1
|
Inácio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Brain-wide presynaptic networks of functionally distinct cortical neurons. Nature 2025:10.1038/s41586-025-08631-w. [PMID: 40011781 DOI: 10.1038/s41586-025-08631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behaviour. Yet the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behaviour. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioural state1-10 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell-based monosynaptic input tracing and optogenetics. We show that behavioural state-dependent activity patterns are stable over time. These are minimally affected by direct neuromodulatory inputs and are driven primarily by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioural state-dependent activity profiles revealed that although behavioural state-related and behavioural state-unrelated neurons shared a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet neurons that tracked behavioural state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioural state-dependent activity in S1, but this activity was not externally driven. Our results reveal distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioural state.
Collapse
Affiliation(s)
- Ana R Inácio
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ka Chun Lam
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Zhao
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Pereira
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Soohyun Lee
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Wang H, He H. Optical Precise Ablation of Targeted Individual Neurons In Vivo. ACS Chem Neurosci 2025; 16:374-383. [PMID: 39800970 DOI: 10.1021/acschemneuro.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Targeted cell ablation is a powerful strategy for investigating the function of individual neurons within neuronal networks. Multiphoton ablation technology by a tightly focused femtosecond laser, with its significant advantages of noninvasiveness, high efficiency, and single-cell resolution, has been widely used in the study of neuroscience. However, the firing activity of the ablated neuron and its impact on the surrounding neurons and entire neuronal ensembles are still unclear. In this study, we describe the depolarization process of targeted neuron ablation by a femtosecond laser based on a standard two-photon microscope in vitro and in vivo. The photoporation damages the cell membrane, depolarizes the membrane potential, and thus disables the neuron's ability to fire action potentials. The dysfunctional neuron after laser ablation affects both the responses of surrounding neighbors and the functions of ensemble neurons in vivo. Although abnormal Ca2+ responses in spatially surrounding neurons are observed, the damage effect is confined to the focal volume. The function of the neuronal ensembles that associate with a specific visual stimulation is not influenced by the ablation of an individual member of the ensemble, indicating the redundancy of the ensemble organization. This study thus provides an insight into the targeted neuron ablation as well as the role of an individual neuron in an ensemble.
Collapse
Affiliation(s)
- Haipeng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
3
|
Ahmed A, Voelcker B, Peron S. Representational drift in barrel cortex is receptive field dependent. Curr Biol 2024; 34:5623-5634.e4. [PMID: 39541977 DOI: 10.1016/j.cub.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cortical populations often exhibit changes in activity even when behavior is stable. How behavioral stability is maintained in the face of such "representational drift" remains unclear. One possibility is that some neurons are more stable than others. We examined whisker touch responses in layers 2-4 of the primary vibrissal somatosensory cortex (vS1) over several weeks in mice stably performing an object detection task with two whiskers. Although the number of touch neurons remained constant, individual neurons changed with time. Touch-responsive neurons with broad receptive fields were more stable than narrowly tuned neurons. Transitions between functional types were non-random: before becoming broadly tuned, unresponsive neurons first passed through a period of narrower tuning. Broadly tuned neurons in layers 2 and 3 with higher pairwise correlations to other touch neurons were more stable than neurons with lower correlations. Thus, a small population of broadly tuned and synchronously active touch neurons exhibits elevated stability and may be particularly important for behavior.
Collapse
Affiliation(s)
- Alisha Ahmed
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003, USA
| | - Bettina Voelcker
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003, USA.
| |
Collapse
|
4
|
Xiao G, Cai Y, Zhang Y, Xie J, Wu L, Xie H, Wu J, Dai Q. Mesoscale neuronal granular trial variability in vivo illustrated by nonlinear recurrent network in silico. Nat Commun 2024; 15:9894. [PMID: 39548098 PMCID: PMC11567969 DOI: 10.1038/s41467-024-54346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Large-scale neural recording with single-neuron resolution has revealed the functional complexity of the neural systems. However, even under well-designed task conditions, the cortex-wide network exhibits highly dynamic trial variability, posing challenges to the conventional trial-averaged analysis. To study mesoscale trial variability, we conducted a comparative study between fluorescence imaging of layer-2/3 neurons in vivo and network simulation in silico. We imaged up to 40,000 cortical neurons' triggered responses by deep brain stimulus (DBS). And we build an in silico network to reproduce the biological phenomena we observed in vivo. We proved the existence of ineluctable trial variability and found it influenced by input amplitude and range. Moreover, we demonstrated that a spatially heterogeneous coding community accounts for more reliable inter-trial coding despite single-unit trial variability. A deeper understanding of trial variability from the perspective of a dynamical system may lead to uncovering intellectual abilities such as parallel coding and creativity.
Collapse
Affiliation(s)
- Guihua Xiao
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Yeyi Cai
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Jingyu Xie
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Lifan Wu
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Jiamin Wu
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qionghai Dai
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
6
|
Inacio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Distinct brain-wide presynaptic networks underlie the functional identity of individual cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542329. [PMID: 37425800 PMCID: PMC10327181 DOI: 10.1101/2023.05.25.542329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neuronal connections provide the scaffolding for neuronal function. Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behavior. Yet, the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behavior. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioral state 1-12 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell based monosynaptic input tracing, and optogenetics. We show that behavioral state-dependent neuronal activity patterns are stable over time. These are minimally affected by neuromodulatory inputs and are instead driven by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioral state-dependent activity profiles revealed characteristic patterns of anatomical input. While both behavioral state-related and unrelated neurons had a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet, neurons that tracked behavioral state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioral state-dependent activity in S1, but this activity was not externally driven. Our results revealed distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioral state.
Collapse
|
7
|
Franco LM, Goard MJ. Differential stability of task variable representations in retrosplenial cortex. Nat Commun 2024; 15:6872. [PMID: 39127731 PMCID: PMC11316801 DOI: 10.1038/s41467-024-51227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Cortical neurons store information across different timescales, from seconds to years. Although information stability is variable across regions, it can vary within a region as well. Association areas are known to multiplex behaviorally relevant variables, but the stability of their representations is not well understood. Here, we longitudinally recorded the activity of neuronal populations in the mouse retrosplenial cortex (RSC) during the performance of a context-choice association task. We found that the activity of neurons exhibits different levels of stability across days. Using linear classifiers, we quantified the stability of three task-relevant variables. We find that RSC representations of context and trial outcome display higher stability than motor choice, both at the single cell and population levels. Together, our findings show an important characteristic of association areas, where diverse streams of information are stored with varying levels of stability, which may balance representational reliability and flexibility according to behavioral demands.
