1
|
Kollert MR, Krämer M, Brisson NM, Schemenz V, Tsitsilonis S, Qazi TH, Fratzl P, Vogel V, Reichenbach JR, Duda GN. Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology. Nat Biomed Eng 2025; 9:772-786. [PMID: 40234703 PMCID: PMC12092267 DOI: 10.1038/s41551-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2025] [Indexed: 04/17/2025]
Abstract
Swelling-associated changes in extracellular matrix (ECM) occur in many pathological conditions involving inflammation or oedema. Here we show that alterations in the proportion of loosely bound water in ECM correlate with changes in ECM elasticity and stress relaxation, owing to the strength of water binding to ECM being primarily governed by osmolality and the electrostatic properties of proteoglycans. By using mechanical testing and small-angle X-ray scattering, as well as magnetic resonance imaging (MRI) to detect changes in loosely bound water, we observed that enhanced water binding manifests as greater resistance to compression (mechanical or osmotic), resulting from increased electrostatic repulsion between negatively charged proteoglycans rather than axial contraction in collagen fibrils. This indicates that electrostatic contributions of proteoglycans regulate elasticity and stress relaxation independently of hydration. Our ex vivo experiments in osmotically modulated tendon elucidate physical causes of MRI signal alterations, in agreement with pilot in vivo MRI of inflammatory Achilles tendinopathy. We suggest that the strength of water binding to ECM regulates cellular niches and can be exploited to enhance MRI-informed diagnostics of swelling-associated tissue pathology.
Collapse
Affiliation(s)
- Matthias R Kollert
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin Krämer
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Nicholas M Brisson
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victoria Schemenz
- Department of Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Georg N Duda
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Simon L, Constanzo J, Terraza-Aguirre C, Ibn Elfekih Z, Berthelot J, Benkhaled BT, Haute T, Pednekar K, Clark K, Emerson SJ, Atis S, Benedetti C, Langlois S, Marquant A, Prakash J, Wang A, Devoisselle JM, Montier T, Djouad F, Pouget JP, Lapinte V, Morille M. Surface modification of extracellular vesicles with polyoxazolines to enhance their plasma stability and tumor accumulation. Biomaterials 2025; 313:122748. [PMID: 39180918 DOI: 10.1016/j.biomaterials.2024.122748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Z Ibn Elfekih
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Berthelot
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - B T Benkhaled
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - K Pednekar
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - K Clark
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S J Emerson
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S Atis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - C Benedetti
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - S Langlois
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Marquant
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A Wang
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de La Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - F Djouad
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - J P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Marie Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Pajic-Lijakovic I, Milivojevic M, McClintock PVE. Epithelial cell-cell interactions in an overcrowded environment: jamming or live cell extrusion. J Biol Eng 2024; 18:47. [PMID: 39237992 PMCID: PMC11378474 DOI: 10.1186/s13036-024-00442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Epithelial tissues respond strongly to the mechanical stress caused by collective cell migration and are able to regulate it, which is important for biological processes such as morphogenesis, wound healing, and suppression of the spread of cancer. Compressive, tensional, and shear stress components are produced in cells when epithelial monolayers on substrate matrices are actively or passively wetted or de-wetted. Increased compressive stress on cells leads to enhanced cell-cell interactions by increasing the frequency of change the cell-cell distances, triggering various signalling pathways within the cells. This can ultimately lead either to cell jamming or to the extrusion of live cells. Despite extensive research in this field, it remains unclear how cells decide whether to jam, or to extrude a cell or cells, and how cells can reduce the compressive mechanical stress. Live cell extrusion from the overcrowded regions of the monolayers is associated with the presence of topological defects of cell alignment, induced by an interplay between the cell compressive and shear stress components. These topological defects stimulate cell re-alignment, as a part of the cells' tendency to re-establish an ordered trend of cell migration, by intensifying the glancing interactions in overcrowded regions. In addition to individual cell extrusion, collective cell extrusion has also been documented during monolayer active de-wetting, depending on the cell type, matrix stiffness, and boundary conditions. Cell jamming has been discussed in the context of the cells' contact inhibition of locomotion caused by cell head-on interactions. Since cell-cell interactions play a crucial role in cell rearrangement in an overcrowded environment, this review is focused on physical aspects of these interactions in order to stimulate further biological research in the field.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
5
|
Nanda P, Barrere J, LaBar T, Murray AW. A dynamic network model predicts the phenotypes of multicellular clusters from cellular properties. Curr Biol 2024; 34:2672-2683.e4. [PMID: 38823384 PMCID: PMC11610506 DOI: 10.1016/j.cub.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2 = 0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.
