1
|
Wesener DA, Beller ZW, Hill MF, Yuan H, Belanger DB, Frankfater C, Terrapon N, Henrissat B, Rodionov DA, Leyn SA, Osterman A, van Hylckama Vlieg JET, Gordon JI. In vivo manipulation of human gut Bacteroides fitness by abiotic oligosaccharides. Nat Chem Biol 2025; 21:544-554. [PMID: 39443715 PMCID: PMC11949833 DOI: 10.1038/s41589-024-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Synthetic glycans (SGs) containing glycosidic linkages and structures not identified in nature offer a means for deliberately altering microbial community properties. Here pools of SG oligosaccharides were generated via polymerization of monosaccharides and screened for their ability to increase saccharolytic Bacteroides in ex vivo cultures of human fecal samples. A lead SG preparation was orally administered to gnotobiotic mice harboring a consortium of 56 cultured, phylogenetically diverse human gut bacteria and fed a Western diet. The abundances of 3 of 15 Bacteroides strains increased, most prominently B. intestinalis. Underlying mechanisms were characterized by analyzing in vivo expression of the carbohydrate utilization machinery, using retrievable microscopic paramagnetic particles with bound SG oligosaccharides and assaying SG degradation by individual purified B. intestinalis glycoside hydrolases. The results reveal that SGs can selectively co-opt carbohydrate utilization machinery in different human gut Bacteroides and demonstrate a means for identifying artificial carbohydrate structures for targeted bacterial manipulation.
Collapse
Affiliation(s)
- Darryl A Wesener
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| | - Zachary W Beller
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan F Hill
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Han Yuan
- Kaleido Biosciences, Lexington, MA, USA
| | | | - Cheryl Frankfater
- Biomedical Mass Spectrometry Resource, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolecules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
DeFord L, Yoon JY. Soil microbiome characterization and its future directions with biosensing. J Biol Eng 2024; 18:50. [PMID: 39256848 PMCID: PMC11389470 DOI: 10.1186/s13036-024-00444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Soil microbiome characterization is typically achieved with next-generation sequencing (NGS) techniques. Metabarcoding is very common, and meta-omics is growing in popularity. These techniques have been instrumental in microbiology, but they have limitations. They require extensive time, funding, expertise, and computing power to be effective. Moreover, these techniques are restricted to controlled laboratory conditions; they are not applicable in field settings, nor can they rapidly generate data. This hinders using NGS as an environmental monitoring tool or an in-situ checking device. Biosensing technology can be applied to soil microbiome characterization to overcome these limitations and to complement NGS techniques. Biosensing has been used in biomedical applications for decades, and many successful commercial products are on the market. Given its previous success, biosensing has much to offer soil microbiome characterization. There is a great variety of biosensors and biosensing techniques, and a few in particular are better suited for soil field studies. Aptamers are more stable than enzymes or antibodies and are more ready for field-use biosensors. Given that any microbiome is complex, a multiplex sensor will be needed, and with large, complicated datasets, machine learning might benefit these analyses. If the signals from the biosensors are optical, a smartphone can be used as a portable optical reader and potential data-analyzing device. Biosensing is a rich field that couples engineering and biology, and applying its toolset to help advance soil microbiome characterization would be a boon to microbiology more broadly.
Collapse
Affiliation(s)
- Lexi DeFord
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Moreira MJ, Pintado M, Almeida JMMMD. Are Aptamer-Based Biosensors the Future of the Detection of the Human Gut Microbiome?-A Systematic Review and Meta-Analysis. BIOSENSORS 2024; 14:423. [PMID: 39329798 PMCID: PMC11430143 DOI: 10.3390/bios14090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
The gut microbiome is shaped early in life by dietary and lifestyle factors. Specific compounds in the gut affect the growth of different bacterial species and the production of beneficial or harmful byproducts. Dysbiosis of the gut microbiome has been linked to various diseases resulting from the presence of harmful bacteria and their byproducts. Existing methods for detecting microbial species, such as microscopic observation and molecular biological techniques, are costly, labor-intensive, and require skilled personnel. Biosensors, which integrate a recognition element, transducer, amplifier, signal processor, and display unit, can convert biological events into electronic signals. This review provides a comprehensive and systematic survey of scientific publications from 2018 to June 2024, obtained from ScienceDirect, PubMed, and Scopus databases. The aim was to evaluate the current state-of-the-art and identify knowledge gaps in the application of aptamer biosensors for the determination of gut microbiota. A total of 13 eligible publications were categorized based on the type of study: those using microbial bioreceptors (category 1) and those using aptamer bioreceptors (category 2) for the determination of gut microbiota. Point-of-care biosensors are being developed to monitor changes in metabolites that may lead to disease. They are well-suited for use in the healthcare system and offer an excellent alternative to traditional methods. Aptamers are gaining attention due to their stability, specificity, scalability, reproducibility, low production cost, and low immunogenicity. While there is limited research on using aptamers to detect human gut microbiota, they show promise for providing accurate, robust, and cost-effective diagnostic methods for monitoring the gut microbiome.
