1
|
Jalilvand A, Kennedy PJ, Loftus J, Collins C, Kellett W, Wahl W, Wisler J. PRE-ADMISSION BARIATRIC SURGERY IS ASSOCIATED WITH REDUCED MORTALITY IN SURGICAL PATIENTS WITH SEPSIS. Shock 2025; 63:844-850. [PMID: 40202402 DOI: 10.1097/shk.0000000000002568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
ABSTRACT Background: Obesity is associated with higher 90-day mortality compared to nonobese surgical patients. Bariatric surgery (BS) can reduce obesity-related comorbidities, even in those with persistent obesity. Objective: Evaluate the impact of prior BS on sepsis outcomes in surgical patients with obesity. Setting: University Hospital, United States. Methods: A single-institution retrospective review of all surgical patients with sepsis (SOFA≥2) was conducted. Patients were grouped into people with obesity and prior BS (OB/BS; n = 48), people with obesity without BS (OB; n = 717), nonobese (NOB; n = 574), and nonobese with prior BS (NOB/BS; n = 27). Demographic data, comorbidities, and sepsis presentation were compared. The primary outcome was cumulative 90-day mortality and survival. Results: Most OB/BS patients underwent gastric bypass <5 years from admission (61%). The OB/BS group was younger, more likely to be female, and transferred from an outside hospital. The mean BMI was highest in the OB/BS group (46.3± 14.7 kg/m 2 , P < 0.0005). Charlson Comorbidity Index was lower in the OB/BS and NOB/BS groups (2 (1-4) and 2 (2-4), respectively, P = 0.0033). Cumulative 90-day mortality was significantly lower in the OB/BS cohort (20.8%, P = 0.002). The OB/BS cohort was more likely to die from intra-abdominal sepsis not amenable to source control (60% vs. 22.5% vs. 22.8% vs. 37.5%, P = 0.04). Compared to the other groups, 90-day survival was highest in the OB/BS cohort (log-rank P < 0.009). Conclusions: This study demonstrated improvement in 90-day survival in OB/BS patients despite higher BMIs. However, this group was more likely to die from intra-abdominal sources, likely reflecting surgical complexity in the setting of prior bypasses.
Collapse
Affiliation(s)
- Anahita Jalilvand
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | | | - John Loftus
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Courtney Collins
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Whitney Kellett
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Wendy Wahl
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Jon Wisler
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| |
Collapse
|
2
|
Zhou H, Gizlenci M, Xiao Y, Martin F, Nakamori K, Zicari EM, Sato Y, Tullius SG. Obesity-associated Inflammation and Alloimmunity. Transplantation 2025; 109:588-596. [PMID: 39192462 PMCID: PMC11868468 DOI: 10.1097/tp.0000000000005183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Obesity is a worldwide health problem with a rapidly rising incidence. In organ transplantation, increasing numbers of patients with obesity accumulate on waiting lists and undergo surgery. Obesity is in general conceptualized as a chronic inflammatory disease, potentially impacting alloimmune response and graft function. Here, we summarize our current understanding of cellular and molecular mechanisms that control obesity-associated adipose tissue inflammation and provide insights into mechanisms affecting transplant outcomes, emphasizing on the beneficial effects of weight loss on alloimmune responses.