Collapse
Affiliation(s)
- Piyush Nanda
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Bi Y, Jin J, Wang R, Liu Y, Zhu L, Wang J. Mechanical models and measurement methods of solid stress in tumors. Appl Microbiol Biotechnol 2024; 108:363. [PMID: 38842572 PMCID: PMC11156757 DOI: 10.1007/s00253-024-13211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
In addition to genetic mutations, biomechanical factors also affect the structures and functions of the tumors during tumor growth, including solid stress, interstitial fluid pressure, stiffness, and microarchitecture. Solid stress affects tumors by compressing cancer and stromal cells and deforming blood and lymphatic vessels which reduce supply of oxygen, nutrients and drug delivery, making resistant to treatment. Researchers simulate the stress by creating mechanical models both in vitro and in vivo. Cell models in vitro are divided into two dimensions (2D) and three dimensions (3D). 2D models are simple to operate but exert pressure on apical surface of the cells. 3D models, the multicellular tumor spheres, are more consistent with the actual pathological state in human body. However, the models are more difficult to establish compared with the 2D models. Besides, the procedure of the animal models in vivo is even more complex and tougher to operate. Then, researchers challenged to quantify the solid stress through some measurement methods. We compared the advantages and limitations of these models and methods, which may help to explore new therapeutic targets for normalizing the tumor's physical microenvironment. KEY POINTS: •This is the first review to conclude the mechanical models and measurement methods in tumors. •The merit and demerit of these models and methods are compared. •Insights into further models are discussed.
Collapse
Affiliation(s)
- Yingwei Bi
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Jiacheng Jin
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Rui Wang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Yuxin Liu
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Liang Zhu
- Dalian University of Technology, Linggong Road 2, Dalian, 116081, China.
- Dalian Medical University, Lvshun South Road 9, Dalian, 116041, China.
| | - Jianbo Wang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China.
| |
Collapse
|
7
|
Reoch JR, Stokes YM, Green JEF. A two-phase thin-film model for cell-induced gel contraction incorporating osmotic effects. J Math Biol 2024; 88:61. [PMID: 38607408 PMCID: PMC11014880 DOI: 10.1007/s00285-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/05/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
We present a mathematical model of an experiment in which cells are cultured within a gel, which in turn floats freely within a liquid nutrient medium. Traction forces exerted by the cells on the gel cause it to contract over time, giving a measure of the strength of these forces. Building upon our previous work (Reoch et al. in J Math Biol 84(5):31, 2022), we exploit the fact that the gels used frequently have a thin geometry to obtain a reduced model for the behaviour of a thin, two-dimensional cell-seeded gel. We find that steady-state solutions of the reduced model require the cell density and volume fraction of polymer in the gel to be spatially uniform, while the gel height may vary spatially. If we further assume that all three of these variables are initially spatially uniform, this continues for all time and the thin film model can be further reduced to solving a single, non-linear ODE for gel height as a function of time. The thin film model is further investigated for both spatially-uniform and varying initial conditions, using a combination of analytical techniques and numerical simulations. We show that a number of qualitatively different behaviours are possible, depending on the composition of the gel (i.e., the chemical potentials) and the strength of the cell traction forces. However, unlike in the earlier one-dimensional model, we do not observe cases where the gel oscillates between swelling and contraction. For the case of initially uniform cell and gel density, our model predicts that the relative change in the gels' height and length are equal, which justifies an assumption previously used in the work of Stevenson et al. (Biophys J 99(1):19-28, 2010). Conversely, however, even for non-uniform initial conditions, we do not observe cases where the length of the gel changes whilst its height remains constant, which have been reported in another model of osmotic swelling by Trinschek et al. (AIMS Mater Sci 3(3):1138-1159, 2016; Phys Rev Lett 119:078003, 2017).