Collapse
Affiliation(s)
- Maria João Moreira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.M.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.M.); (M.P.)
| | - José M. M. M. De Almeida
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, University of Porto, 4169-007 Porto, Portugal
- Department of Physics, School of Sciences and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
4
|
Yuan J, Zhao K, Tan X, Xue R, Zeng Y, Ratti C, Trivedi P. Perspective on the development of synthetic microbial community (SynCom) biosensors. Trends Biotechnol 2023; 41:1227-1236. [PMID: 37183053 DOI: 10.1016/j.tibtech.2023.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Synthetic microbial community (SynCom) biosensors are a promising technology for detecting and responding to environmental cues and target molecules. SynCom biosensors use engineered microorganisms to create a more complex and diverse sensing system, enabling them to respond to stimuli with enhanced sensitivity and accuracy. Here, we give a definition of SynCom biosensors, outline their construction workflow, and discuss current biosensing technology. We also highlight the challenges and future for developing and optimizing SynCom biosensors and the potential applications in agriculture and food management, biotherapeutic development, home sensing, urban and environmental monitoring, and the One Health foundation. We believe SynCom biosensors could be used in a real-time and remote-controlled manner to sense the chaos of constantly dynamic environments.
Collapse
Affiliation(s)
- Jing Yuan
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80524, USA; Senseable City Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Ran Xue
- Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yuan Zeng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
| | - Carlo Ratti
- Senseable City Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80524, USA
| |
Collapse
|
5
|
Beller ZW, Wesener DA, Seebeck TR, Guruge JL, Byrne AE, Henrissat S, Terrapon N, Henrissat B, Rodionov DA, Osterman AL, Suarez C, Bacalzo NP, Chen Y, Couture G, Lebrilla CB, Zhang Z, Eastlund ER, McCann CH, Davis GD, Gordon JI. Inducible CRISPR-targeted "knockdown" of human gut Bacteroides in gnotobiotic mice discloses glycan utilization strategies. Proc Natl Acad Sci U S A 2023; 120:e2311422120. [PMID: 37733741 PMCID: PMC10523453 DOI: 10.1073/pnas.2311422120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
Understanding how members of the human gut microbiota prioritize nutrient resources is one component of a larger effort to decipher the mechanisms defining microbial community robustness and resiliency in health and disease. This knowledge is foundational for development of microbiota-directed therapeutics. To model how bacteria prioritize glycans in the gut, germfree mice were colonized with 13 human gut bacterial strains, including seven saccharolytic Bacteroidaceae species. Animals were fed a Western diet supplemented with pea fiber. After community assembly, an inducible CRISPR-based system was used to selectively and temporarily reduce the absolute abundance of Bacteroides thetaiotaomicron or B. cellulosilyticus by 10- to 60-fold. Each knockdown resulted in specific, reproducible increases in the abundances of other Bacteroidaceae and dynamic alterations in their expression of genes involved in glycan utilization. Emergence of these "alternate consumers" was associated with preservation of community saccharolytic activity. Using an inducible system for CRISPR base editing in vitro, we disrupted translation of transporters critical for utilizing dietary polysaccharides in Phocaeicola vulgatus, a B. cellulosilyticus knockdown-responsive taxon. In vitro and in vivo tests of the resulting P. vulgatus mutants allowed us to further characterize mechanisms associated with its increased fitness after knockdown. In principle, the approach described can be applied to study utilization of a range of nutrients and to preclinical efforts designed to develop therapeutic strategies for precision manipulation of microbial communities.
Collapse
Affiliation(s)
- Zachary W. Beller
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
| | - Darryl A. Wesener
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
| | - Timothy R. Seebeck
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
- Genome Engineering R&D, MilliporeSigma, the Life Science business Merck KGaA, Darmstadt, Germany, St. Louis, MO63103
| | - Janaki L. Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
| | - Alexandra E. Byrne
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille University, 13288Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille University, 13288Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. LyngbyDK-2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Chris Suarez
- Department of Chemistry, University of California, Davis, CA95616
| | | | - Ye Chen
- Department of Chemistry, University of California, Davis, CA95616
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA95616
| | | | - Zhigang Zhang
- Genome Engineering R&D, MilliporeSigma, the Life Science business Merck KGaA, Darmstadt, Germany, St. Louis, MO63103
| | - Erik R. Eastlund
- Genome Engineering R&D, MilliporeSigma, the Life Science business Merck KGaA, Darmstadt, Germany, St. Louis, MO63103
| | - Caitlin H. McCann
- Genome Engineering R&D, MilliporeSigma, the Life Science business Merck KGaA, Darmstadt, Germany, St. Louis, MO63103
| | - Gregory D. Davis
- Genome Engineering R&D, MilliporeSigma, the Life Science business Merck KGaA, Darmstadt, Germany, St. Louis, MO63103
| | - Jeffrey I. Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
6
|
Han ND, Cheng J, Delannoy-Bruno O, Webber D, Terrapon N, Henrissat B, Rodionov DA, Arzamasov AA, Osterman AL, Hayashi DK, Meynier A, Vinoy S, Desai C, Marion S, Barratt MJ, Heath AC, Gordon JI. Microbial liberation of N-methylserotonin from orange fiber in gnotobiotic mice and humans. Cell 2022; 185:2495-2509.e11. [PMID: 35764090 DOI: 10.1016/j.cell.2022.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 06/03/2022] [Indexed: 12/13/2022]
Abstract
Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.
