
Shi J, Sheng D, Guo J, Zhou F, Wu S, Tang H. Identification of BiP as a temperature sensor mediating temperature-induced germline sex reversal in C. elegans. EMBO J 2024; 43:4020-4048. [PMID: 39134659 PMCID: PMC11405683 DOI: 10.1038/s44318-024-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024] Open
Abstract
Sex determination in animals is not only determined by karyotype but can also be modulated by environmental cues like temperature via unclear transduction mechanisms. Moreover, in contrast to earlier views that sex may exclusively be determined by either karyotype or temperature, recent observations suggest that these factors rather co-regulate sex, posing another mechanistic mystery. Here, we discovered that certain wild-isolated and mutant C. elegans strains displayed genotypic germline sex determination (GGSD), but with a temperature-override mechanism. Further, we found that BiP, an ER chaperone, transduces temperature information into a germline sex-governing signal, thereby enabling the coexistence of GGSD and temperature-dependent germline sex determination (TGSD). At the molecular level, increased ER protein-folding requirements upon increased temperatures lead to BiP sequestration, resulting in ERAD-dependent degradation of the oocyte fate-driving factor, TRA-2, thus promoting male germline fate. Remarkably, experimentally manipulating BiP or TRA-2 expression allows to switch between GGSD and TGSD. Physiologically, TGSD allows C. elegans hermaphrodites to maintain brood size at warmer temperatures. Moreover, BiP can also influence germline sex determination in a different, non-hermaphroditic nematode species. Collectively, our findings identify thermosensitive BiP as a conserved temperature sensor in TGSD, and provide mechanistic insights into the transition between GGSD and TGSD.
Collapse
Affiliation(s)
- Jing Shi
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Danli Sheng
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jie Guo
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fangyuan Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Shaofeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Hongyun Tang
- Fudan University, 200433, Shanghai, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Niu H, Maruoka M, Noguchi Y, Kosako H, Suzuki J. Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat Commun 2024; 15:7566. [PMID: 39217145 PMCID: PMC11366033 DOI: 10.1038/s41467-024-51939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.
Collapse
Affiliation(s)
- Han Niu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
16
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
17
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
18
|
Pontisso I, Ornelas-Guevara R, Chevet E, Combettes L, Dupont G. Gradual ER calcium depletion induces a progressive and reversible UPR signaling. PNAS NEXUS 2024; 3:pgae229. [PMID: 38933930 PMCID: PMC11200134 DOI: 10.1093/pnasnexus/pgae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The unfolded protein response (UPR) is a widespread signal transduction pathway triggered by endoplasmic reticulum (ER) stress. Because calcium (Ca2+) is a key factor in the maintenance of ER homeostasis, massive Ca2+ depletion of the ER is a potent inducer of ER stress. Although moderate changes in ER Ca2+ drive the ubiquitous Ca2+ signaling pathways, a possible incremental relationship between UPR activation and Ca2+ changes has yet to be described. Here, we determine the sensitivity and time-dependency of activation of the three ER stress sensors, inositol-requiring protein 1 alpha (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 alpha (ATF6α) in response to controlled changes in the concentration of ER Ca2+ in human cultured cells. Combining Ca2+ imaging, fluorescence recovery after photobleaching experiments, biochemical analyses, and mathematical modeling, we uncover a nonlinear rate of activation of the IRE1α branch of UPR, as compared to the PERK and ATF6α branches that become activated gradually with time and are sensitive to more important ER Ca2+ depletions. However, the three arms are all activated within a 1 h timescale. The model predicted the deactivation of PERK and IRE1α upon refilling the ER with Ca2+. Accordingly, we showed that ER Ca2+ replenishment leads to the complete reversion of IRE1α and PERK phosphorylation in less than 15 min, thus revealing the highly plastic character of the activation of the upstream UPR sensors. In conclusion, our results reveal a dynamic and dose-sensitive Ca2+-dependent activation/deactivation cycle of UPR induction, which could tightly control cell fate upon acute and/or chronic stress.
Collapse
Affiliation(s)
- Ilaria Pontisso
- U1282 “Calcium Signaling and Microbial Infections”, Institut de Biologie Intégrative de la Cellule (I2BC)—Université Paris-Saclay, Gif-Sur-Yvette 91190, France
| | - Roberto Ornelas-Guevara
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Eric Chevet
- Inserm U1242 Université de Rennes, 35000 Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Laurent Combettes
- U1282 “Calcium Signaling and Microbial Infections”, Institut de Biologie Intégrative de la Cellule (I2BC)—Université Paris-Saclay, Gif-Sur-Yvette 91190, France
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
19
|
Nguyen K, Tang J, Cho S, Ying F, Sung HK, Jahng JW, Pantopoulos K, Sweeney G. Salubrinal promotes phospho-eIF2α-dependent activation of UPR leading to autophagy-mediated attenuation of iron-induced insulin resistance. Mol Metab 2024; 83:101921. [PMID: 38527647 PMCID: PMC11027572 DOI: 10.1016/j.molmet.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Identification of new mechanisms mediating insulin sensitivity is important to allow validation of corresponding therapeutic targets. In this study, we first used a cellular model of skeletal muscle cell iron overload and found that endoplasmic reticulum (ER) stress and insulin resistance occurred after iron treatment. Insulin sensitivity was assessed using cells engineered to express an Akt biosensor, based on nuclear FoxO localization, as well as western blotting for insulin signaling proteins. Use of salubrinal to elevate eIF2α phosphorylation and promote the unfolded protein response (UPR) attenuated iron-induced insulin resistance. Salubrinal induced autophagy flux and its beneficial effects on insulin sensitivity were not observed in autophagy-deficient cells generated by overexpressing a dominant-negative ATG5 mutant or via knockout of ATG7. This indicated the beneficial effect of salubrinal-induced UPR activation was autophagy-dependent. We translated these observations to an animal model of systemic iron overload-induced skeletal muscle insulin resistance where administration of salubrinal as pretreatment promoted eIF2α phosphorylation, enhanced autophagic flux in skeletal muscle and improved insulin responsiveness. Together, our results show that salubrinal elicited an eIF2α-autophagy axis leading to improved skeletal muscle insulin sensitivity both in vitro and in mice.