Collapse
Affiliation(s)
- J R Reoch
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Y M Stokes
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - J E F Green
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
8
|
Pajic-Lijakovic I, Milivojevic M, McClintock PVE. Role of viscoelasticity in the appearance of low-Reynolds turbulence: considerations for modelling. J Biol Eng 2024; 18:24. [PMID: 38589891 PMCID: PMC11476694 DOI: 10.1186/s13036-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Inertial effects caused by perturbations of dynamical equilibrium during the flow of soft matter constitute a hallmark of turbulence. Such perturbations are attributable to an imbalance between energy storage and energy dissipation. During the flow of Newtonian fluids, kinetic energy can be both stored and dissipated, while the flow of viscoelastic soft matter systems, such as polymer fluids, induces the accumulation of both kinetic and elastic energies. The accumulation of elastic energy causes local stiffening of stretched polymer chains, which can destabilise the flow. Migrating multicellular systems are hugely complex and are capable of self-regulating their viscoelasticity and mechanical stress generation, as well as controlling their energy storage and energy dissipation. Since the flow perturbation of viscoelastic systems is caused by the inhomogeneous accumulation of elastic energy, rather than of kinetic energy, turbulence can occur at low Reynolds numbers.This theoretical review is focused on clarifying the role of viscoelasticity in the appearance of low-Reynolds turbulence. Three types of system are considered and compared: (1) high-Reynolds turbulent flow of Newtonian fluids, (2) low and moderate-Reynolds flow of polymer solutions, and (3) migration of epithelial collectives, discussed in terms of two model systems. The models considered involve the fusion of two epithelial aggregates, and the free expansion of epithelial monolayers on a substrate matrix.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
9
|
Shroff NP, Xu P, Kim S, Shelton ER, Gross BJ, Liu Y, Gomez CO, Ye Q, Drennon TY, Hu JK, Green JBA, Campàs O, Klein OD. Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ development. Nat Cell Biol 2024; 26:519-529. [PMID: 38570617 PMCID: PMC11482733 DOI: 10.1038/s41556-024-01380-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024]
Abstract
Localized sources of morphogens, called signalling centres, play a fundamental role in coordinating tissue growth and cell fate specification during organogenesis. However, how these signalling centres are established in tissues during embryonic development is still unclear. Here we show that the main signalling centre orchestrating development of rodent incisors, the enamel knot (EK), is specified by a cell proliferation-driven buildup in compressive stresses (mechanical pressure) in the tissue. Direct mechanical measurements indicate that the stresses generated by cell proliferation are resisted by the surrounding tissue, creating a circular pattern of mechanical anisotropy with a region of high compressive stress at its centre that becomes the EK. Pharmacological inhibition of proliferation reduces stresses and suppresses EK formation, and application of external pressure in proliferation-inhibited conditions rescues the formation of the EK. Mechanical information is relayed intracellularly through YAP protein localization, which is cytoplasmic in the region of compressive stress that establishes the EK and nuclear in the stretched anisotropic cells that resist the pressure buildup around the EK. Together, our data identify a new role for proliferation-driven mechanical compression in the specification of a model signalling centre during mammalian organ development.
Collapse
Affiliation(s)
- Neha Pincha Shroff
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Pengfei Xu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elijah R Shelton
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Ben J Gross
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Carlos O Gomez
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Tingsheng Yu Drennon
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeremy B A Green
- Centre for Craniofacial Regeneration and Biology, King's College London, London, UK
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
11
|
Höllring K, Vurnek D, Gehrer S, Dudziak D, Hubert M, Smith AS. Morphology as indicator of adaptive changes of model tissues in osmotically and chemically changing environments. BIOMATERIALS ADVANCES 2023; 154:213635. [PMID: 37804683 DOI: 10.1016/j.bioadv.2023.213635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
We investigate the formation and maintenance of the homeostatic state in the case of 2D epithelial tissues following an induction of hyperosmotic conditions, using media enriched with 80 to 320 mOsm of mannitol, NaCl, and urea. We characterise the changes in the tissue immediately after the osmotic shock, and follow it until the new homeostatic state is formed. We characterise changes in cooperative motility and proliferation pressure in the tissue upon treatment with the help of a theoretical model based on the delayed Fisher-Kolmogorov formalism, where the delay in density evolution is induced by the the finite time of the cell division. Finally we explore the adaptation of the homeostatic tissue to highly elevated osmotic conditions by evaluating the morphology and topology of cells after 20 days in incubation. We find that hyperosmotic environments together with changes in the extracellular matrix induce different mechanical states in viable tissues, where only some remain functional. The perspective is a relation between tissue topology and function, which could be explored beyond the scope of this manuscript. Experimental investigation of morphological effect of change of osmotic conditions on long-term tissue morphology and topology Effect of osmotic changes on transient tissue growth behaviour Analysis of recovery process of tissues post-osmotic-shock Toxicity limits of osmolytes in mid- to long-term tissue evolution Tissue adaptation to physiological changes in environment Long-term tissue stabilisation under altered osmotic conditions.