Collapse
Affiliation(s)
- Nathan D Han
- The Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, St. Louis, MO 63110, USA
| | - Jiye Cheng
- The Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, St. Louis, MO 63110, USA
| | - Omar Delannoy-Bruno
- The Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, St. Louis, MO 63110, USA
| | - Daniel Webber
- The Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, 13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, 13288 Marseille, France; Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | | | | | - Chandani Desai
- The Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, St. Louis, MO 63110, USA
| | - Stacey Marion
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, St. Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Delannoy-Bruno O, Desai C, Castillo JJ, Couture G, Barve RA, Lombard V, Henrissat B, Cheng J, Han N, Hayashi DK, Meynier A, Vinoy S, Lebrilla CB, Marion S, Heath AC, Barratt MJ, Gordon JI. An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proc Natl Acad Sci U S A 2022; 119:e2123411119. [PMID: 35533274 PMCID: PMC9171781 DOI: 10.1073/pnas.2123411119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type β/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets.
Collapse
Affiliation(s)
- Omar Delannoy-Bruno
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110
| | - Chandani Desai
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110
| | - Juan J. Castillo
- Department of Chemistry, University of California, Davis, CA 95616
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA 95616
| | - Ruteja A. Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille cedex 9, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110
| | - Nathan Han
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | - Stacey Marion
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey I. Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
8
|
Chen RY, Mostafa I, Hibberd MC, Das S, Lynn HM, Webber DM, Mahfuz M, Barratt MJ, Ahmed T, Gordon JI. Melding microbiome and nutritional science with early child development. Nat Med 2021; 27:1503-1506. [PMID: 34326550 PMCID: PMC8713503 DOI: 10.1038/s41591-021-01451-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Programs for treating malnutrition in children should consider how food formulations affect postnatal gut microbiome development.
Collapse
Affiliation(s)
- Robert Y Chen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Matthew C Hibberd
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Hannah M Lynn
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel M Webber
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Michael J Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Jeffrey I Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Bodawatta KH, Hird SM, Grond K, Poulsen M, Jønsson KA. Avian gut microbiomes taking flight. Trends Microbiol 2021; 30:268-280. [PMID: 34393028 DOI: 10.1016/j.tim.2021.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Birds harbor complex gut bacterial communities that may sustain their ecologies and facilitate their biological roles, distribution, and diversity. Research on gut microbiomes in wild birds is surging and it is clear that they are diverse and important - but strongly influenced by a series of environmental factors. To continue expanding our understanding of how the internal ecosystems of birds work in their natural settings, we believe the most pressing needs involve studies on the functional and evolutionary aspects of these symbioses. Here we summarize the state of the field and provide a roadmap for future studies on aspects that are pivotal to understanding the biology of avian gut microbiomes, emphasizing prospects for integrating gut microbiome work in avian conservation and host health monitoring.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska, Anchorage, AK, USA
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Delannoy-Bruno O, Desai C, Raman AS, Chen RY, Hibberd MC, Cheng J, Han N, Castillo JJ, Couture G, Lebrilla CB, Barve RA, Lombard V, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Hayashi DK, Meynier A, Vinoy S, Kirbach K, Wilmot T, Heath AC, Klein S, Barratt MJ, Gordon JI. Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 2021; 595:91-95. [PMID: 34163075 PMCID: PMC8324079 DOI: 10.1038/s41586-021-03671-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Changing food preferences brought about by westernization that have deleterious health effects1,2-combined with myriad forces that are contributing to increased food insecurity-are catalysing efforts to identify more nutritious and affordable foods3. Consumption of dietary fibre can help to prevent cardiovascular disease, type 2 diabetes and obesity4-6. A substantial number of reports have explored the effects of dietary fibre on the gut microbial community7-9. However, the microbiome is complex, dynamic and exhibits considerable intra- and interpersonal variation in its composition and functions. The large number of potential interactions between the components of the microbiome makes it challenging to define the mechanisms by which food ingredients affect community properties. Here we address the question of how foods containing different fibre preparations can be designed to alter functions associated with specific components of the microbiome. Because a marked increase in snack consumption is associated with westernization, we formulated snack prototypes using plant fibres from different sustainable sources that targeted distinct features of the gut microbiomes of individuals with obesity when transplanted into gnotobiotic mice. We used these snacks to supplement controlled diets that were consumed by adult individuals with obesity or who were overweight. Fibre-specific changes in their microbiomes were linked to changes in their plasma proteomes indicative of an altered physiological state.
Collapse
Affiliation(s)
- Omar Delannoy-Bruno
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Chandani Desai
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Arjun S Raman
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert Y Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Nathan Han
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA, USA
| | | | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | | | | - Kyleigh Kirbach
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Tara Wilmot
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|