Collapse
Affiliation(s)
- Luis M Franco
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | - Michael J Goard
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
8
|
Yang R, Zhao P, Wang L, Feng C, Peng C, Wang Z, Zhang Y, Shen M, Shi K, Weng S, Dong C, Zeng F, Zhang T, Chen X, Wang S, Wang Y, Luo Y, Chen Q, Chen Y, Jiang C, Jia S, Yu Z, Liu J, Wang F, Jiang S, Xu W, Li L, Wang G, Mo X, Zheng G, Chen A, Zhou X, Jiang C, Yuan Y, Yan B, Zhang J. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat Biomed Eng 2024; 8:1018-1039. [PMID: 37996614 DOI: 10.1038/s41551-023-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Retinal prostheses could restore image-forming vision in conditions of photoreceptor degeneration. However, contrast sensitivity and visual acuity are often insufficient. Here we report the performance, in mice and monkeys with induced photoreceptor degeneration, of subretinally implanted gold-nanoparticle-coated titania nanowire arrays providing a spatial resolution of 77.5 μm and a temporal resolution of 3.92 Hz in ex vivo retinas (as determined by patch-clamp recording of retinal ganglion cells). In blind mice, the arrays allowed for the detection of drifting gratings and flashing objects at light-intensity thresholds of 15.70-18.09 μW mm-2, and offered visual acuities of 0.3-0.4 cycles per degree, as determined by recordings of visually evoked potentials and optomotor-response tests. In monkeys, the arrays were stable for 54 weeks, allowed for the detection of a 10-μW mm-2 beam of light (0.5° in beam angle) in visually guided saccade experiments, and induced plastic changes in the primary visual cortex, as indicated by long-term in vivo calcium imaging. Nanomaterials as artificial photoreceptors may ameliorate visual deficits in patients with photoreceptor degeneration.
Collapse
Affiliation(s)
- Ruyi Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Peng Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Zhexuan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yingying Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kaiwen Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunqiong Dong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Tianyun Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Xingdong Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, P. R. China
| | - Yiheng Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuanyuan Luo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Qingyuan Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shanshan Jia
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Zhaofei Yu
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Jian Liu
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Fei Wang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Su Jiang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Wendong Xu
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, P.R. China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xiaofen Mo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Xingtao Zhou
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P.R. China.
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
9
|
Hansel C, Yuste R. Neural ensembles: role of intrinsic excitability and its plasticity. Front Cell Neurosci 2024; 18:1440588. [PMID: 39144154 PMCID: PMC11322048 DOI: 10.3389/fncel.2024.1440588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Synaptic connectivity defines groups of neurons that engage in correlated activity during specific functional tasks. These co-active groups of neurons form ensembles, the operational units involved in, for example, sensory perception, motor coordination and memory (then called an engram). Traditionally, ensemble formation has been thought to occur via strengthening of synaptic connections via long-term potentiation (LTP) as a plasticity mechanism. This synaptic theory of memory arises from the learning rules formulated by Hebb and is consistent with many experimental observations. Here, we propose, as an alternative, that the intrinsic excitability of neurons and its plasticity constitute a second, non-synaptic mechanism that could be important for the initial formation of ensembles. Indeed, enhanced neural excitability is widely observed in multiple brain areas subsequent to behavioral learning. In cortical structures and the amygdala, excitability changes are often reported as transient, even though they can last tens of minutes to a few days. Perhaps it is for this reason that they have been traditionally considered as modulatory, merely supporting ensemble formation by facilitating LTP induction, without further involvement in memory function (memory allocation hypothesis). We here suggest-based on two lines of evidence-that beyond modulating LTP allocation, enhanced excitability plays a more fundamental role in learning. First, enhanced excitability constitutes a signature of active ensembles and, due to it, subthreshold synaptic connections become suprathreshold in the absence of synaptic plasticity (iceberg model). Second, enhanced excitability promotes the propagation of dendritic potentials toward the soma and allows for enhanced coupling of EPSP amplitude (LTP) to the spike output (and thus ensemble participation). This permissive gate model describes a need for permanently increased excitability, which seems at odds with its traditional consideration as a short-lived mechanism. We propose that longer modifications in excitability are made possible by a low threshold for intrinsic plasticity induction, suggesting that excitability might be on/off-modulated at short intervals. Consistent with this, in cerebellar Purkinje cells, excitability lasts days to weeks, which shows that in some circuits the duration of the phenomenon is not a limiting factor in the first place. In our model, synaptic plasticity defines the information content received by neurons through the connectivity network that they are embedded in. However, the plasticity of cell-autonomous excitability could dynamically regulate the ensemble participation of individual neurons as well as the overall activity state of an ensemble.
Collapse
Affiliation(s)
- Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
10
|
Gimenez-Gomez P, Le T, Zinter M, M'Angale P, Duran-Laforet V, Freels TG, Pavchinskiy R, Molas S, Schafer DP, Tapper AR, Thomson T, Martin GE. An orbitocortical-thalamic circuit suppresses binge alcohol-drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601895. [PMID: 39005328 PMCID: PMC11245026 DOI: 10.1101/2024.07.03.601895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Alcohol consumption remains a significant global health challenge, causing millions of direct and indirect deaths annually. Intriguingly, recent work has highlighted the prefrontal cortex, a major brain area that regulates inhibitory control of behaviors, whose activity becomes dysregulated upon alcohol abuse. However, whether an endogenous mechanism exists within this brain area that limits alcohol consumption is unknown. Here we identify a discrete GABAergic neuronal ensemble in the medial orbitofrontal cortex (mOFC) that is selectively recruited during binge alcohol-drinking and intoxication. Upon alcohol intoxication, this neuronal ensemble suppresses binge drinking behavior. Optogenetically silencing of this population, or its ablation, results in uncontrolled binge alcohol consumption. We find that this neuronal ensemble is specific to alcohol and is not recruited by other rewarding substances. We further show, using brain-wide analysis, that this neuronal ensemble projects widely, and that its projections specifically to the mediodorsal thalamus are responsible for regulating binge alcohol drinking. Together, these results identify a brain circuit in the mOFC that serves to protect against binge drinking by halting alcohol intake. These results provide valuable insights into the complex nature of alcohol abuse and offers potential avenues for the development of mOFC neuronal ensemble-targeted interventions.
Collapse
Affiliation(s)
- P Gimenez-Gomez
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T Le
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - M Zinter
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - P M'Angale
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - V Duran-Laforet
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T G Freels
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - R Pavchinskiy
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - S Molas
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - D P Schafer
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - A R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T Thomson
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - G E Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Jáidar O, Albarran E, Albarran EN, Wu YW, Ding JB. Refinement of efficient encodings of movement in the dorsolateral striatum throughout learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.596654. [PMID: 38895486 PMCID: PMC11185645 DOI: 10.1101/2024.06.06.596654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The striatum is required for normal action selection, movement, and sensorimotor learning. Although action-specific striatal ensembles have been well documented, it is not well understood how these ensembles are formed and how their dynamics may evolve throughout motor learning. Here we used longitudinal 2-photon Ca2+ imaging of dorsal striatal neurons in head-fixed mice as they learned to self-generate locomotion. We observed a significant activation of both direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs, respectively) during early locomotion bouts and sessions that gradually decreased over time. For dSPNs, onset- and offset-ensembles were gradually refined from active motion-nonspecific cells. iSPN ensembles emerged from neurons initially active during opponent actions before becoming onset- or offset-specific. Our results show that as striatal ensembles are progressively refined, the number of active nonspecific striatal neurons decrease and the overall efficiency of the striatum information encoding for learned actions increases.