Collapse
Affiliation(s)
- Kevin Höllring
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Damir Vurnek
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Laboratory of Dendritic Cell Biology, Department of Dermatology, FAU Erlangen-Nürnberg, University Hospital Erlangen, Erlangen 91052, Germany
| | - Simone Gehrer
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, FAU Erlangen-Nürnberg, University Hospital Erlangen, Erlangen 91052, Germany
| | - Maxime Hubert
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Group of Computational Life Sciences, Department of Physical Chemistry, Ruer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Group of Computational Life Sciences, Department of Physical Chemistry, Ruer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
12
|
Liu Y, Wu W, Feng S, Chen Y, Wu X, Zhang Q, Wu S. Dynamic response of the cell traction force to osmotic shock. MICROSYSTEMS & NANOENGINEERING 2023; 9:131. [PMID: 37854722 PMCID: PMC10579240 DOI: 10.1038/s41378-023-00603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Osmotic pressure is vital to many physiological activities, such as cell proliferation, wound healing and disease treatment. However, how cells interact with the extracellular matrix (ECM) when subjected to osmotic shock remains unclear. Here, we visualize the mechanical interactions between cells and the ECM during osmotic shock by quantifying the dynamic evolution of the cell traction force. We show that both hypertonic and hypotonic shocks induce continuous and large changes in cell traction force. Moreover, the traction force varies with cell volume: the traction force increases as cells shrink and decreases as cells swell. However, the direction of the traction force is independent of cell volume changes and is always toward the center of the cell-substrate interface. Furthermore, we reveal a mechanical mechanism in which the change in cortical tension caused by osmotic shock leads to the variation in traction force, which suggests a simple method for measuring changes in cell cortical tension. These findings provide new insights into the mechanical force response of cells to the external environment and may provide a deeper understanding of how the ECM regulates cell structure and function. Traction force exerted by cells under hypertonic and hypotonic shocks. Scale bar, 200 Pa. Color bar, Pa. The black arrows represent the tangential traction forces.
Collapse
Affiliation(s)
- Yongman Liu
- School of Biomedical Engineering, Anhui Medical University, 230032 Hefei, China
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shuo Feng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Xiaoping Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
13
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Das K, Mukherjee T, Shankar P. The Role of Extracellular Vesicles in the Pathogenesis of Hematological Malignancies: Interaction with Tumor Microenvironment; a Potential Biomarker and Targeted Therapy. Biomolecules 2023; 13:897. [PMID: 37371477 DOI: 10.3390/biom13060897] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development and progression of hematological malignancies. In recent years, studies have focused on understanding how tumor cells communicate within the TME. In addition to several factors, such as growth factors, cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the TME, thereby contributing to the pathogenesis of hematological malignancies. The present review focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the bioactive molecules of the originating cells and hence can be considered new predictive biomarkers for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how EVs influence hematological tumor progression via tumor-host crosstalk and their use as biomarkers for hematological malignancies, thereby benefiting the development of potential therapeutic targets.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Tanmoy Mukherjee
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Prem Shankar
- Department of Pulmonary Immunology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| |
Collapse
|
15
|
Gupta D, Wiklander OP, Wood MJ, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:170-190. [PMID: 39697988 PMCID: PMC11648525 DOI: 10.20517/evcna.2023.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 12/20/2024]
Abstract
The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated in vivo. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the in vivo biodistribution of EVs. Here in this review, we have summarised the recent findings in EV in vivo pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.