Collapse
Affiliation(s)
- Khang Nguyen
- Department of Biology, York University, Toronto, ON, Canada
| | - Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | - Sungji Cho
- Department of Biology, York University, Toronto, ON, Canada
| | - Fan Ying
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
20
|
Cai C, Tu J, Najarro J, Zhang R, Fan H, Zhang FQ, Li J, Xie Z, Su R, Dong L, Arellano N, Ciboddo M, Elf SE, Gao X, Chen J, Wu R. NRAS Mutant Dictates AHCYL1-Governed ER Calcium Homeostasis for Melanoma Tumor Growth. Mol Cancer Res 2024; 22:386-401. [PMID: 38294692 PMCID: PMC10987265 DOI: 10.1158/1541-7786.mcr-23-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma. IMPLICATIONS Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.
Collapse
Affiliation(s)
- Chufan Cai
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayi Tu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jeronimo Najarro
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rukang Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hao Fan
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Freya Q. Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiacheng Li
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Zhicheng Xie
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Nicole Arellano
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Michele Ciboddo
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shannon E. Elf
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Xue Gao
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Current address: Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jing Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Wu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Mukherjee M, Mukherjee C, Ghosh V, Jain A, Sadhukhan S, Dagar S, Sahu BS. Endoplasmic reticulum stress impedes regulated secretion by governing key exocytotic and granulogenic molecular switches. J Cell Sci 2024; 137:jcs261257. [PMID: 38348894 DOI: 10.1242/jcs.261257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.
Collapse
Affiliation(s)
- Mohima Mukherjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | | - Vinayak Ghosh
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Aamna Jain
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Souren Sadhukhan
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Sushma Dagar
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | |
Collapse
|
22
|
Neidhardt L, Cloots E, Friemel N, Weiss CAM, Harding HP, McLaughlin SH, Janssens S, Ron D. The IRE1β-mediated unfolded protein response is repressed by the chaperone AGR2 in mucin producing cells. EMBO J 2024; 43:719-753. [PMID: 38177498 PMCID: PMC10907699 DOI: 10.1038/s44318-023-00014-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Effector mechanisms of the unfolded protein response (UPR) in the endoplasmic reticulum (ER) are well-characterised, but how ER proteostasis is sensed is less well understood. Here, we exploited the beta isoform of the UPR transducer IRE1, that is specific to mucin-producing cells in order to gauge the relative regulatory roles of activating ligands and repressing chaperones of the specialised ER of goblet cells. Replacement of the stress-sensing luminal domain of endogenous IRE1α in CHO cells (normally expressing neither mucin nor IRE1β) with the luminal domain of IRE1β deregulated basal IRE1 activity. The mucin-specific chaperone AGR2 repressed IRE1 activity in cells expressing the domain-swapped IRE1β/α chimera, but had no effect on IRE1α. Introduction of the goblet cell-specific client MUC2 reversed AGR2-mediated repression of the IRE1β/α chimera. In vitro, AGR2 actively de-stabilised the IRE1β luminal domain dimer and formed a reversible complex with the inactive monomer. These features of the IRE1β-AGR2 couple suggest that active repression of IRE1β by a specialised mucin chaperone subordinates IRE1 activity to a proteostatic challenge unique to goblet cells, a challenge that is otherwise poorly recognised by the pervasive UPR transducers.
Collapse
Affiliation(s)
- Lisa Neidhardt
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Eva Cloots
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Natalie Friemel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Caroline A M Weiss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sophie Janssens
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
23
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. Cell Commun Signal 2024; 22:39. [PMID: 38225580 PMCID: PMC10789007 DOI: 10.1186/s12964-023-01461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). METHODS We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 µM acetaldehyde (ALD), or e-Cig (1.75 µg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. RESULTS ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. CONCLUSION Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
Affiliation(s)
- Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Namdev Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
24
|
Segura-Quezada LA, Hernández-Velázquez ED, Corrales-Escobosa AR, de León-Solis C, Solorio-Alvarado CR. Ningalins, Pyrrole-Bearing Metabolites Isolated from Didemnum spp. Synthesis and MDR-Reversion Activity in Cancer Therapy. Chem Biodivers 2024; 21:e202300883. [PMID: 38010267 DOI: 10.1002/cbdv.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multi-Drug Resistance (MDR) is one of the most frequent problems observed in the course of cancer chemotherapy. Cells under treatment, tend to develop survival mechanisms to drug-action thus generating drug-resistance. One of the most important mechanism to get it is the over expression of P-gp glycoprotein, which acts as an efflux-pump releasing the drug outside of the cancer cell. A strategy for a succesfull treatment consists in the co-administration of one compound that acts against P-gp and another which acts against the cell during chemotherapy. Ningalins are pyrrole-containing naturally occurring compounds isolated mainly from the marine tunicate Didemnum spp and also they are some of the top reversing agents in MDR treatment acting on P-gp. Considering the relevance displayed for some of these isolated alkaloids or their core as a drug for co-administration in cancer therapy, all the total synthesis described to date for the members of ningalins family are reviewed herein.
Collapse
Affiliation(s)
- Luis A Segura-Quezada
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Edson D Hernández-Velázquez
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Alma R Corrales-Escobosa
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Claudia de León-Solis
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas., Universidad Mariano Gálvez, Guatemala, Guatemala
| | - César R Solorio-Alvarado
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| |
Collapse
|
25
|
Kohler A, Kohler V. Better Together: Interorganellar Communication in the Regulation of Proteostasis. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241272245. [PMID: 39385949 PMCID: PMC11462569 DOI: 10.1177/25152564241272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 10/12/2024]
Abstract
An extensive network of chaperones and folding factors is responsible for maintaining a functional proteome, which is the basis for cellular life. The underlying proteostatic mechanisms are not isolated within organelles, rather they are connected over organellar borders via signalling processes or direct association via contact sites. This review aims to provide a conceptual understanding of proteostatic mechanisms across organelle borders, not focussing on individual organelles. This discussion highlights the precision of these finely tuned systems, emphasising the complicated balance between cellular protection and adaptation to stress. In this review, we discuss widely accepted aspects while shedding light on newly discovered perspectives.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Verena Kohler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
26
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. RESEARCH SQUARE 2023:rs.3.rs-3552555. [PMID: 38014253 PMCID: PMC10680944 DOI: 10.21203/rs.3.rs-3552555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). Methods We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 μM acetaldehyde (ALD), or e-Cig (1.75μg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. Results ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. Conclusion Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
|
27
|
Sakai‐Takemura F, Saito F, Nogami K, Maruyama Y, Elhussieny A, Matsumura K, Takeda S, Aoki Y, Miyagoe‐Suzuki Y. Antioxidants restore store-operated Ca 2+ entry in patient-iPSC-derived myotubes with tubular aggregate myopathy-associated Ile484ArgfsX21 STIM1 mutation via upregulation of binding immunoglobulin protein. FASEB Bioadv 2023; 5:453-469. [PMID: 37936920 PMCID: PMC10626159 DOI: 10.1096/fba.2023-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.