Collapse
Affiliation(s)
- Omar Jáidar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Eddy Albarran
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Current address: Columbia University
| | | | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Current address: Institute of Molecular Biology, Academia Sinica
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
12
|
Yasar TB, Gombkoto P, Vyssotski AL, Vavladeli AD, Lewis CM, Wu B, Meienberg L, Lundegardh V, Helmchen F, von der Behrens W, Yanik MF. Months-long tracking of neuronal ensembles spanning multiple brain areas with Ultra-Flexible Tentacle Electrodes. Nat Commun 2024; 15:4822. [PMID: 38844769 PMCID: PMC11156863 DOI: 10.1038/s41467-024-49226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.
Collapse
Affiliation(s)
- Tansel Baran Yasar
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Peter Gombkoto
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Angeliki D Vavladeli
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Christopher M Lewis
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Bifeng Wu
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linus Meienberg
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Valter Lundegardh
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Rich PD, Thiberge SY, Scott BB, Guo C, Tervo DGR, Brody CD, Karpova AY, Daw ND, Tank DW. Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons. Nat Commun 2024; 15:4154. [PMID: 38755205 PMCID: PMC11099169 DOI: 10.1038/s41467-024-48505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The precise neural mechanisms within the brain that contribute to the remarkable lifetime persistence of memory are not fully understood. Two-photon calcium imaging allows the activity of individual cells to be followed across long periods, but conventional approaches require head-fixation, which limits the type of behavior that can be studied. We present a magnetic voluntary head-fixation system that provides stable optical access to the brain during complex behavior. Compared to previous systems that used mechanical restraint, there are no moving parts and animals can engage and disengage entirely at will. This system is failsafe, easy for animals to use and reliable enough to allow long-term experiments to be routinely performed. Animals completed hundreds of trials per session of an odor discrimination task that required 2-4 s fixations. Together with a reflectance fluorescence collection scheme that increases two-photon signal and a transgenic Thy1-GCaMP6f rat line, we are able to reliably image the cellular activity in the hippocampus during behavior over long periods (median 6 months), allowing us track the same neurons over a large fraction of animals' lives (up to 19 months).
Collapse
Affiliation(s)
- P Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | | | - Benjamin B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Caiying Guo
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - D Gowanlock R Tervo
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Alla Y Karpova
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Wadle SL, Ritter TC, Wadle TTX, Hirtz JJ. Topography and Ensemble Activity in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. eNeuro 2024; 11:ENEURO.0396-23.2024. [PMID: 38627066 PMCID: PMC11097631 DOI: 10.1523/eneuro.0396-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is often associated with social communication impairments and specific sound processing deficits, for example, problems in following speech in noisy environments. To investigate underlying neuronal processing defects located in the auditory cortex (AC), we performed two-photon Ca2+ imaging in FMR1 (fragile X messenger ribonucleoprotein 1) knock-out (KO) mice, a model for fragile X syndrome (FXS), the most common cause of hereditary ASD in humans. For primary AC (A1) and the anterior auditory field (AAF), topographic frequency representation was less ordered compared with control animals. We additionally analyzed ensemble AC activity in response to various sounds and found subfield-specific differences. In A1, ensemble correlations were lower in general, while in secondary AC (A2), correlations were higher in response to complex sounds, but not to pure tones. Furthermore, sound specificity of ensemble activity was decreased in AAF. Repeating these experiments 1 week later revealed no major differences regarding representational drift. Nevertheless, we found subfield- and genotype-specific changes in ensemble correlation values between the two times points, hinting at alterations in network stability in FMR1 KO mice. These detailed insights into AC network activity and topography in FMR1 KO mice add to the understanding of auditory processing defects in FXS.
Collapse
Affiliation(s)
- Simon L Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tamara C Ritter
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Tatjana T X Wadle
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Jan J Hirtz
- Physiology of Neuronal Networks, Department of Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
15
|
Pérez-Ortega J, Akrouh A, Yuste R. Stimulus encoding by specific inactivation of cortical neurons. Nat Commun 2024; 15:3192. [PMID: 38609354 PMCID: PMC11015011 DOI: 10.1038/s41467-024-47515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Neuronal ensembles are groups of neurons with correlated activity associated with sensory, motor, and behavioral functions. To explore how ensembles encode information, we investigated responses of visual cortical neurons in awake mice using volumetric two-photon calcium imaging during visual stimulation. We identified neuronal ensembles employing an unsupervised model-free algorithm and, besides neurons activated by the visual stimulus (termed "onsemble"), we also find neurons that are specifically inactivated (termed "offsemble"). Offsemble neurons showed faster calcium decay during stimuli, suggesting selective inhibition. In response to visual stimuli, each ensemble (onsemble+offsemble) exhibited small trial-to-trial variability, high orientation selectivity, and superior predictive accuracy for visual stimulus orientation, surpassing the sum of individual neuron activity. Thus, the combined selective activation and inactivation of cortical neurons enhances visual encoding as an emergent and distributed neural code.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Alejandro Akrouh
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
16
|
Tlaie A, Shapcott K, van der Plas TL, Rowland J, Lees R, Keeling J, Packer A, Tiesinga P, Schölvinck ML, Havenith MN. What does the mean mean? A simple test for neuroscience. PLoS Comput Biol 2024; 20:e1012000. [PMID: 38640119 PMCID: PMC11062559 DOI: 10.1371/journal.pcbi.1012000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/01/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024] Open
Abstract
Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous way of characterizing neuronal activity. But how relevant are such trial-averaged responses to neuronal computation itself? Here we present a simple test to estimate whether average responses reflect aspects of neuronal activity that contribute to neuronal processing. The test probes two assumptions implicitly made whenever average metrics are treated as meaningful representations of neuronal activity: Reliability: Neuronal responses repeat consistently enough across trials that they convey a recognizable reflection of the average response to downstream regions.Behavioural relevance: If a single-trial response is more similar to the average template, it is more likely to evoke correct behavioural responses. We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory cortices (S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2) Electrophysiological recordings from 71 brain areas in mice performing a contrast discrimination task. Under the highly controlled settings of Data set 1, both assumptions were largely fulfilled. In contrast, the less restrictive paradigm of Data set 2 met neither assumption. Simulations predict that the larger diversity of neuronal response preferences, rather than higher cross-trial reliability, drives the better performance of Data set 1. We conclude that when behaviour is less tightly restricted, average responses do not seem particularly relevant to neuronal computation, potentially because information is encoded more dynamically. Most importantly, we encourage researchers to apply this simple test of computational relevance whenever using trial-averaged neuronal metrics, in order to gauge how representative cross-trial averages are in a given context.