Collapse
Affiliation(s)
- Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Merih Gizlenci
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yao Xiao
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Friederike Martin
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Surgery, CVK/CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Keita Nakamori
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Elizabeth M. Zicari
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Yuko Sato
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
3
|
Chen Y, Chaudhari SN, Harris DA, Roberts CF, Moscalu A, Mathur V, Zhao L, Tavakkoli A, Devlin AS, Sheu EG. A small intestinal bile acid modulates the gut microbiome to improve host metabolic phenotypes following bariatric surgery. Cell Host Microbe 2024; 32:1315-1330.e5. [PMID: 39043190 PMCID: PMC11332993 DOI: 10.1016/j.chom.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Bariatric surgical procedures such as sleeve gastrectomy (SG) provide effective type 2 diabetes (T2D) remission in human patients. Previous work demonstrated that gastrointestinal levels of the bacterial metabolite lithocholic acid (LCA) are decreased after SG in mice and humans. Here, we show that LCA worsens glucose tolerance and impairs whole-body metabolism. We also show that taurodeoxycholic acid (TDCA), which is the only bile acid whose concentration increases in the murine small intestine post-SG, suppresses the bacterial bile acid-inducible (bai) operon and production of LCA both in vitro and in vivo. Treatment of diet-induced obese mice with TDCA reduces LCA levels and leads to microbiome-dependent improvements in glucose handling. Moreover, TDCA abundance is decreased in small intestinal tissue from T2D patients. This work reveals that TDCA is an endogenous inhibitor of LCA production and suggests that TDCA may contribute to the glucoregulatory effects of bariatric surgery.
Collapse
Affiliation(s)
- Yingjia Chen
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Harris
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cullen F Roberts
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Andrei Moscalu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vasundhara Mathur
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Li X, Yang J, Zhou X, Dai C, Kong M, Xie L, Liu C, Liu Y, Li D, Ma X, Dai Y, Sun Y, Jian Z, Guo X, Lin X, Li Y, Sun L, Liu X, Jin L, Tang H, Zheng Y, Hong S. Ketogenic diet-induced bile acids protect against obesity through reduced calorie absorption. Nat Metab 2024; 6:1397-1414. [PMID: 38937659 DOI: 10.1038/s42255-024-01072-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
The low-carbohydrate ketogenic diet (KD) has long been practiced for weight loss, but the underlying mechanisms remain elusive. Gut microbiota and metabolites have been suggested to mediate the metabolic changes caused by KD consumption, although the particular gut microbes or metabolites involved are unclear. Here, we show that KD consumption enhances serum levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA) in mice to decrease body weight and fasting glucose levels. Mechanistically, KD feeding decreases the abundance of a bile salt hydrolase (BSH)-coding gut bacterium, Lactobacillus murinus ASF361. The reduction of L. murinus ASF361 or inhibition of BSH activity increases the circulating levels of TDCA and TUDCA, thereby reducing energy absorption by inhibiting intestinal carbonic anhydrase 1 expression, which leads to weight loss. TDCA and TUDCA treatments have been found to protect against obesity and its complications in multiple mouse models. Additionally, the associations among the abovementioned bile acids, microbial BSH and metabolic traits were consistently observed both in an observational study of healthy human participants (n = 416) and in a low-carbohydrate KD interventional study of participants who were either overweight or with obesity (n = 25). In summary, we uncover a unique host-gut microbiota metabolic interaction mechanism for KD consumption to decrease body weight and fasting glucose levels. Our findings support TDCA and TUDCA as two promising drug candidates for obesity and its complications in addition to a KD.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Chen Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Mengmeng Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Linshan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Chenglin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Yilian Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Dandan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Xiaonan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, P.R. China
| | - Yan Sun
- Masonic Medical Research Institute, Utica, NY, USA
| | - Zhijie Jian
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, P.R. China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, P.R. China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, P.R. China
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, P.R. China.
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, P.R. China.
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
5
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
6
|
Martinez TM, Wachsmuth HR, Meyer RK, Weninger SN, Lane AI, Kangath A, Schiro G, Laubitz D, Stern JH, Duca FA. Differential effects of plant-based flours on metabolic homeostasis and the gut microbiota in high-fat fed rats. Nutr Metab (Lond) 2023; 20:44. [PMID: 37858106 PMCID: PMC10585811 DOI: 10.1186/s12986-023-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.
Collapse
Affiliation(s)
- Taylor M Martinez
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Hallie R Wachsmuth
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Rachel K Meyer
- School of Nutritional Science and Wellness, University of Arizona, Tucson, AZ, USA
| | - Savanna N Weninger
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Adelina I Lane
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA.