Collapse
Affiliation(s)
- Fusako Sakai‐Takemura
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Fumiaki Saito
- Department of Neurology, School of MedicineTeikyo UniversityTokyoJapan
| | - Ken'ichiro Nogami
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Neurological Institute, Graduate School of Medical ScienceKyushu UniversityFukuokaJapan
| | - Yusuke Maruyama
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Gene Regulation, Faculty of Pharmaceutical ScienceTokyo University of ScienceChibaJapan
| | - Ahmed Elhussieny
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Faculty of MedicineMinia UniversityMiniaEgypt
| | | | - Shin'ichi Takeda
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuko Miyagoe‐Suzuki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
28
|
Pathak T, Benson JC, Johnson MT, Xin P, Abdelnaby AE, Walter V, Koltun WA, Yochum GS, Hempel N, Trebak M. Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560521. [PMID: 37873177 PMCID: PMC10592933 DOI: 10.1101/2023.10.02.560521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The endoplasmic reticulum (ER) stores large amounts of calcium (Ca2+), and the controlled release of ER Ca2+ regulates a myriad of cellular functions. Although altered ER Ca2+ homeostasis is known to induce ER stress, the mechanisms by which ER Ca2+ imbalance activate ER stress pathways are poorly understood. Stromal-interacting molecules STIM1 and STIM2 are two structurally homologous ER-resident Ca2+ sensors that synergistically regulate Ca2+ influx into the cytosol through Orai Ca2+ channels for subsequent signaling to transcription and ER Ca2+ refilling. Here, we demonstrate that reduced STIM2, but not STIM1, in colorectal cancer (CRC) is associated with poor patient prognosis. Loss of STIM2 causes SERCA2-dependent increase in ER Ca2+, increased protein translation and transcriptional and metabolic rewiring supporting increased tumor size, invasion, and metastasis. Mechanistically, STIM2 loss activates cMyc and the PERK/ATF4 branch of ER stress in an Orai-independent manner. Therefore, STIM2 and PERK/ATF4 could be exploited for prognosis or in targeted therapies to inhibit CRC tumor growth and metastasis.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - J. Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- UPMC Hillman Cancer Center. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Martin T. Johnson
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Vonn Walter
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
- Penn State Cancer Institute. The Pennsylvania State University College of Medicine, Hershey, United States
| | - Walter A. Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, United States
| | - Gregory S. Yochum
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, United States
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, United States
| | - Nadine Hempel
- UPMC Hillman Cancer Center. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- UPMC Hillman Cancer Center. University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
29
|
Cheatham AM, Sharma NR, Satpute-Krishnan P. Competition for calnexin binding regulates secretion and turnover of misfolded GPI-anchored proteins. J Cell Biol 2023; 222:e202108160. [PMID: 37702712 PMCID: PMC10499038 DOI: 10.1083/jcb.202108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/19/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In mammalian cells, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are cleared out of the ER to the Golgi via a constitutive and a stress-inducible pathway called RESET. From the Golgi, misfolded GPI-APs transiently access the cell surface prior to rapid internalization for lysosomal degradation. What regulates the release of misfolded GPI-APs for RESET during steady-state conditions and how this release is accelerated during ER stress is unknown. Using mutants of prion protein or CD59 as model misfolded GPI-APs, we demonstrate that inducing calnexin degradation or upregulating calnexin-binding glycoprotein expression triggers the release of misfolded GPI-APs for RESET. Conversely, blocking protein synthesis dramatically inhibits the dissociation of misfolded GPI-APs from calnexin and subsequent turnover. We demonstrate an inverse correlation between newly synthesized calnexin substrates and RESET substrates that coimmunoprecipitate with calnexin. These findings implicate competition by newly synthesized substrates for association with calnexin as a key factor in regulating the release of misfolded GPI-APs from calnexin for turnover via the RESET pathway.
Collapse
Affiliation(s)
- Amber M. Cheatham
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nishi Raj Sharma
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
30
|
Li Y, Li K, Pan T, Xie Q, Cheng Y, Wu X, Xu R, Liu X, Liu L, Gao J, Yuan W, Qu X, Cui S. Translocation of IGF-1R in endoplasmic reticulum enhances SERCA2 activity to trigger Ca 2+ER perturbation in hepatocellular carcinoma. Acta Pharm Sin B 2023; 13:3744-3755. [PMID: 37719369 PMCID: PMC10501870 DOI: 10.1016/j.apsb.2023.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
The well-known insulin-like growth factor 1 (IGF1)/IGF-1 receptor (IGF-1R) signaling pathway is overexpressed in many tumors, and is thus an attractive target for cancer treatment. However, results have often been disappointing due to crosstalk with other signals. Here, we report that IGF-1R signaling stimulates the growth of hepatocellular carcinoma (HCC) cells through the translocation of IGF-1R into the ER to enhance sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2) activity. In response to ligand binding, IGF-1Rβ is translocated into the ER by β-arrestin2 (β-arr2). Mass spectrometry analysis identified SERCA2 as a target of ER IGF-1Rβ. SERCA2 activity is heavily dependent on the increase in ER IGF-1Rβ levels. ER IGF-1Rβ phosphorylates SERCA2 on Tyr990 to enhance its activity. Mutation of SERCA2-Tyr990 disrupted the interaction of ER IGF-1Rβ with SERCA2, and therefore ER IGF-1Rβ failed to promote SERCA2 activity. The enhancement of SERCA2 activity triggered Ca2+ER perturbation, leading to an increase in autophagy. Thapsigargin blocked the interaction between SERCA2 and ER IGF-1Rβ and therefore SERCA2 activity, resulting in inhibition of HCC growth. In conclusion, the translocation of IGF-1R into the ER triggers Ca2+ER perturbation by enhancing SERCA2 activity through phosphorylating Tyr990 in HCC.