Collapse
Affiliation(s)
- Alejandro Tlaie
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Technical University of Madrid, Madrid, Spain
| | | | - Thijs L. van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - James Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adam Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | | | - Martha N. Havenith
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
18
|
Ecker A, Egas Santander D, Bolaños-Puchet S, Isbister JB, Reimann MW. Cortical cell assemblies and their underlying connectivity: An in silico study. PLoS Comput Biol 2024; 20:e1011891. [PMID: 38466752 PMCID: PMC10927091 DOI: 10.1371/journal.pcbi.1011891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Recent developments in experimental techniques have enabled simultaneous recordings from thousands of neurons, enabling the study of functional cell assemblies. However, determining the patterns of synaptic connectivity giving rise to these assemblies remains challenging. To address this, we developed a complementary, simulation-based approach, using a detailed, large-scale cortical network model. Using a combination of established methods we detected functional cell assemblies from the stimulus-evoked spiking activity of 186,665 neurons. We studied how the structure of synaptic connectivity underlies assembly composition, quantifying the effects of thalamic innervation, recurrent connectivity, and the spatial arrangement of synapses on dendrites. We determined that these features reduce up to 30%, 22%, and 10% of the uncertainty of a neuron belonging to an assembly. The detected assemblies were activated in a stimulus-specific sequence and were grouped based on their position in the sequence. We found that the different groups were affected to different degrees by the structural features we considered. Additionally, connectivity was more predictive of assembly membership if its direction aligned with the temporal order of assembly activation, if it originated from strongly interconnected populations, and if synapses clustered on dendritic branches. In summary, reversing Hebb's postulate, we showed how cells that are wired together, fire together, quantifying how connectivity patterns interact to shape the emergence of assemblies. This includes a qualitative aspect of connectivity: not just the amount, but also the local structure matters; from the subcellular level in the form of dendritic clustering to the presence of specific network motifs.
Collapse
Affiliation(s)
- András Ecker
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Daniela Egas Santander
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Sirio Bolaños-Puchet
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - James B. Isbister
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michael W. Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
19
|
Piantadosi SC, Zhou ZC, Pizzano C, Pedersen CE, Nguyen TK, Thai S, Stuber GD, Bruchas MR. Holographic stimulation of opposing amygdala ensembles bidirectionally modulates valence-specific behavior via mutual inhibition. Neuron 2024; 112:593-610.e5. [PMID: 38086375 PMCID: PMC10984369 DOI: 10.1016/j.neuron.2023.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
The basolateral amygdala (BLA) is an evolutionarily conserved brain region, well known for valence processing. Despite this central role, the relationship between activity of BLA neuronal ensembles in response to appetitive and aversive stimuli and the subsequent expression of valence-specific behavior has remained elusive. Here, we leverage two-photon calcium imaging combined with single-cell holographic photostimulation through an endoscopic lens to demonstrate a direct causal role for opposing ensembles of BLA neurons in the control of oppositely valenced behavior in mice. We report that targeted photostimulation of either appetitive or aversive BLA ensembles results in mutual inhibition and shifts behavioral responses to promote consumption of an aversive tastant or reduce consumption of an appetitive tastant, respectively. Here, we identify that neuronal encoding of valence in the BLA is graded and relies on the relative proportion of individual BLA neurons recruited in a stable appetitive or quinine ensemble.
Collapse
Affiliation(s)
- Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Carina Pizzano
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Christian E Pedersen
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Tammy K Nguyen
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Sarah Thai
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Baker CM, Gong Y. A Semi-supervised Pipeline for Accurate Neuron Segmentation with Fewer Ground Truth Labels. eNeuro 2024; 11:ENEURO.0352-23.2024. [PMID: 38242690 PMCID: PMC10880440 DOI: 10.1523/eneuro.0352-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Recent advancements in two-photon calcium imaging have enabled scientists to record the activity of thousands of neurons with cellular resolution. This scope of data collection is crucial to understanding the next generation of neuroscience questions, but analyzing these large recordings requires automated methods for neuron segmentation. Supervised methods for neuron segmentation achieve state of-the-art accuracy and speed but currently require large amounts of manually generated ground truth training labels. We reduced the required number of training labels by designing a semi-supervised pipeline. Our pipeline used neural network ensembling to generate pseudolabels to train a single shallow U-Net. We tested our method on three publicly available datasets and compared our performance to three widely used segmentation methods. Our method outperformed other methods when trained on a small number of ground truth labels and could achieve state-of-the-art accuracy after training on approximately a quarter of the number of ground truth labels as supervised methods. When trained on many ground truth labels, our pipeline attained higher accuracy than that of state-of-the-art methods. Overall, our work will help researchers accurately process large neural recordings while minimizing the time and effort needed to generate manual labels.
Collapse
Affiliation(s)
- Casey M Baker
- Departments of Biomedical Engineering, Duke University, Durham, North Carolina 27701
| | - Yiyang Gong
- Departments of Biomedical Engineering, Duke University, Durham, North Carolina 27701
- Neurobiology, Duke University, Durham, North Carolina 27701
| |
Collapse
|
21
|
Niraula S, Hauser WL, Rouse AG, Subramanian J. Repeated passive visual experience modulates spontaneous and non-familiar stimuli-evoked neural activity. Sci Rep 2023; 13:20907. [PMID: 38017135 PMCID: PMC10684504 DOI: 10.1038/s41598-023-47957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Familiarity creates subjective memory of repeated innocuous experiences, reduces neural and behavioral responsiveness to those experiences, and enhances novelty detection. The neural correlates of the internal model of familiarity and the cellular mechanisms of enhanced novelty detection following multi-day repeated passive experience remain elusive. Using the mouse visual cortex as a model system, we test how the repeated passive experience of a 45° orientation-grating stimulus for multiple days alters spontaneous and non-familiar stimuli evoked neural activity in neurons tuned to familiar or non-familiar stimuli. We found that familiarity elicits stimulus competition such that stimulus selectivity reduces in neurons tuned to the familiar 45° stimulus; it increases in those tuned to the 90° stimulus but does not affect neurons tuned to the orthogonal 135° stimulus. Furthermore, neurons tuned to orientations 45° apart from the familiar stimulus dominate local functional connectivity. Interestingly, responsiveness to natural images, which consists of familiar and non-familiar orientations, increases subtly in neurons that exhibit stimulus competition. We also show the similarity between familiar grating stimulus-evoked and spontaneous activity increases, indicative of an internal model of altered experience.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
22
|
Alisha A, Bettina V, Simon P. Representational drift in barrel cortex is receptive field dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563381. [PMID: 37961727 PMCID: PMC10634719 DOI: 10.1101/2023.10.20.563381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cortical populations often exhibit changes in activity even when behavior is stable. How behavioral stability is maintained in the face of such 'representational drift' remains unclear. One possibility is that some neurons are stable despite broader instability. We examine whisker touch responses in superficial layers of primary vibrissal somatosensory cortex (vS1) over several weeks in mice stably performing an object detection task with two whiskers. While the number of touch neurons remained constant, individual neurons changed with time. Touch-responsive neurons with broad receptive fields were more stable than narrowly tuned neurons. Transitions between functional types were non-random: before becoming broadly tuned neurons, unresponsive neurons first pass through a period of narrower tuning. Broadly tuned neurons with higher pairwise correlations to other touch neurons were more stable than neurons with lower correlations. Thus, a small population of broadly tuned and synchronously active touch neurons exhibit elevated stability and may be particularly important for downstream readout.