- BIO 5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
Lee Y, Cho JY, Cho KY. Serum, Urine, and Fecal Metabolome Alterations in the Gut Microbiota in Response to Lifestyle Interventions in Pediatric Obesity: A Non-Randomized Clinical Trial. Nutrients 2023; 15:2184. [PMID: 37432339 DOI: 10.3390/nu15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Pediatric obesity is associated with alterations in the gut microbiota and its metabolites. However, how they influence obesity and the effect of lifestyle interventions remains unknown.. In this non-randomized clinical trial, we analyzed metabolomes and microbial features to understand the associated metabolic pathways and the effect of lifestyle interventions on pediatric obesity. Anthropometric/biochemical data and fasting serum, urine, and fecal samples were collected at baseline and after an eight-week, weight-reduction lifestyle modification program. Post-intervention, children with obesity were classified into responder and non-responder groups based on changes in total body fat. At baseline, serum L-isoleucine and uric acid levels were significantly higher in children with obesity compared with those in normal-weight children and were positively correlated with obesogenic genera. Taurodeoxycholic and tauromuricholic α + β acid levels decreased significantly with obesity and were negatively correlated with obesogenic genera. Branched-chain amino acid and purine metabolisms were distinguished metabolic pathways in the obese group. Post-intervention, urinary myristic acid levels decreased significantly in the responder group, showing a significant positive correlation with Bacteroides. Fatty acid biosynthesis decreased significantly in the responder group. Thus, lifestyle intervention with weight loss is associated with changes in fatty acid biosynthesis, and myristic acid is a possible therapeutic target for pediatric obesity.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
- CBNUH Cheongju-Osong National Advanced Clinical Trial Center, 77, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Chungcheongbuk-do, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| |
Collapse
|
8
|
Yan X, Li S, Tu T, Li Y, Niu M, Tong Y, Yang Y, Xu T, Zhao J, Shen C, Wang S. Free amino acids identification and process optimization in greengage wine fermentation and flavor formation. J Food Sci 2023; 88:988-1003. [PMID: 36691797 DOI: 10.1111/1750-3841.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Greengage wine with low alcohol content is increasing in popularity owing to its fruity taste and rich nutrition. The key to wine aroma and taste is flavor substances like free amino acids (FAAs), volatile fatty acids, higher alcohols, and esters. Amino acid (AA) metabolisms in yeast are an important source of these secondary compounds, which vary with the fermentation conditions. This study explored and optimized the impact of different parameters (carbon source, inoculum, pH, temperature) on FAA contents and dynamics in greengage wine. The results demonstrated that total and essential amino acid (EAA) content rose with a higher proportion of glucose, less yeast inoculation, higher temperature, and higher initial pH. With the results obtained it was concluded that the condition of 22.4°C, pH 4.5, and 3% inoculation was optimum for a 14.9-fold increase of EAAs in fermented greengage wine. In the long run, the research will aid in the development of the greengage brewing industry.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shu Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China.,Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingyao Tu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yiqin Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Mansi Niu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yuqin Tong
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yang Yang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Tao Xu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caihong Shen
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Songtao Wang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| |
Collapse
|
9
|
Yuan Y, He J, Tang M, Chen H, Wei T, Zhang B, Liang D, Nie X. Preventive effect of Ya'an Tibetan tea on obesity in rats fed with a hypercaloric high-fat diet revealed by gut microbiology and metabolomics studies. Food Res Int 2023; 165:112520. [PMID: 36869524 DOI: 10.1016/j.foodres.2023.112520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Ya'an Tibetan Tea (YATT) is a classic dark tea variety fermented with a unique geographical environment and traditional craftsmanship. Previous research indicates that it is beneficial for obesity and related metabolic disorders, but no systematic research currently reveals its precise mechanisms. This work investigated the preventive effect of YATT on obesity and the corresponding potential mechanisms by performing 16S rRNA gene sequencing and metabolomics studies. Our results demonstrated that YATT could significantly