Collapse
Affiliation(s)
- Dhanu Gupta
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Oscar P.B Wiklander
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Matthew J.A Wood
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
| | - Samir El-Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| |
Collapse
|
16
|
Menaceur C, Hachani J, Dib S, Duban-Deweer S, Karamanos Y, Shimizu F, Kanda T, Gosselet F, Fenart L, Saint-Pol J. Highlighting In Vitro the Role of Brain-like Endothelial Cells on the Maturation and Metabolism of Brain Pericytes by SWATH Proteomics. Cells 2023; 12:cells12071010. [PMID: 37048083 PMCID: PMC10093307 DOI: 10.3390/cells12071010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Within the neurovascular unit, brain pericytes (BPs) are of major importance for the induction and maintenance of the properties of the blood-brain barrier (BBB) carried by the brain microvessel endothelial cells (ECs). Throughout barriergenesis, ECs take advantage of soluble elements or contact with BPs to maintain BBB integrity and the regulation of their cellular homeostasis. However, very few studies have focused on the role of ECs in the maturation of BPs. The aim of this study is to shed light on the proteome of BPs solocultured (hBP-solo) or cocultured with ECs (hBP-coc) to model the human BBB in a non-contact manner. We first generated protein libraries for each condition and identified 2233 proteins in hBP-solo versus 2492 in hBP-coc and 2035 common proteins. We performed a quantification of the enriched proteins in each condition by sequential window acquisition of all theoretical mass spectra (SWATH) analysis. We found 51 proteins enriched in hBP-solo related to cell proliferation, contractility, adhesion and extracellular matrix element production, a protein pattern related to an immature cell. In contrast, 90 proteins are enriched in hBP-coc associated with a reduction in contractile activities as observed in vivo in ‘mature’ BPs, and a significant gain in different metabolic functions, particularly related to mitochondrial activities and sterol metabolism. This study highlights that BPs take advantage of ECs during barriergenesis to make a metabolic switch in favor of BBB homeostasis in vitro.
Collapse
|
17
|
Growth anisotropy of the extracellular matrix shapes a developing organ. Nat Commun 2023; 14:1220. [PMID: 36869053 PMCID: PMC9984492 DOI: 10.1038/s41467-023-36739-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Final organ size and shape result from volume expansion by growth and shape changes by contractility. Complex morphologies can also arise from differences in growth rate between tissues. We address here how differential growth guides the morphogenesis of the growing Drosophila wing imaginal disc. We report that 3D morphology results from elastic deformation due to differential growth anisotropy between the epithelial cell layer and its enveloping extracellular matrix (ECM). While the tissue layer grows in plane, growth of the bottom ECM occurs in 3D and is reduced in magnitude, thereby causing geometric frustration and tissue bending. The elasticity, growth anisotropy and morphogenesis of the organ are fully captured by a mechanical bilayer model. Moreover, differential expression of the Matrix metalloproteinase MMP2 controls growth anisotropy of the ECM envelope. This study shows that the ECM is a controllable mechanical constraint whose intrinsic growth anisotropy directs tissue morphogenesis in a developing organ.
Collapse
|
18
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
19
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
20
|
A cell-based framework for modeling cardiac mechanics. Biomech Model Mechanobiol 2023; 22:515-539. [PMID: 36602715 PMCID: PMC10097778 DOI: 10.1007/s10237-022-01660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/19/2022] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes are the functional building blocks of the heart-yet most models developed to simulate cardiac mechanics do not represent the individual cells and their surrounding matrix. Instead, they work on a homogenized tissue level, assuming that cellular and subcellular structures and processes scale uniformly. Here we present a mathematical and numerical framework for exploring tissue-level cardiac mechanics on a microscale given an explicit three-dimensional geometrical representation of cells embedded in a matrix. We defined a mathematical model over such a geometry and parametrized our model using publicly available data from tissue stretching and shearing experiments. We then used the model to explore mechanical differences between the extracellular and the intracellular space. Through sensitivity analysis, we found the stiffness in the extracellular matrix to be most important for the intracellular stress values under contraction. Strain and stress values were observed to follow a normal-tangential pattern concentrated along the membrane, with substantial spatial variations both under contraction and stretching. We also examined how it scales to larger size simulations, considering multicellular domains. Our work extends existing continuum models, providing a new geometrical-based framework for exploring complex cell-cell and cell-matrix interactions.