Collapse
Affiliation(s)
- Yanan Li
- Department of Toxicology and Sanitary Chemistry, Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Keqin Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ting Pan
- Department of Toxicology and Sanitary Chemistry, Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qiaobo Xie
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuyao Cheng
- Department of Toxicology and Sanitary Chemistry, Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xinfeng Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rui Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Li Liu
- Department of Pharmacology, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Jiangming Gao
- Department of Pharmacology, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Wenmin Yuan
- Department of Pharmacology, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuxiang Cui
- Department of Toxicology and Sanitary Chemistry, Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
31
|
Saito S, Mori K. Detection and Quantification of Calcium Ions in the Endoplasmic Reticulum and Cytoplasm of Cultured Cells Using Fluorescent Reporter Proteins and ImageJ Software. Bio Protoc 2023; 13:e4738. [PMID: 37638301 PMCID: PMC10450730 DOI: 10.21769/bioprotoc.4738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 08/29/2023] Open
Abstract
This protocol describes a method for detecting and quantifying calcium ions in the endoplasmic reticulum (ER) and cytoplasm of cultured cells using fluorescent reporter proteins and ImageJ software. Genetically engineered fluorescent reporter proteins, such as G-CEPIA1er and GCaMP6f, localize to intracellular regions of interest (i.e., ER and cytoplasm) and emit green fluorescence upon binding to calcium ions. In this way, the fluorescence brightness of cells transfected with expression vectors for these reporters reflects the calcium ion concentration in each intracellular region. Here, we describe procedures for observing cultured cells expressing these fluorescent reporters under a fluorescence microscope, analyzing the obtained image using the free image analysis software ImageJ (https://imagej.net/ij/index.html), and determining the average fluorescence brightness of multiple cells present in the image. The current method allows us to quickly and easily quantify calcium ions on an image containing multiple cells and to determine whether there are relative differences in intracellular calcium ion concentration among experiments with different conditions. Key features Detection and quantification of calcium ions in the ER and cytoplasm using fluorescent reporter proteins Quick and easy verification of measurement results using ImageJ Simultaneous comparison between various experimental conditions (drug treatment, mutants, etc.).
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Zhao S, Feng H, Jiang D, Yang K, Wang ST, Zhang YX, Wang Y, Liu H, Guo C, Tang TS. ER Ca 2+ overload activates the IRE1α signaling and promotes cell survival. Cell Biosci 2023; 13:123. [PMID: 37400935 DOI: 10.1186/s13578-023-01062-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Maintaining homeostasis of Ca2+ stores in the endoplasmic reticulum (ER) is crucial for proper Ca2+ signaling and key cellular functions. Although Ca2+ depletion has been known to cause ER stress which in turn activates the unfolded protein response (UPR), how UPR sensors/transducers respond to excess Ca2+ when ER stores are overloaded remain largely unclear. RESULTS Here, we report for the first time that overloading of ER Ca2+ can directly sensitize the IRE1α-XBP1 axis. The overloaded ER Ca2+ in TMCO1-deficient cells can cause BiP dissociation from IRE1α, promote the dimerization and stability of the IRE1α protein, and boost IRE1α activation. Intriguingly, attenuation of the over-activated IRE1α-XBP1s signaling by a IRE1α inhibitor can cause a significant cell death in TMCO1-deficient cells. CONCLUSIONS Our data establish a causal link between excess Ca2+ in ER stores and the selective activation of IRE1α-XBP1 axis, underscoring an unexpected role of overload of ER Ca2+ in IRE1α activation and in preventing cell death.
Collapse
Affiliation(s)
- Song Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongfang Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Tong Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Svarcbahs R, Blossom SM, Baffoe-Bonnie HS, Trychta KA, Greer LK, Pickel J, Henderson MJ, Harvey BK. A transgenic mouse line for assaying tissue-specific changes in endoplasmic reticulum proteostasis. Transgenic Res 2023; 32:209-221. [PMID: 37133648 PMCID: PMC10195735 DOI: 10.1007/s11248-023-00349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Maintenance of calcium homeostasis is important for proper endoplasmic reticulum (ER) function. When cellular stress conditions deplete the high concentration of calcium in the ER, ER-resident proteins are secreted into the extracellular space in a process called exodosis. Monitoring exodosis provides insight into changes in ER homeostasis and proteostasis resulting from cellular stress associated with ER calcium dysregulation. To monitor cell-type specific exodosis in the intact animal, we created a transgenic mouse line with a Gaussia luciferase (GLuc)-based, secreted ER calcium-modulated protein, SERCaMP, preceded by a LoxP-STOP-LoxP (LSL) sequence. The Cre-dependent LSL-SERCaMP mice were crossed with albumin (Alb)-Cre and dopamine transporter (DAT)-Cre mouse lines. GLuc-SERCaMP expression was characterized in mouse organs and extracellular fluids, and the secretion of GLuc-SERCaMP in response to cellular stress was monitored following pharmacological depletion of ER calcium. In LSL-SERCaMP × Alb-Cre mice, robust GLuc activity was observed only in the liver and blood, whereas in LSL-SERCaMP × DAT-Cre mice, GLuc activity was seen in midbrain dopaminergic neurons and tissue samples innervated by dopaminergic projections. After calcium depletion, we saw increased GLuc signal in the plasma and cerebrospinal fluid collected from the Alb-Cre and DAT-Cre crosses, respectively. This mouse model can be used to investigate the secretion of ER-resident proteins from specific cell and tissue types during disease pathogenesis and may aid in the identification of therapeutics and biomarkers of disease.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sarah M Blossom
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Helena S Baffoe-Bonnie
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kathleen A Trychta
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lacey K Greer
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - James Pickel
- Transgenic Technology Core, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Mark J Henderson
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Brandon K Harvey
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
34
|
Fujii S, Ushioda R, Nagata K. Redox states in the endoplasmic reticulum directly regulate the activity of calcium channel, inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2023; 120:e2216857120. [PMID: 37216546 PMCID: PMC10235943 DOI: 10.1073/pnas.2216857120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/14/2023] [Indexed: 05/24/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are one of the two types of tetrameric ion channels that release calcium ion (Ca2+) from the endoplasmic reticulum (ER) into the cytosol. Ca2+ released via IP3Rs is a fundamental second messenger for numerous cell functions. Disturbances in the intracellular redox environment resulting from various diseases and aging interfere with proper calcium signaling, however, the details are unclear. Here, we elucidated the regulatory mechanisms of IP3Rs by protein disulfide isomerase family proteins localized in the ER by focusing on four cysteine residues residing in the ER lumen of IP3Rs. First, we revealed that two of the cysteine residues are essential for functional tetramer formation of IP3Rs. Two other cysteine residues, on the contrary, were revealed to be involved in the regulation of IP3Rs activity; its oxidation by ERp46 and the reduction by ERdj5 caused the activation and the inactivation of IP3Rs activity, respectively. We previously reported that ERdj5 can activate the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b) using its reducing activity [Ushioda et al., Proc. Natl. Acad. Sci. U.S.A. 113, E6055-E6063 (2016)]. Thus, we here established that ERdj5 exerts the reciprocal regulatory function for IP3Rs and SERCA2b by sensing the ER luminal Ca2+ concentration, which contributes to the calcium homeostasis in the ER.