Collapse
Affiliation(s)
- Ahmed Alisha
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Voelcker Bettina
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Peron Simon
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
23
|
Niraula S, Hauser WL, Rouse AG, Subramanian J. Repeated passive visual experience modulates spontaneous and non-familiar stimulievoked neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529278. [PMID: 36865208 PMCID: PMC9980096 DOI: 10.1101/2023.02.21.529278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Familiarity creates subjective memory of repeated innocuous experiences, reduces neural and behavioral responsiveness to those experiences, and enhances novelty detection. The neural correlates of the internal model of familiarity and the cellular mechanisms of enhanced novelty detection following multi-day repeated passive experience remain elusive. Using the mouse visual cortex as a model system, we test how the repeated passive experience of a 45° orientation-grating stimulus for multiple days alters spontaneous and non-familiar stimuli evoked neural activity in neurons tuned to familiar or non-familiar stimuli. We found that familiarity elicits stimulus competition such that stimulus selectivity reduces in neurons tuned to the familiar 45° stimulus; it increases in those tuned to the 90° stimulus but does not affect neurons tuned to the orthogonal 135° stimulus. Furthermore, neurons tuned to orientations 45° apart from the familiar stimulus dominate local functional connectivity. Interestingly, responsiveness to natural images, which consists of familiar and non-familiar orientations, increases subtly in neurons that exhibit stimulus competition. We also show the similarity between familiar grating stimulus-evoked and spontaneous activity increases, indicative of an internal model of altered experience.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - William L. Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam G. Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
24
|
Pancholi R, Ryan L, Peron S. Learning in a sensory cortical microstimulation task is associated with elevated representational stability. Nat Commun 2023; 14:3860. [PMID: 37385989 PMCID: PMC10310840 DOI: 10.1038/s41467-023-39542-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Sensory cortical representations can be highly dynamic, raising the question of how representational stability impacts learning. We train mice to discriminate the number of photostimulation pulses delivered to opsin-expressing pyramidal neurons in layer 2/3 of primary vibrissal somatosensory cortex. We simultaneously track evoked neural activity across learning using volumetric two-photon calcium imaging. In well-trained animals, trial-to-trial fluctuations in the amount of photostimulus-evoked activity predicted animal choice. Population activity levels declined rapidly across training, with the most active neurons showing the largest declines in responsiveness. Mice learned at varied rates, with some failing to learn the task in the time provided. The photoresponsive population showed greater instability both within and across behavioral sessions among animals that failed to learn. Animals that failed to learn also exhibited a faster deterioration in stimulus decoding. Thus, greater stability in the stimulus response is associated with learning in a sensory cortical microstimulation task.
Collapse
Affiliation(s)
- Ravi Pancholi
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA
| | - Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA.
| |
Collapse
|
25
|
Troup M, Tainton-Heap LAL, van Swinderen B. Neural Ensemble Fragmentation in the Anesthetized Drosophila Brain. J Neurosci 2023; 43:2537-2551. [PMID: 36868857 PMCID: PMC10082453 DOI: 10.1523/jneurosci.1657-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
General anesthetics cause a profound loss of behavioral responsiveness in all animals. In mammals, general anesthesia is induced in part by the potentiation of endogenous sleep-promoting circuits, although "deep" anesthesia is understood to be more similar to coma (Brown et al., 2011). Surgically relevant concentrations of anesthetics, such as isoflurane and propofol, have been shown to impair neural connectivity across the mammalian brain (Mashour and Hudetz, 2017; Yang et al., 2021), which presents one explanation why animals become largely unresponsive when exposed to these drugs. It remains unclear whether general anesthetics affect brain dynamics similarly in all animal brains, or whether simpler animals, such as insects, even display levels of neural connectivity that could be disrupted by these drugs. Here, we used whole-brain calcium imaging in behaving female Drosophila flies to investigate whether isoflurane anesthesia induction activates sleep-promoting neurons, and then inquired how all other neurons across the fly brain behave under sustained anesthesia. We were able to track the activity of hundreds of neurons simultaneously during waking and anesthetized states, for spontaneous conditions as well as in response to visual and mechanical stimuli. We compared whole-brain dynamics and connectivity under isoflurane exposure to optogenetically induced sleep. Neurons in the Drosophila brain remain active during general anesthesia as well as induced sleep, although flies become behaviorally inert under both treatments. We identified surprisingly dynamic neural correlation patterns in the waking fly brain, suggesting ensemble-like behavior. These become more fragmented and less diverse under anesthesia but remain wake-like during induced sleep.SIGNIFICANCE STATEMENT When humans are rendered immobile and unresponsive by sleep or general anesthetics, their brains do not shut off - they just change how they operate. We tracked the activity of hundreds of neurons simultaneously in the brains of fruit flies that were anesthetized by isoflurane or genetically put to sleep, to investigate whether these behaviorally inert states shared similar brain dynamics. We uncovered dynamic patterns of neural activity in the waking fly brain, with stimulus-responsive neurons constantly changing through time. Wake-like neural dynamics persisted during induced sleep but became more fragmented under isoflurane anesthesia. This suggests that, like larger brains, the fly brain might also display ensemble-like behavior, which becomes degraded rather than silenced under general anesthesia.
Collapse
Affiliation(s)
- Michael Troup
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lucy A L Tainton-Heap
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
26
|
Nietz AK, Streng ML, Popa LS, Carter RE, Flaherty EB, Aronson JD, Ebner TJ. To be and not to be: wide-field Ca2+ imaging reveals neocortical functional segmentation combines stability and flexibility. Cereb Cortex 2023:7024718. [PMID: 36734268 DOI: 10.1093/cercor/bhac523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 02/04/2023] Open
Abstract
The stability and flexibility of the functional parcellation of the cerebral cortex is fundamental to how familiar and novel information is both represented and stored. We leveraged new advances in Ca2+ sensors and microscopy to understand the dynamics of functional segmentation in the dorsal cerebral cortex. We performed wide-field Ca2+ imaging in head-fixed mice and used spatial independent component analysis (ICA) to identify independent spatial sources of Ca2+ fluorescence. The imaging data were evaluated over multiple timescales and discrete behaviors including resting, walking, and grooming. When evaluated over the entire dataset, a set of template independent components (ICs) were identified that were common across behaviors. Template ICs were present across a range of timescales, from days to 30 seconds, although with lower occurrence probability at shorter timescales, highlighting the stability of the functional segmentation. Importantly, unique ICs emerged at the shorter duration timescales that could act to transiently refine the cortical network. When data were evaluated by behavior, both common and behavior-specific ICs emerged. Each behavior is composed of unique combinations of common and behavior-specific ICs. These observations suggest that cerebral cortical functional segmentation exhibits considerable spatial stability over time and behaviors while retaining the flexibility for task-dependent reorganization.