Collapse
|
21
|
Conrad C, Conway J, Polacheck WJ, Rizvi I, Scarcelli G. Water transport regulates nucleus volume, cell density, Young's modulus, and E-cadherin expression in tumor spheroids. Eur J Cell Biol 2022; 101:151278. [PMID: 36306595 DOI: 10.1016/j.ejcb.2022.151278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022] Open
Abstract
Cell volume is maintained by the balance of water and solutes across the cell membrane and plays an important role in mechanics and biochemical signaling in cells. Here, we assess the relationship between cell volume, mechanical properties, and E-cadherin expression in three-dimensional cultures for ovarian cancer. To determine the effect of water transport in multi-cellular tumors, ovarian cancer spheroids were subjected to hypotonic and hypertonic shock using water and sucrose mixtures, respectively. Increased osmolality resulted in decreased nucleus volume, increased Young's modulus, and increased tumor cell density in ovarian cancer spheroids. Next, we looked at the reversibility of mechanics and morphology after 5 min of osmotic shock and found that spheroids had a robust ability to return to their original state. Finally, we quantified the size of E-cadherin clusters at cell-cell junctions and observed a significant increase in aggregate size following 30 min of hypertonic and hypotonic osmotic shocks. Yet, these effects were not apparent after 5 min of osmotic shock, illustrating a temporal difference between E-cadherin regulation and the immediate mechanical and morphology changes. Still, the osmotically induced E-cadherin aggregates which formed at the 30-minute timepoint was reversible when spheroids were replenished with isotonic medium. Altogether, this work demonstrated an important role of osmolality in transforming mechanical, morphology, and molecular states.
Collapse
Affiliation(s)
- Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jessica Conway
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
22
|
Pajic-Lijakovic I, Milivojevic M. The role of viscoelasticity in long time cell rearrangement. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 173:60-71. [PMID: 35598807 DOI: 10.1016/j.pbiomolbio.2022.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, Belgrade, 11000, Serbia.
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, Belgrade, 11000, Serbia
| |
Collapse
|
23
|
Chen Y, Wu D, Levine H. A physical model for dynamic assembly of human salivary stem/progenitor microstructures. Cells Dev 2022; 171:203803. [PMID: 35931336 DOI: 10.1016/j.cdev.2022.203803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 01/25/2023]
Abstract
The in vitro reconstructions of human salivary glands in service of their eventual medical use represent a challenge for tissue engineering. Here, we present a theoretical approach to the dynamical formation of acinar structures from human salivary cells, focusing on observed stick-slip radial expansion as well as possible growth instabilities. Our findings demonstrate the critical importance of basement membrane remodeling in controlling the growth process.
Collapse
Affiliation(s)
- Yuyang Chen
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Danielle Wu
- The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics and Depts. of Physics and Bioengineering, Northeastern University, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Homan T, Monnier S, Jebane C, Nicolas A, Delanoë-Ayari H. Measuring the average cell size and width of its distribution in cellular tissues using Fourier transform. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:44. [PMID: 35532848 DOI: 10.1140/epje/s10189-022-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
We present an in-depth investigation of a fully automated Fourier-based analysis to determine the cell size and the width of its distribution in 3D biological tissues. The results are thoroughly tested using generated images, and we offer valuable criteria for image acquisition settings to optimize accuracy. We demonstrate that the most important parameter is the number of cells in the field of view, and we show that accurate measurements can already be made on volume only containing [Formula: see text] cells. The resolution in z is also not so important, and a reduced number of in-depth images, of order of one per cell, already provides a measure of the mean cell size with less than 5% error. The technique thus appears to be a very promising tool for very fast live local volume cell measurement in 3D tissues in vivo while strongly limiting photobleaching and phototoxicity issues.