Collapse
Affiliation(s)
- Shohei Fujii
- Laboratory of Molecular and Cellular Biology, Department of Frontier Life Sciences, Faculty of Life Science, Kyoto Sangyo University, Kyoto603-8555, Japan
| | - Ryo Ushioda
- Laboratory of Molecular and Cellular Biology, Department of Frontier Life Sciences, Faculty of Life Science, Kyoto Sangyo University, Kyoto603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto603-8555, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Department of Frontier Life Sciences, Faculty of Life Science, Kyoto Sangyo University, Kyoto603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto603-8555, Japan
- JT Biohistory Research Hall, Takatsuki City, Osaka569-1125, Japan
| |
Collapse
|
35
|
Cheng J, Zhang G, Deng T, Liu Z, Zhang M, Zhang P, Adeshakin FO, Niu X, Yan D, Wan X, Yu G. CD317 maintains proteostasis and cell survival in response to proteasome inhibitors by targeting calnexin for RACK1-mediated autophagic degradation. Cell Death Dis 2023; 14:333. [PMID: 37210387 DOI: 10.1038/s41419-023-05858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Unbalanced protein homeostasis (proteostasis) networks are frequently linked to tumorigenesis, making cancer cells more susceptible to treatments that target proteostasis regulators. Proteasome inhibition is the first licensed proteostasis-targeting therapeutic strategy, and has been proven effective in hematological malignancy patients. However, drug resistance almost inevitably develops, pressing for a better understanding of the mechanisms that preserve proteostasis in tumor cells. Here we report that CD317, a tumor-targeting antigen with a unique topology, was upregulated in hematological malignancies and preserved proteostasis and cell viability in response to proteasome inhibitors (PIs). Knocking down CD317 lowered Ca2+ levels in the endoplasmic reticulum (ER), promoting PIs-induced proteostasis failure and cell death. Mechanistically, CD317 interacted with calnexin (CNX), an ER chaperone protein that limits calcium refilling via the Ca2+ pump SERCA, thereby subjecting CNX to RACK1-mediated autophagic degradation. As a result, CD317 decreased the level of CNX protein, coordinating Ca2+ uptake and thus favoring protein folding and quality control in the ER lumen. Our findings reveal a previously unrecognized role of CD317 in proteostasis control and imply that CD317 could be a promising target for resolving PIs resistance in the clinic.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Mengqi Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Funmilayo O Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Xiangyun Niu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Guang Yu
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
36
|
Kotler JLM, Street TO. Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System. Annu Rev Biophys 2023; 52:509-524. [PMID: 37159299 DOI: 10.1146/annurev-biophys-111622-091309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Hsp40, Hsp70, and Hsp90 chaperone families are ancient, highly conserved, and critical to cellular protein homeostasis. Hsp40 chaperones can transfer their protein clients to Hsp70, and Hsp70 can transfer clients to Hsp90, but the functional benefits of these transfers are unclear. Recent structural and mechanistic work has opened up the possibility of uncovering how Hsp40, Hsp70, and Hsp90 work together as unified system. In this review, we compile mechanistic data on the ER J-domain protein 3 (ERdj3) (an Hsp40), BiP (an Hsp70), and Grp94 (an Hsp90) chaperones within the endoplasmic reticulum; what is known about how these chaperones work together; and gaps in this understanding. Using calculations, we examine how client transfer could impact the solubilization of aggregates, the folding of soluble proteins, and the triage decisions by which proteins are targeted for degradation. The proposed roles of client transfer among Hsp40-Hsp70-Hsp90 chaperones are new hypotheses, and we discuss potential experimental tests of these ideas.
Collapse
Affiliation(s)
- Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
37
|
Kumar A, Gupta R, Rashid H, Bhat AM, Sharma RR, Naikoo SH, Kaur S, Tasduq SA. Synthesis, molecular docking, and biological evaluation of [3,2- b]indole fused 18β-glycyrrhetinic acid derivatives against skin melanoma. RSC Adv 2023; 13:11130-11141. [PMID: 37056972 PMCID: PMC10086573 DOI: 10.1039/d2ra08023k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/19/2023] [Indexed: 04/15/2023] Open
Abstract
Melanoma, the most serious yet uncommon type of cancer, originates in melanocytes. Risk factors include UV radiation, genetic factors, tanning lamps and beds. Here, we described the synthesis and selective anti melanoma activity of [3,2-b]indole fused 18β-glycyrrhetinic acid, a derivative of 18β-glycyrrhetinic acid in murine B16F10 and A375 human melanoma cell lines. Among the 14 molecules, GPD-12 showed significant selective cytotoxic activity against A375 and B16F10 cell lines with IC50 of 13.38 μM and 15.20 μM respectively. GPD 12 induced the formation of reactive oxygen species in A375 cells that could trigger oxidative stress mediated cell death as is evident from the increased expression of apoptosis related proteins such as caspase-9 and caspase-3 and the increased ratio of Bax to Bcl2. The results showed that GPD 12 can be used as an effective therapeutic agent against melanoma.