Collapse
Affiliation(s)
- Angela K Nietz
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Martha L Streng
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| |
Collapse
|
27
|
Niraula S, Doderer JJ, Indulkar S, Berry KP, Hauser WL, L'Esperance OJ, Deng JZ, Keeter G, Rouse AG, Subramanian J. Excitation-inhibition imbalance disrupts visual familiarity in amyloid and non-pathology conditions. Cell Rep 2023; 42:111946. [PMID: 36640331 PMCID: PMC9939293 DOI: 10.1016/j.celrep.2022.111946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consistent with this, natural images elicit neuronal hyperactivity in these mice. Compensatory changes that maintain activity homeostasis disrupt functional connectivity and increase population sparseness such that a small fraction of neurons dominates population activity. These properties reduce the selectivity of neural response to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-specific visual experiences improves the neural representation and behavioral expression of visual familiarity. In contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibition, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when the fraction of high-responsive neurons and the persistence of neural representation of a memory-associated stimulus are not constrained.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Julia J Doderer
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shreya Indulkar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Kalen P Berry
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Oliver J L'Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Jasmine Z Deng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Griffin Keeter
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
28
|
Creation of Neuronal Ensembles and Cell-Specific Homeostatic Plasticity through Chronic Sparse Optogenetic Stimulation. J Neurosci 2023; 43:82-92. [PMID: 36400529 PMCID: PMC9838708 DOI: 10.1523/jneurosci.1104-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022] Open
Abstract
Cortical computations emerge from the dynamics of neurons embedded in complex cortical circuits. Within these circuits, neuronal ensembles, which represent subnetworks with shared functional connectivity, emerge in an experience-dependent manner. Here we induced ensembles in ex vivo cortical circuits from mice of either sex by differentially activating subpopulations through chronic optogenetic stimulation. We observed a decrease in voltage correlation, and importantly a synaptic decoupling between the stimulated and nonstimulated populations. We also observed a decrease in firing rate during Up-states in the stimulated population. These ensemble-specific changes were accompanied by decreases in intrinsic excitability in the stimulated population, and a decrease in connectivity between stimulated and nonstimulated pyramidal neurons. By incorporating the empirically observed changes in intrinsic excitability and connectivity into a spiking neural network model, we were able to demonstrate that changes in both intrinsic excitability and connectivity accounted for the decreased firing rate, but only changes in connectivity accounted for the observed decorrelation. Our findings help ascertain the mechanisms underlying the ability of chronic patterned stimulation to create ensembles within cortical circuits and, importantly, show that while Up-states are a global network-wide phenomenon, functionally distinct ensembles can preserve their identity during Up-states through differential firing rates and correlations.SIGNIFICANCE STATEMENT The connectivity and activity patterns of local cortical circuits are shaped by experience. This experience-dependent reorganization of cortical circuits is driven by complex interactions between different local learning rules, external input, and reciprocal feedback between many distinct brain areas. Here we used an ex vivo approach to demonstrate how simple forms of chronic external stimulation can shape local cortical circuits in terms of their correlated activity and functional connectivity. The absence of feedback between different brain areas and full control of external input allowed for a tractable system to study the underlying mechanisms and development of a computational model. Results show that differential stimulation of subpopulations of neurons significantly reshapes cortical circuits and forms subnetworks referred to as neuronal ensembles.
Collapse
|
29
|
Folschweiller S, Sauer JF. Controlling neuronal assemblies: a fundamental function of respiration-related brain oscillations in neuronal networks. Pflugers Arch 2023; 475:13-21. [PMID: 35637391 PMCID: PMC9816207 DOI: 10.1007/s00424-022-02708-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023]
Abstract
Respiration exerts profound influence on cognition, which is presumed to rely on the generation of local respiration-coherent brain oscillations and the entrainment of cortical neurons. Here, we propose an addition to that view by emphasizing the role of respiration in pacing cortical assemblies (i.e., groups of synchronized, coactive neurons). We review recent findings of how respiration directly entrains identified assembly patterns and discuss how respiration-dependent pacing of assembly activations might be beneficial for cognitive functions.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| |
Collapse
|
30
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
31
|
Fukai T. Computational models of Idling brain activity for memory processing. Neurosci Res 2022; 189:75-82. [PMID: 36592825 DOI: 10.1016/j.neures.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Studying the underlying neural mechanisms of cognitive functions of the brain is one of the central questions in modern biology. Moreover, it has significantly impacted the development of novel technologies in artificial intelligence. Spontaneous activity is a unique feature of the brain and is currently lacking in many artificially constructed intelligent machines. Spontaneous activity may represent the brain's idling states, which are internally driven by neuronal networks and possibly participate in offline processing during awake, sleep, and resting states. Evidence is accumulating that the brain's spontaneous activity is not mere noise but part of the mechanisms to process information about previous experiences. A bunch of literature has shown how previous sensory and behavioral experiences influence the subsequent patterns of brain activity with various methods in various animals. It seems, however, that the patterns of neural activity and their computational roles differ significantly from area to area and from function to function. In this article, I review the various forms of the brain's spontaneous activity, especially those observed during memory processing, and some attempts to model the generation mechanisms and computational roles of such activities.
Collapse
Affiliation(s)
- Tomoki Fukai
- Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
32
|
Serrano-Reyes M, Pérez-Ortega JE, García-Vilchis B, Laville A, Ortega A, Galarraga E, Bargas J. Dimensionality reduction and recurrence analysis reveal hidden structures of striatal pathological states. Front Syst Neurosci 2022; 16:975989. [PMID: 36741818 PMCID: PMC9893717 DOI: 10.3389/fnsys.2022.975989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: "fingerprints" of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states.
Collapse
Affiliation(s)
- Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,Departamento de Ingeniería en Sistemas Biomédicos, Centro de Ingeniería Avanzada, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico,Miguel Serrano-Reyes,
| | - Jesús Esteban Pérez-Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jose Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico,*Correspondence: Jose Bargas,
| |
Collapse
|
33
|
Sauer JF, Bartos M. Disrupted-in-schizophrenia-1 is required for normal pyramidal cell-interneuron communication and assembly dynamics in the prefrontal cortex. eLife 2022; 11:79471. [PMID: 36239988 PMCID: PMC9566853 DOI: 10.7554/elife.79471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
We interrogated prefrontal circuit function in mice lacking Disrupted-in-schizophrenia-1 (Disc1-mutant mice), a risk factor for psychiatric disorders. Single-unit recordings in awake mice revealed reduced average firing rates of fast-spiking interneurons (INTs), including optogenetically identified parvalbumin-positive cells, and a lower proportion of INTs phase-coupled to ongoing gamma oscillations. Moreover, we observed decreased spike transmission efficacy at local pyramidal cell (PYR)-INT connections in vivo, suggesting a reduced excitatory effect of local glutamatergic inputs as a potential mechanism of lower INT rates. On the network level, impaired INT function resulted in altered activation of PYR assemblies: While assembly activations defined as coactivations within 25 ms were observed equally often, the expression strength of individual assembly patterns was significantly higher in Disc1-mutant mice. Our data, thus, reveal a role of Disc1 in shaping the properties of prefrontal assembly patterns by setting INT responsiveness to glutamatergic drive.