Collapse
Affiliation(s)
- Tess Homan
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Sylvain Monnier
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Cécile Jebane
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Alice Nicolas
- Univ. Grenoble Alpes, CNRS, CEA/LETIMinatec, Grenoble INP, LTM, 38054, Grenoble, France
| | - Hélène Delanoë-Ayari
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France.
| |
Collapse
|
25
|
Reoch JR, Stokes YM, Green JEF. A mathematical model for cell-induced gel contraction incorporating osmotic effects. J Math Biol 2022; 84:31. [PMID: 35294632 PMCID: PMC8927050 DOI: 10.1007/s00285-022-01730-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Biological tissues are composed of cells surrounded by the extracellular matrix (ECM). The ECM can be thought of as a fibrous polymer network, acting as a natural scaffolding to provide mechanical support to the cells. Reciprocal mechanical and chemical interactions between the cells and the ECM are crucial in regulating the development of tissues and maintaining their functionality. Hence, to maintain in vivo-like behaviour when cells are cultured in vitro, they are often seeded in a gel, which aims to mimic the ECM. In this paper, we present a mathematical model that incorporates cell-gel interactions together with osmotic pressure to study the mechanical behaviour of biological gels. In particular, we consider an experiment where cells are seeded within a gel, which gradually compacts due to forces exerted on it by the cells. Adopting a one-dimensional Cartesian geometry for simplicity, we use a combination of analytical techniques and numerical simulations to investigate how cell traction forces interact with osmotic effects (which can lead to either gel swelling or contraction depending on the gel’s composition). Our results show that a number of qualitatively different behaviours are possible, depending on the composition of the gel (i.e. its chemical potentials) and the strength of the cell traction forces. A novel prediction of our model is that there are cases where the gel oscillates between swelling and contraction; to our knowledge, this behaviour has not been reported in experiments. We also consider how physical parameters like drag and viscosity affect the manner in which the gel evolves.
Collapse
Affiliation(s)
- J R Reoch
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Y M Stokes
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - J E F Green
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
26
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Yan G, Monnier S, Mouelhi M, Dehoux T. Probing molecular crowding in compressed tissues with Brillouin light scattering. Proc Natl Acad Sci U S A 2022; 119:e2113614119. [PMID: 35046032 PMCID: PMC8795543 DOI: 10.1073/pnas.2113614119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Volume regulation is key in maintaining important tissue functions, such as growth or healing. This is achieved by modulation of active contractility as well as water efflux that changes molecular crowding within individual cells. Local sensors have been developed to monitor stresses or forces in model tissues, but these approaches do not capture the contribution of liquid flows to volume regulation. Here, we use a tool based on Brillouin light scattering (BLS) that uses the interaction of a laser light with inherent picosecond timescale density fluctuations in the sample. To investigate volume variations, we induced osmotic perturbations with a polysaccharide osmolyte, Dextran (Dx), and compress cells locally within multicellular spheroids (MCSs). During osmotic compressions, we observe an increase in the BLS frequency shift that reflects local variations in the compressibility. To elucidate these data, we propose a model based on a mixing law that describes the increase of molecular crowding upon reduction of the intracellular fluids. Comparison with the data suggests a nonlinear increase of the compressibility due to the dense crowding that induces hydrodynamic interactions between the cellular polymers.
Collapse
Affiliation(s)
- Guqi Yan
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Sylvain Monnier
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Malèke Mouelhi
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Thomas Dehoux
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
28
|
Luo L, Zhang W, Wang J, Zhao M, Shen K, Jia Y, Li Y, Zhang J, Cai W, Xiao D, Bai X, Liu K, Wang K, Zhang Y, Zhu H, Zhou Q, Hu D. A Novel 3D Culture Model of Human ASCs Reduces Cell Death in Spheroid Cores and Maintains Inner Cell Proliferation Compared With a Nonadherent 3D Culture. Front Cell Dev Biol 2021; 9:737275. [PMID: 34858974 PMCID: PMC8632442 DOI: 10.3389/fcell.2021.737275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
3D cell culture technologies have recently shown very valuable promise for applications in regenerative medicine, but the most common 3D culture methods for mesenchymal stem cells still have limitations for clinical application, mainly due to the slowdown of inner cell proliferation and increase in cell death rate. We previously developed a new 3D culture of adipose-derived mesenchymal stem cells (ASCs) based on its self-feeder layer, which solves the two issues of ASC 3D cell culture on ultra-low attachment (ULA) surface. In this study, we compared the 3D spheroids formed on the self-feeder layer (SLF-3D ASCs) with the spheroids formed by using ULA plates (ULA-3D ASCs). We discovered that the cells of SLF-3D spheroids still have a greater proliferation ability than ULA-3D ASCs, and the volume of these spheroids increases rather than shrinks, with more viable cells in 3D spheroids compared with the ULA-3D ASCs. Furthermore, it was discovered that the SLF-3D ASCs are likely to exhibit the abovementioned unique properties due to change in the expression level of ECM-related genes, like COL3A1, MMP3, HAS1, and FN1. These results indicate that the SLF-3D spheroid is a promising way forward for clinical application.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Wei Zhang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| |