Collapse
Affiliation(s)
- Amit Kumar
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 Jammu and Kashmir India
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar-143005 India
| | - Ragni Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Haroon Rashid
- Sher-e-Kashmir Institute of Medical Sciences Soura Srinagar-190011 Jammu and Kashmir India
| | - Aalim Maqsood Bhat
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Raghu Rai Sharma
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Shahid Hussain Naikoo
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar-143005 India
| | - Sheikh Abdullah Tasduq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
38
|
Zimmermann T, Staebler S, Taudte RV, Ünüvar S, Grösch S, Arndt S, Karrer S, Fromm MF, Bosserhoff AK. Cold Atmospheric Plasma Triggers Apoptosis via the Unfolded Protein Response in Melanoma Cells. Cancers (Basel) 2023; 15:cancers15041064. [PMID: 36831408 PMCID: PMC9954601 DOI: 10.3390/cancers15041064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cold atmospheric plasma (CAP) describes a partially ionized gas carrying large amounts of reactive oxygen (ROS) and nitrogen species (RNS). Numerous studies reported strong antitumor activity of CAP, thus rendering it a promising approach for tumor therapy. Although several cellular mechanisms of its cytotoxicity were identified in recent years, the exact molecular effects and contributing signaling pathways are yet to be discovered. We discovered a strong activation of unfolded protein response (UPR) after CAP treatment with increased C/EBP homologous protein (CHOP) expression, which was mainly caused by protein misfolding and calcium loss in the endoplasmic reticulum. In addition, both ceramide level and ceramide metabolism were reduced after CAP treatment, which was then linked to the UPR activation. Pharmacological inhibition of ceramide metabolism resulted in sensitization of melanoma cells for CAP both in vitro and ex vivo. This study identified a novel mechanism of CAP-induced apoptosis in melanoma cells and thereby contributes to its potential application in tumor therapy.
Collapse
Affiliation(s)
- Tom Zimmermann
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - R. Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Core Facility Metabolomics/Mass Spectrometry, Philipps University Marburg, 35043 Marburg, Germany
| | - Sumeyya Ünüvar
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
39
|
Shi Y, Jin X, Wu S, Liu J, Zhang H, Cai X, Yang Y, Zhang X, Wei J, Luo M, Zhou H, Zhou H, Huang A, Wang D. Release of hepatitis B virions is positively regulated by glucose-regulated protein 78 through direct interaction with preS1. J Med Virol 2023; 95:e28271. [PMID: 36321566 PMCID: PMC10107996 DOI: 10.1002/jmv.28271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the mechanism of hepatitis B virus (HBV)-enveloped particle release. Specifically, we used preS1 as a bait protein to screen host proteins using mass spectroscopy, with the results of immunofluorescence, western blot, co-immunoprecipitation, isothermal titration calorimetry, and pull-down assays identifying glucose-regulated protein (GRP)78 as a specific target for preS1 binding. We employed transcriptome sequencing, enzyme-linked immunosorbent assays, and particle gel assays to investigate the mechanism of GRP78-mediated positive regulation of HBV-enveloped particle release. Additionally, we performed phage-display, surface plasmon resonance, and molecular-docking assays to assess peptides inhibiting enveloped-particle release. We found that HBV upregulated GRP78 expression in liver cell lines and the serum of patients with chronic hepatitis B. Furthermore, GRP78 promoted the release of HBV-enveloped particles in vitro and in vivo within an HBV transgenic mouse model. Moreover, we identified interactions of preS1 peptides with GRP78 via hydrogen bonding and hydrophobic interactions, which effectively inhibited its interaction with HBV-enveloped particles and their subsequent release. These findings provide novel insights regarding HBV virion release, and demonstrated that GRP78 interacted with preS1 to positively regulate the release of HBV-enveloped particles, suggesting GRP78 as a potential therapeutic target for inhibiting HBV infection.
Collapse
Affiliation(s)
- Yueyuan Shi
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, The People's Hospital of Yubei District of Chongqing City, Yubei, Chongqing, China
| | - Xin Jin
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, The Second Hospital of Harbin, Harbin City, Heilongjiang Province, China
| | - Shuang Wu
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an City, Shanxi Province, China
| | - Junye Liu
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shanxi Province, China
| | - Hongpeng Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,Department of Blood Transfusion, Women and Children's Hospital of Chongqing Medical University, Yubei, Chongqing, China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yuan Yang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Xiang Zhang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Jie Wei
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Miao Luo
- Department of Clinical Laboratory, The People's Hospital of Yubei District of Chongqing City, Yubei, Chongqing, China
| | - Hua Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Yuzhong, Chongqing, China.,College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
40
|
Saito S, Ishikawa T, Ninagawa S, Okada T, Mori K. A motor neuron disease-associated mutation produces non-glycosylated Seipin that induces ER stress and apoptosis by inactivating SERCA2b. eLife 2022; 11:74805. [PMID: 36444643 PMCID: PMC9708084 DOI: 10.7554/elife.74805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/06/2022] [Indexed: 11/30/2022] Open
Abstract
A causal relationship between endoplasmic reticulum (ER) stress and the development of neurodegenerative diseases remains controversial. Here, we focused on Seipinopathy, a dominant motor neuron disease, based on the finding that its causal gene product, Seipin, is a protein that spans the ER membrane twice. Gain-of-function mutations of Seipin produce non-glycosylated Seipin (ngSeipin), which was previously shown to induce ER stress and apoptosis at both cell and mouse levels albeit with no clarified mechanism. We found that aggregation-prone ngSeipin dominantly inactivated SERCA2b, the major calcium pump in the ER, and decreased the calcium concentration in the ER, leading to ER stress and apoptosis in human colorectal carcinoma-derived cells (HCT116). This inactivation required oligomerization of ngSeipin and direct interaction of the C-terminus of ngSeipin with SERCA2b, and was observed in Seipin-deficient neuroblastoma (SH-SY5Y) cells expressing ngSeipin at an endogenous protein level. Our results thus provide a new direction to the controversy noted above.
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Jäntti MH, Jackson SN, Kuhn J, Parkkinen I, Sree S, Hinkle JJ, Jokitalo E, Deterding LJ, Harvey BK. Palmitate and thapsigargin have contrasting effects on ER membrane lipid composition and ER proteostasis in neuronal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159219. [PMID: 35981704 PMCID: PMC9452468 DOI: 10.1016/j.bbalip.2022.159219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.