Collapse
Affiliation(s)
- Jonas-Frederic Sauer
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Carrillo-Reid L, Calderon V. Conceptual framework for neuronal ensemble identification and manipulation related to behavior using calcium imaging. NEUROPHOTONICS 2022; 9:041403. [PMID: 35898958 PMCID: PMC9309498 DOI: 10.1117/1.nph.9.4.041403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Significance: The identification and manipulation of spatially identified neuronal ensembles with optical methods have been recently used to prove the causal link between neuronal ensemble activity and learned behaviors. However, the standardization of a conceptual framework to identify and manipulate neuronal ensembles from calcium imaging recordings is still lacking. Aim: We propose a conceptual framework for the identification and manipulation of neuronal ensembles using simultaneous calcium imaging and two-photon optogenetics in behaving mice. Approach: We review the computational approaches that have been used to identify and manipulate neuronal ensembles with single cell resolution during behavior in different brain regions using all-optical methods. Results: We proposed three steps as a conceptual framework that could be applied to calcium imaging recordings to identify and manipulate neuronal ensembles in behaving mice: (1) transformation of calcium transients into binary arrays; (2) identification of neuronal ensembles as similar population vectors; and (3) targeting of neuronal ensemble members that significantly impact behavioral performance. Conclusions: The use of simultaneous two-photon calcium imaging and two-photon optogenetics allowed for the experimental demonstration of the causal relation of population activity and learned behaviors. The standardization of analytical tools to identify and manipulate neuronal ensembles could accelerate interventional experiments aiming to reprogram the brain in normal and pathological conditions.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- National Autonomous University of Mexico, Neurobiology Institute, Department of Developmental Neurobiology and Neurophysiology, Querétaro, Mexico
| | - Vladimir Calderon
- National Autonomous University of Mexico, Neurobiology Institute, Department of Developmental Neurobiology and Neurophysiology, Querétaro, Mexico
| |
Collapse
|
35
|
Patel S, Johnson K, Adank D, Rosas-Vidal LE. Longitudinal monitoring of prefrontal cortical ensemble dynamics reveals new insights into stress habituation. Neurobiol Stress 2022; 20:100481. [PMID: 36160815 PMCID: PMC9489534 DOI: 10.1016/j.ynstr.2022.100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023] Open
Abstract
The prefrontal cortex is highly susceptible to the detrimental effects of stress and has been implicated in the pathogenesis of stress-related psychiatric disorders. It is not well understood, however, how stress is represented at the neuronal level in the prefrontal cortical neuronal ensembles. Even less understood is how the representation of stress changes over time with repeated exposure. Here we show that the prelimbic prefrontal neuronal ensemble representation of foot shock stress exhibits rapid spatial drift within and between sessions. Despite this rapid spatial drift of the ensemble, the representation of the stressor itself stabilizes over days. Our results suggest that stress is represented by rapidly drifting ensembles and despite this rapid drift, important features of the neuronal representation are stabilized, suggesting a neural correlate of stress habituation is present within prefrontal cortical neuron populations.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Keenan Johnson
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Danielle Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Luis E. Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
36
|
Lara-González E, Padilla-Orozco M, Fuentes-Serrano A, Bargas J, Duhne M. Translational neuronal ensembles: Neuronal microcircuits in psychology, physiology, pharmacology and pathology. Front Syst Neurosci 2022; 16:979680. [PMID: 36090187 PMCID: PMC9449457 DOI: 10.3389/fnsys.2022.979680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Multi-recording techniques show evidence that neurons coordinate their firing forming ensembles and that brain networks are made by connections between ensembles. While “canonical” microcircuits are composed of interconnected principal neurons and interneurons, it is not clear how they participate in recorded neuronal ensembles: “groups of neurons that show spatiotemporal co-activation”. Understanding synapses and their plasticity has become complex, making hard to consider all details to fill the gap between cellular-synaptic and circuit levels. Therefore, two assumptions became necessary: First, whatever the nature of the synapses these may be simplified by “functional connections”. Second, whatever the mechanisms to achieve synaptic potentiation or depression, the resultant synaptic weights are relatively stable. Both assumptions have experimental basis cited in this review, and tools to analyze neuronal populations are being developed based on them. Microcircuitry processing followed with multi-recording techniques show temporal sequences of neuronal ensembles resembling computational routines. These sequences can be aligned with the steps of behavioral tasks and behavior can be modified upon their manipulation, supporting the hypothesis that they are memory traces. In vitro, recordings show that these temporal sequences can be contained in isolated tissue of histological scale. Sequences found in control conditions differ from those recorded in pathological tissue obtained from animal disease models and those recorded after the actions of clinically useful drugs to treat disease states, setting the basis for new bioassays to test drugs with potential clinical use. These findings make the neuronal ensembles theoretical framework a dynamic neuroscience paradigm.
Collapse
Affiliation(s)
- Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Mariana Duhne,
| |
Collapse
|
37
|
Suri H, Rothschild G. Enhanced stability of complex sound representations relative to simple sounds in the auditory cortex. eNeuro 2022; 9:ENEURO.0031-22.2022. [PMID: 35868858 PMCID: PMC9347310 DOI: 10.1523/eneuro.0031-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Typical everyday sounds, such as those of speech or running water, are spectrotemporally complex. The ability to recognize complex sounds (CxS) and their associated meaning is presumed to rely on their stable neural representations across time. The auditory cortex is critical for processing of CxS, yet little is known of the degree of stability of auditory cortical representations of CxS across days. Previous studies have shown that the auditory cortex represents CxS identity with a substantial degree of invariance to basic sound attributes such as frequency. We therefore hypothesized that auditory cortical representations of CxS are more stable across days than those of sounds that lack spectrotemporal structure such as pure tones (PTs). To test this hypothesis, we recorded responses of identified L2/3 auditory cortical excitatory neurons to both PTs and CxS across days using two-photon calcium imaging in awake mice. Auditory cortical neurons showed significant daily changes of responses to both types of sounds, yet responses to CxS exhibited significantly lower rates of daily change than those of PTs. Furthermore, daily changes in response profiles to PTs tended to be more stimulus-specific, reflecting changes in sound selectivity, as compared to changes of CxS responses. Lastly, the enhanced stability of responses to CxS was evident across longer time intervals as well. Together, these results suggest that spectrotemporally CxS are more stably represented in the auditory cortex across time than PTs. These findings support a role of the auditory cortex in representing CxS identity across time.Significance statementThe ability to recognize everyday complex sounds such as those of speech or running water is presumed to rely on their stable neural representations. Yet, little is known of the degree of stability of single-neuron sound responses across days. As the auditory cortex is critical for complex sound perception, we hypothesized that the auditory cortical representations of complex sounds are relatively stable across days. To test this, we recorded sound responses of identified auditory cortical neurons across days in awake mice. We found that auditory cortical responses to complex sounds are significantly more stable across days as compared to those of simple pure tones. These findings support a role of the auditory cortex in representing complex sound identity across time.
Collapse
Affiliation(s)
- Harini Suri
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Gil-Marti B, Barredo CG, Pina-Flores S, Trejo JL, Turiegano E, Martin FA. The elusive transcriptional memory trace. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac008. [PMID: 38596710 PMCID: PMC10913820 DOI: 10.1093/oons/kvac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 04/11/2024]
Abstract
Memory is the brain faculty to store and remember information. It is a sequential process in which four different phases can be distinguished: encoding or learning, consolidation, storage and reactivation. Since the discovery of the first Drosophila gene essential for memory formation in 1976, our knowledge of its mechanisms has progressed greatly. The current view considers the existence of engrams, ensembles of neuronal populations whose activity is temporally coordinated and represents the minimal correlate of experience in brain circuits. In order to form and maintain the engram, protein synthesis and, probably, specific transcriptional program(s) is required. The immediate early gene response during learning process has been extensively studied. However, a detailed description of the transcriptional response for later memory phases was technically challenging. Recent advances in transcriptomics have allowed us to tackle this biological problem. This review summarizes recent findings in this field, and discusses whether or not it is possible to identify a transcriptional trace for memory.