Collapse
|
29
|
Efremov YM, Zurina IM, Presniakova VS, Kosheleva NV, Butnaru DV, Svistunov AA, Rochev YA, Timashev PS. Mechanical properties of cell sheets and spheroids: the link between single cells and complex tissues. Biophys Rev 2021; 13:541-561. [PMID: 34471438 PMCID: PMC8355304 DOI: 10.1007/s12551-021-00821-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell aggregates, including sheets and spheroids, represent a simple yet powerful model system to study both biochemical and biophysical intercellular interactions. However, it is becoming evident that, although the mechanical properties and behavior of multicellular structures share some similarities with individual cells, yet distinct differences are observed in some principal aspects. The description of mechanical phenomena at the level of multicellular model systems is a necessary step for understanding tissue mechanics and its fundamental principles in health and disease. Both cell sheets and spheroids are used in tissue engineering, and the modulation of mechanical properties of cell constructs is a promising tool for regenerative medicine. Here, we review the data on mechanical characterization of cell sheets and spheroids, focusing both on advances in the measurement techniques and current understanding of the subject. The reviewed material suggest that interplay between the ECM, intercellular junctions, and cellular contractility determines the behavior and mechanical properties of the cell aggregates.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
| | - Irina M. Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St, Moscow, Russia
| | - Denis V. Butnaru
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Andrey A. Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St, Moscow, Russia
| | - Yury A. Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, H91 W2TY, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, 119991 Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin St, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow, 119991 Russia
| |
Collapse
|
30
|
Purkayastha P, Jaiswal MK, Lele TP. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken) 2021; 78:312-322. [PMID: 34291887 DOI: 10.1002/cm.21680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Alterations to the mechanical properties of the microenvironment are a hallmark of cancer. Elevated mechanical stresses exist in many solid tumors and elicit responses from cancer cells. Uncontrolled growth in confined environments gives rise to elevated solid compressive stress on cancer cells. Recruitment of leaky blood vessels and an absence of functioning lymphatic vessels causes a rise in the interstitial fluid pressure. Here we review the role of the cancer cell cytoskeleton and the nucleus in mediating both the initial and adaptive cancer cell response to these two types of mechanical stresses. We review how these mechanical stresses alter cancer cell functions such as proliferation, apoptosis, and migration.
Collapse
Affiliation(s)
- Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
31
|
Viscoelastic Properties in Cancer: From Cells to Spheroids. Cells 2021; 10:cells10071704. [PMID: 34359874 PMCID: PMC8304080 DOI: 10.3390/cells10071704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
AFM-based rheology methods enable the investigation of the viscoelastic properties of cancer cells. Such properties are known to be essential for cell functions, especially for malignant cells. Here, the relevance of the force modulation method was investigated to characterize the viscoelasticity of bladder cancer cells of various invasiveness on soft substrates, revealing that the rheology parameters are a signature of malignancy. Furthermore, the collagen microenvironment affects the viscoelastic moduli of cancer cell spheroids; thus, collagen serves as a powerful proxy, leading to an increase of the dynamic moduli vs. frequency, as predicted by a double power law model. Taken together, these results shed new light on how cancer cells and tissues adapt their viscoelastic properties depending on their malignancy and the microenvironment. This method could be an attractive way to control their properties in the future, based on the similarity of spheroids with in vivo tumor models.
Collapse
|
32
|
Abstract
A new method for applying solid stress to aggregates of cells is shedding light on the impact of mechanical forces on cancer cells.
Collapse
Affiliation(s)
- Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, United States
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, United States
| |
Collapse
|
33
|
Boot RC, Koenderink GH, Boukany PE. Spheroid mechanics and implications for cell invasion. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1978316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ruben C. Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E. Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|