Collapse
Affiliation(s)
- Maria H Jäntti
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| | - Shelley N Jackson
- Translational Analytical Core, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jeffrey Kuhn
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ilmari Parkkinen
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Sreesha Sree
- Cell and Tissue Dynamics Research Programme, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Joshua J Hinkle
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Eija Jokitalo
- Cell and Tissue Dynamics Research Programme, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Kai F, Ou G, Tourdot RW, Stashko C, Gaietta G, Swift MF, Volkmann N, Long AF, Han Y, Huang HH, Northey JJ, Leidal AM, Viasnoff V, Bryant DM, Guo W, Wiita AP, Guo M, Dumont S, Hanein D, Radhakrishnan R, Weaver VM. ECM dimensionality tunes actin tension to modulate endoplasmic reticulum function and spheroid phenotypes of mammary epithelial cells. EMBO J 2022; 41:e109205. [PMID: 35880301 PMCID: PMC9434103 DOI: 10.15252/embj.2021109205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Guanqing Ou
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Richard W Tourdot
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Connor Stashko
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Niels Volkmann
- Scintillon InstituteSan DiegoCAUSA
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Alexandra F Long
- Tetrad Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
| | - Yulong Han
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Hector H Huang
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Jason J Northey
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Andrew M Leidal
- Department of PathologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Virgile Viasnoff
- Mechanobiology InstituteNational University of SingaporeSingapore CitySingapore
| | | | - Wei Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Arun P Wiita
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ming Guo
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Sophie Dumont
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Dorit Hanein
- Scintillon InstituteSan DiegoCAUSA
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Ravi Radhakrishnan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCAUSA
- UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
43
|
Spatial Proteomics Reveals Differences in the Cellular Architecture of Antibody-Producing CHO and Plasma Cell-Derived Cells. Mol Cell Proteomics 2022; 21:100278. [PMID: 35934186 PMCID: PMC9562429 DOI: 10.1016/j.mcpro.2022.100278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/18/2023] Open
Abstract
Most of the recombinant biotherapeutics employed today to combat severe illnesses, for example, various types of cancer or autoimmune diseases, are produced by Chinese hamster ovary (CHO) cells. To meet the growing demand of these pharmaceuticals, CHO cells are under constant development in order to enhance their stability and productivity. The last decades saw a shift from empirical cell line optimization toward rational cell engineering using a growing number of large omics datasets to alter cell physiology on various levels. Especially proteomics workflows reached new levels in proteome coverage and data quality because of advances in high-resolution mass spectrometry instrumentation. One type of workflow concentrates on spatial proteomics by usage of subcellular fractionation of organelles with subsequent shotgun mass spectrometry proteomics and machine learning algorithms to determine the subcellular localization of large portions of the cellular proteome at a certain time point. Here, we present the first subcellular spatial proteome of a CHO-K1 cell line producing high titers of recombinant antibody in comparison to the spatial proteome of an antibody-producing plasma cell-derived myeloma cell line. Both cell lines show colocalization of immunoglobulin G chains with chaperones and proteins associated in protein glycosylation within the endoplasmic reticulum compartment. However, we report differences in the localization of proteins associated to vesicle-mediated transport, transcription, and translation, which may affect antibody production in both cell lines. Furthermore, pairing subcellular localization data with protein expression data revealed elevated protein masses for organelles in the secretory pathway in plasma cell-derived MPC-11 (Merwin plasma cell tumor-11) cells. Our study highlights the potential of subcellular spatial proteomics combined with protein expression as potent workflow to identify characteristics of highly efficient recombinant protein-expressing cell lines. Data are available via ProteomeXchange with identifier PXD029115.
Collapse
|
44
|
Chidananda AH, Khandelwal R, Jhamkhindikar A, Pawar AD, Sharma AK, Sharma Y. Secretagogin is a Ca 2+-dependent stress-responsive chaperone that may also play a role in aggregation-based proteinopathies. J Biol Chem 2022; 298:102285. [PMID: 35870554 PMCID: PMC9425029 DOI: 10.1016/j.jbc.2022.102285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Secretagogin (SCGN) is a three-domain hexa-EF-hand Ca2+-binding protein that plays a regulatory role in the release of several hormones. SCGN is expressed largely in pancreatic β-cells, certain parts of the brain, and also in neuroendocrine tissues. The expression of SCGN is altered in several diseases, such as diabetes, cancers, and neurodegenerative disorders; however, the precise associations that closely link SCGN expression to such pathophysiologies are not known. In this work, we report that SCGN is an early responder to cellular stress, and SCGN expression is temporally upregulated by oxidative stress and heat shock. We show the overexpression of SCGN efficiently prevents cells from heat shock and oxidative damage. We further demonstrate that in the presence of Ca2+, SCGN efficiently prevents the aggregation of a broad range of model proteins in vitro. Small-angle X-ray scattering (BioSAXS) studies further reveal that Ca2+ induces the conversion of a closed compact apo-SCGN conformation into an open extended holo-SCGN conformation via multistate intermediates, consistent with the augmentation of chaperone activity of SCGN. Furthermore, isothermal titration calorimetry establishes that Ca2+ enables SCGN to bind α-synuclein and insulin, two target proteins of SCGN. Altogether, our data not only demonstrate that SCGN is a Ca2+-dependent generic molecular chaperone involved in protein homeostasis with broad substrate specificity but also elucidate the origin of its altered expression in several cancers. We describe a plausible mechanism of how perturbations in Ca2+ homeostasis and/or deregulated SCGN expression would hasten the process of protein misfolding, which is a feature of many aggregation-based proteinopathies.
Collapse
Affiliation(s)
- Amrutha H Chidananda
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditya Jhamkhindikar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India
| | - Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Indian Institute of Scientific and Education Research (IISER), Berhampur-760010, India
| | - Anand K Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India.
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Indian Institute of Scientific and Education Research (IISER), Berhampur-760010, India.
| |
Collapse
|
45
|
Ziaka K, van der Spuy J. The Role of Hsp90 in Retinal Proteostasis and Disease. Biomolecules 2022; 12:biom12070978. [PMID: 35883534 PMCID: PMC9313453 DOI: 10.3390/biom12070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Photoreceptors are sensitive neuronal cells with great metabolic demands, as they are responsible for carrying out visual phototransduction, a complex and multistep process that requires the exquisite coordination of a large number of signalling protein components. Therefore, the viability of photoreceptors relies on mechanisms that ensure a well-balanced and functional proteome that maintains the protein homeostasis, or proteostasis, of the cell. This review explores how the different isoforms of Hsp90, including the cytosolic Hsp90α/β, the mitochondrial TRAP1, and the ER-specific GRP94, are involved in the different proteostatic mechanisms of photoreceptors, and elaborates on Hsp90 function when retinal homeostasis is disturbed. In addition, several studies have shown that chemical manipulation of Hsp90 has significant consequences, both in healthy and degenerating retinae, and this can be partially attributed to the fact that Hsp90 interacts with important photoreceptor-associated client proteins. Here, the interaction of Hsp90 with the retina-specific client proteins PDE6 and GRK1 will be further discussed, providing additional insights for the role of Hsp90 in retinal disease.
