1
|
Ribeiro R, Vítor JMB, Voronovska A, Moreira JN, Goncalves J. Novel Strategy of Antibody Affinity Maturation and Enhancement of Nucleolin-Mediated Antibody-Dependent Cellular Cytotoxicity Against Triple-Negative Breast Cancer. Biotechnol J 2025; 20:e202400380. [PMID: 39868978 DOI: 10.1002/biot.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that remains an unmet medical need. Because TNBC cells do not express the most common markers of breast cancers, there is an active search for novel molecular targets in triple-negative tumors. Additionally, this subtype of breast cancer presents strong immunogenic characteristics which have been encouraging the development of immunotherapeutic approaches against the disease. In this context, nucleolin arises as a promising target for immunotherapy against TNBC. Our group has previously developed an anti-nucleolin VHH-Fc antibody capable of eliciting antibody-dependent cellular cytotoxicity (ADCC). Moreover, we constructed and characterized an antibody library, that was screened against nucleolin-overexpressing cells, originating an enriched anti-nucleolin antibody pool. In this work, a strategy to select individual clones from the pool was designed, combining NGS data with 3D modeling. Two antibodies demonstrated a significant 4.4- and 6.1-fold increase in binding to nucleolin-overexpressing and TNBC cells, and an improvement in affinity to the sub-micromolar range (0.19 µM and 83.69 nM). Additionally, an increment in 4.6- and 3.1-fold in ADCC activity against respective cell lines was observed for the M2 antibody clone. Herein, the affinity maturation strategy developed was validated and corroborated a positive, but not proportional, correlation between antibody binding, affinity, and ADCC.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC-UC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
- Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
| | - Jorge M B Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Anastasiya Voronovska
- CNC-UC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
| | - João N Moreira
- CNC-UC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
| | - João Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. Front Immunol 2024; 15:1429909. [PMID: 39081315 PMCID: PMC11286471 DOI: 10.3389/fimmu.2024.1429909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4+ helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
Affiliation(s)
- Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wakako Furuyama
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noemí A. Saavedra-Ávila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Christopher T. Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
3
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595735. [PMID: 38853867 PMCID: PMC11160617 DOI: 10.1101/2024.05.28.595735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
|
4
|
Ribeiro R, Moreira JN, Goncalves J. Development of a new affinity maturation protocol for the construction of an internalizing anti-nucleolin antibody library. Sci Rep 2024; 14:10608. [PMID: 38719911 PMCID: PMC11079059 DOI: 10.1038/s41598-024-61230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| | - João N Moreira
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal.
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal.
| | - João Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
5
|
Yaffe ZA, Ding S, Sung K, Chohan V, Marchitto L, Doepker L, Ralph D, Nduati R, Matsen FA, Finzi A, Overbaugh J. Reconstruction of a polyclonal ADCC antibody repertoire from an HIV-1 non-transmitting mother. iScience 2023; 26:106762. [PMID: 37216090 PMCID: PMC10196594 DOI: 10.1016/j.isci.2023.106762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Human natural history and vaccine studies support a protective role of antibody dependent cellular cytotoxicity (ADCC) activity against many infectious diseases. One setting where this has consistently been observed is in HIV-1 vertical transmission, where passively acquired ADCC activity in HIV-exposed infants has correlated with reduced acquisition risk and reduced pathogenesis in HIV+ infants. However, the characteristics of HIV-specific antibodies comprising a maternal plasma ADCC response are not well understood. Here, we reconstructed monoclonal antibodies (mAbs) from memory B cells from late pregnancy in mother MG540, who did not transmit HIV to her infant despite several high-risk factors. Twenty mAbs representing 14 clonal families were reconstructed, which mediated ADCC and recognized multiple HIV Envelope epitopes. In experiments using Fc-defective variants, only combinations of several mAbs accounted for the majority of plasma ADCC of MG540 and her infant. We present these mAbs as evidence of a polyclonal repertoire with potent HIV-directed ADCC activity.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laura Doepker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Complementary Roles of Antibody Heavy and Light Chain Somatic Hypermutation in Conferring Breadth and Potency to the HIV-1-Specific CAP256-VRC26 bNAb Lineage. J Virol 2022; 96:e0027022. [PMID: 35510865 DOI: 10.1128/jvi.00270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some HIV-infected people develop broadly neutralizing antibodies (bNAbs) that block many diverse, unrelated strains of HIV from infecting target cells and, through passive immunization, protect animals and humans from infection. Therefore, understanding the development of bNAbs and their neutralization can inform the design of an HIV vaccine. Here, we extend our previous studies of the ontogeny of the CAP256-VRC26 V2-targeting bNAb lineage by defining the mutations that confer neutralization to the unmutated common ancestor (CAP256.UCA). Analysis of the sequence of the CAP256.UCA showed that many improbable mutations were located in the third complementarity-determining region of the heavy chain (CDRH3) and the heavy chain framework 3 (FR3). Transferring the CDRH3 from bNAb CAP256.25 (63% breadth and 0.003 μg/mL potency) into the CAP256.UCA introduced breadth and the ability to neutralize emerging viral variants. In addition, we showed that the framework and light chain contributed to potency and that the second CDR of the light chain forms part of the paratope of CAP256.25. Notably, a minimally mutated CAP256 antibody, with 41% of the mutations compared to bNAb CAP256.25, was broader (64% breadth) and more potent (0.39 μg/mL geometric potency) than many unrelated bNAbs. Together, we have identified key regions and mutations that confer breadth and potency in a V2-specific bNAb lineage. These data indicate that immunogens that target affinity maturation to key sites in CAP256-VRC26-like precursors, including the CDRHs and light chain, could rapidly elicit breadth through vaccination. IMPORTANCE A major focus in the search for an HIV vaccine is elucidating the ontogeny of broadly neutralizing antibodies (bNAbs), which prevent HIV infection in vitro and in vivo. The unmutated common ancestors (UCAs) of bNAbs are generally strain specific and acquire breadth through extensive, and sometimes redundant, somatic hypermutation during affinity maturation. We investigated which mutations in the CAP256-VRC26 bNAb lineage conferred neutralization capacity to the UCA. We found that mutations in the antibody heavy and light chains had complementary roles in neutralization breadth and potency, respectively. The heavy chain, particularly the third complementarity-determining region, was responsible for conferring breadth. In addition, previously uninvestigated mutations in the framework also contributed to breadth. Together, approximately half of the mutations in CAP256.25 were necessary for broader and more potent neutralization than many unrelated neutralizing antibodies. Vaccine approaches that promote affinity maturation at key sites could therefore more rapidly produce antibodies with neutralization breadth.
Collapse
|