improve the body weight and fat deposition in hypercaloric high-fat diet (HFD)-induced obese rats, enhance antioxidant enzymes activity and reduce inflammation, and reverse the liver damage caused by an HFD. Moreover, 16S rRNA analysis showed that YATT could improve the intestinal microbial disorders caused by the HFD by significantly reversing the increase in Firmicutes/Bacteroidetes(F/B)ratio and the relative abundance of flora associated with the HFD, such as unclassified_Lachnospiraceae and Romboutsia flora. In addition, metabolomic analysis of cecum contents identified 121 differential metabolites, of which 19 were common to all experimental rats fed with and without a high-fat diet. Strikingly, 17 of the most prevalent 19 differential metabolites, including Theobromine, L-Valine, and Diisobutyl phthalate, were considerably reversed by YATT. Enrichment analysis of the metabolic pathways of these differential metabolites indicated that Caffeine metabolism, Phenylalanine metabolism, and Lysine degradation are the potential metabolic pathways responsible for the obesity prevention effect of YATT. Collectively, this work revealed that YATT has good potential for obesity prevention and the improvement of intestinal microbial communities, potentially due to the YATT-induced alterations in the metabolic pathways and functional metabolite levels of caffeine and amino acids. These results inform the material basis of YATT for obesity prevention and its mechanisms and provide essential insights for developing YATT as a healthy beverage for obesity prevention.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China; College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jingliu He
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Ting Wei
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Bin Zhang
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Dawei Liang
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Brisbane, QLD 4102, Australia; Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
10
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
11
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2022; 57:101427. [PMID: 34973469 PMCID: PMC8829807 DOI: 10.1016/j.molmet.2021.101427] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.
Collapse
Affiliation(s)
- Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy Lipuma
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Quante M, Iske J, Uehara H, Minami K, Nian Y, Maenosono R, Matsunaga T, Liu Y, Azuma H, Perkins D, Alegre ML, Zhou H, Elkhal A, Tullius SG. Taurodeoxycholic acid and valine reverse obesity-associated augmented alloimmune responses and prolong allograft survival. Am J Transplant 2022; 22:402-413. [PMID: 34551205 PMCID: PMC10614103 DOI: 10.1111/ajt.16856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
Obesity initiates a chronic inflammatory network linked to perioperative complications and increased acute rejection rates in organ transplantation. Bariatric surgery is the most effective treatment of obesity recommended for morbidly obese transplant recipients. Here, we delineated the effects of obesity and bariatric surgery on alloimmunity and transplant outcomes in diet-induced obese (DIO) mice. Allograft survival was significantly shorter in DIO-mice. When performing sleeve gastrectomies (SGx) prior to transplantation, we found attenuated T cell-derived alloimmune responses resulting in prolonged allograft survival. Administering taurodeoxycholic acid (TDCA) and valine, metabolites depleted in DIO-mice and restored through SGx, prolonged graft survival in DIO-mice comparable with SGx an dampened Th1 and Th17 alloimmune responses while Treg frequencies and CD4+ T cell-derived IL-10 production were augmented. Moreover, in recipient animals treated with TDCA/valine, levels of donor-specific antibodies had been reduced. Mechanistically, TDCA/valine restrained inflammatory M1-macrophage polarization through TGR5 that compromised cAMP signaling and inhibited macrophage-derived T cell activation. Consistently, administering a TGR5 agonist to DIO-mice prolonged allograft survival. Overall, we provide novel insights into obesity-induced inflammation and its impact on alloimmunity. Furthermore, we introduce TDCA/valine as a noninvasive alternative treatment for obese transplant patients.
Collapse
Affiliation(s)
- Markus Quante
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- University Hospital Tuebingen, Department of General, Visceral and Transplant Surgery
| | - Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Hirofumi Uehara
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Koichiro Minami
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yeqi Nian
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ryochi Maenosono
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yang Liu
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - David Perkins
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Elkhal
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|