Collapse
|
46
|
Melo EP, Konno T, Farace I, Awadelkareem MA, Skov LR, Teodoro F, Sancho TP, Paton AW, Paton JC, Fares M, Paulo PMR, Zhang X, Avezov E. Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP. Nat Commun 2022; 13:2501. [PMID: 35523806 PMCID: PMC9076838 DOI: 10.1038/s41467-022-30238-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/20/2022] [Indexed: 01/31/2023] Open
Abstract
Protein synthesis is supported by cellular machineries that ensure polypeptides fold to their native conformation, whilst eliminating misfolded, aggregation prone species. Protein aggregation underlies pathologies including neurodegeneration. Aggregates' formation is antagonised by molecular chaperones, with cytoplasmic machinery resolving insoluble protein aggregates. However, it is unknown whether an analogous disaggregation system exists in the Endoplasmic Reticulum (ER) where ~30% of the proteome is synthesised. Here we show that the ER of a variety of mammalian cell types, including neurons, is endowed with the capability to resolve protein aggregates under stress. Utilising a purpose-developed protein aggregation probing system with a sub-organellar resolution, we observe steady-state aggregate accumulation in the ER. Pharmacological induction of ER stress does not augment aggregates, but rather stimulate their clearance within hours. We show that this dissagregation activity is catalysed by the stress-responsive ER molecular chaperone - BiP. This work reveals a hitherto unknow, non-redundant strand of the proteostasis-restorative ER stress response.
Collapse
Affiliation(s)
- Eduardo Pinho Melo
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
- CCMAR-Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| | - Tasuku Konno
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Ilaria Farace
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Mosab Ali Awadelkareem
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Lise R Skov
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Fernando Teodoro
- CCMAR-Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Teresa P Sancho
- CCMAR-Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Matthew Fares
- Department of Chemistry, The Pennsylvania State University, University Park, State College, PA, USA
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, State College, PA, USA
| | - Edward Avezov
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
47
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
48
|
Elvira B, Vandenbempt V, Bauzá-Martinez J, Crutzen R, Negueruela J, Ibrahim H, Winder ML, Brahma MK, Vekeriotaite B, Martens PJ, Singh SP, Rossello F, Lybaert P, Otonkoski T, Gysemans C, Wu W, Gurzov EN. PTPN2 Regulates the Interferon Signaling and Endoplasmic Reticulum Stress Response in Pancreatic β-Cells in Autoimmune Diabetes. Diabetes 2022; 71:653-668. [PMID: 35044456 DOI: 10.2337/db21-0443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of β-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in β-cells, we generated PTPN2-deficient human stem cell-derived β-like and EndoC-βH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in β-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in β-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress-induced β-cell death. Our results postulate PTPN2 as a key protective factor in β-cells during inflammation and ER stress in autoimmune diabetes.
Collapse
Affiliation(s)
- Bernat Elvira
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Valerie Vandenbempt
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Raphaël Crutzen
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Negueruela
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew L Winder
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Beata Vekeriotaite
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter-Jan Martens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | | | - Fernando Rossello
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Lybaert
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
49
|
The Unfolded Protein Response as a Guardian of the Secretory Pathway. Cells 2021; 10:cells10112965. [PMID: 34831188 PMCID: PMC8616143 DOI: 10.3390/cells10112965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the major site of membrane biogenesis in most eukaryotic cells. As the entry point to the secretory pathway, it handles more than 10,000 different secretory and membrane proteins. The insertion of proteins into the membrane, their folding, and ER exit are affected by the lipid composition of the ER membrane and its collective membrane stiffness. The ER is also a hotspot of lipid biosynthesis including sterols, glycerophospholipids, ceramides and neural storage lipids. The unfolded protein response (UPR) bears an evolutionary conserved, dual sensitivity to both protein-folding imbalances in the ER lumen and aberrant compositions of the ER membrane, referred to as lipid bilayer stress (LBS). Through transcriptional and non-transcriptional mechanisms, the UPR upregulates the protein folding capacity of the ER and balances the production of proteins and lipids to maintain a functional secretory pathway. In this review, we discuss how UPR transducers sense unfolded proteins and LBS with a particular focus on their role as guardians of the secretory pathway.
Collapse
|
50
|
Structures of a deAMPylation complex rationalise the switch between antagonistic catalytic activities of FICD. Nat Commun 2021; 12:5004. [PMID: 34408154 PMCID: PMC8373988 DOI: 10.1038/s41467-021-25076-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) Hsp70 chaperone BiP is regulated by AMPylation, a reversible inactivating post-translational modification. Both BiP AMPylation and deAMPylation are catalysed by a single ER-localised enzyme, FICD. Here we present crystallographic and solution structures of a deAMPylation Michaelis complex formed between mammalian AMPylated BiP and FICD. The latter, via its tetratricopeptide repeat domain, binds a surface that is specific to ATP-state Hsp70 chaperones, explaining the exquisite selectivity of FICD for BiP’s ATP-bound conformation both when AMPylating and deAMPylating Thr518. The eukaryotic deAMPylation mechanism thus revealed, rationalises the role of the conserved Fic domain Glu234 as a gatekeeper residue that both inhibits AMPylation and facilitates hydrolytic deAMPylation catalysed by dimeric FICD. These findings point to a monomerisation-induced increase in Glu234 flexibility as the basis of an oligomeric state-dependent switch between FICD’s antagonistic activities, despite a similar mode of engagement of its two substrates — unmodified and AMPylated BiP. The ER chaperone BiP is regulated by FICD-mediated AMPylation and deAMPylation. Here, the authors characterise the structure of mammalian AMPylated BiP bound to FICD, by X-ray crystallography and neutron scattering, providing insights into the mechanism of BiP AMPylation and deAMPylation.
Collapse
|