Collapse
Affiliation(s)
- Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Celia G Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Sara Pina-Flores
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Jose Luis Trejo
- Neurogenesis of the Adult Animal Laboratory. Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council (CSIC), 28049, Madrid, Spain
| | - Enrique Turiegano
- Department of Biology, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Francisco A Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| |
Collapse
|
39
|
Masset P, Qin S, Zavatone-Veth JA. Drifting neuronal representations: Bug or feature? BIOLOGICAL CYBERNETICS 2022; 116:253-266. [PMID: 34993613 DOI: 10.1007/s00422-021-00916-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
The brain displays a remarkable ability to sustain stable memories, allowing animals to execute precise behaviors or recall stimulus associations years after they were first learned. Yet, recent long-term recording experiments have revealed that single-neuron representations continuously change over time, contravening the classical assumption that learned features remain static. How do unstable neural codes support robust perception, memories, and actions? Here, we review recent experimental evidence for such representational drift across brain areas, as well as dissections of its functional characteristics and underlying mechanisms. We emphasize theoretical proposals for how drift need not only be a form of noise for which the brain must compensate. Rather, it can emerge from computationally beneficial mechanisms in hierarchical networks performing robust probabilistic computations.
Collapse
Affiliation(s)
- Paul Masset
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Shanshan Qin
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
40
|
Alejandre-García T, Kim S, Pérez-Ortega J, Yuste R. Intrinsic excitability mechanisms of neuronal ensemble formation. eLife 2022; 11:77470. [PMID: 35506662 PMCID: PMC9197391 DOI: 10.7554/elife.77470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal ensembles are coactive groups of cortical neurons, found in spontaneous and evoked activity, that can mediate perception and behavior. To understand the mechanisms that lead to the formation of ensembles, we co-activated layer 2/3 pyramidal neurons in brain slices from mouse visual cortex, in animals of both sexes, replicating in vitro an optogenetic protocol to generate ensembles in vivo. Using whole-cell and perforated patch-clamp pair recordings we found that, after optogenetic or electrical stimulation, coactivated neurons increased their correlated activity, a hallmark of ensemble formation. Coactivated neurons showed small biphasic changes in presynaptic plasticity, with an initial depression followed by a potentiation after a recovery period. Optogenetic and electrical stimulation also induced significant increases in frequency and amplitude of spontaneous EPSPs, even after single-cell stimulation. In addition, we observed unexpected strong and persistent increases in neuronal excitability after stimulation, with increases in membrane resistance and reductions in spike threshold. A pharmacological agent that blocks changes in membrane resistance reverted this effect. These significant increases in excitability can explain the observed biphasic synaptic plasticity. We conclude that cell-intrinsic changes in excitability are involved in the formation of neuronal ensembles. We propose an ‘iceberg’ model, by which increased neuronal excitability makes subthreshold connections suprathreshold, enhancing the effect of already existing synapses, and generating a new neuronal ensemble. In the brain, groups of neurons that are activated together – also known as neuronal ensembles – are the basic units that underpin perception and behavior. Yet, exactly how these coactive circuits are established remains under investigation. In 1949, Canadian psychologist Donald Hebb proposed that, when brains learn something new, the neurons which are activated together connect to form ensembles, and their connections become stronger each time this specific piece of knowledge is recalled. This idea that ‘neurons that fire together, wire together’ can explain how memories are acquired and recalled, by strengthening their wiring. However, recent studies have questioned whether strengthening connections is the only mechanism by which neural ensembles can be created. Changes in the excitability of neurons (how easily they are to fire and become activated) may also play a role. In other words, ensembles could emerge because certain neurons become more excitable and fire more readily. To solve this conundrum, Alejandre-García et al. examined both hypotheses in the same system. Neurons in slices of the mouse visual cortex were stimulated electrically or optically, via a technique that controls neural activity with light. The activity of individual neurons and their connections was then measured with electrodes. Spontaneous activity among connected neurons increased after stimulation, indicative of the formation of neuronal ensembles. Connected neurons also showed small changes in the strength of their connections, which first decreased and then rebounded after an initial recovery period. Intriguingly, cells also showed unexpected strong and persistent increases in neuronal excitability after stimulation, such that neurons fired more readily to the same stimulus. In other words, neurons maintained a cellular memory of having been stimulated. The authors conclude that ensembles form because connected neurons become more excitable, which in turn, may strengthen connections of the circuit at a later stage. These results provide fresh insights about the neural circuits underpinning learning and memory. In time, the findings could also help to understand disorders such as Alzheimer’s disease and schizophrenia, which are characterised by memory impairments and disordered thinking.
Collapse
Affiliation(s)
| | - Samuel Kim
- Department of Biological Sciences, Columbia University, New York, United States
| | - Jesús Pérez-Ortega
- Department of Biological Sciences, Columbia University, New York, United States
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
41
|
Coss A, Suaste E, Gutierrez R. Lateral NAc Shell D1 and D2 neural ensembles concurrently predict licking behavior and categorize sucrose concentrations in a context-dependent manner. Neuroscience 2022; 493:81-98. [DOI: 10.1016/j.neuroscience.2022.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023]
|
42
|
Rule ME, O'Leary T. Self-healing codes: How stable neural populations can track continually reconfiguring neural representations. Proc Natl Acad Sci U S A 2022; 119:e2106692119. [PMID: 35145024 PMCID: PMC8851551 DOI: 10.1073/pnas.2106692119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
As an adaptive system, the brain must retain a faithful representation of the world while continuously integrating new information. Recent experiments have measured population activity in cortical and hippocampal circuits over many days and found that patterns of neural activity associated with fixed behavioral variables and percepts change dramatically over time. Such "representational drift" raises the question of how malleable population codes can interact coherently with stable long-term representations that are found in other circuits and with relatively rigid topographic mappings of peripheral sensory and motor signals. We explore how known plasticity mechanisms can allow single neurons to reliably read out an evolving population code without external error feedback. We find that interactions between Hebbian learning and single-cell homeostasis can exploit redundancy in a distributed population code to compensate for gradual changes in tuning. Recurrent feedback of partially stabilized readouts could allow a pool of readout cells to further correct inconsistencies introduced by representational drift. This shows how relatively simple, known mechanisms can stabilize neural tuning in the short term and provides a plausible explanation for how plastic neural codes remain integrated with consolidated, long-term representations.
Collapse
Affiliation(s)
- Michael E Rule
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Timothy O'Leary
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
43
|
Bauer J, Rose T. Mouse vision: Variability and stability across the visual processing hierarchy. Curr Biol 2021; 31:R1129-R1132. [PMID: 34637715 DOI: 10.1016/j.cub.2021.08.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The response of individual neurons to stable sensory input or behavioral output can change over time. A new study provides evidence from the mouse visual system that such drift does not follow the hierarchy of information flow across the brain.
Collapse
Affiliation(s)
- Joel Bauer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tobias Rose
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|