1
|
Quan T, Li R, Gao T. Molecular mechanism of melatonin-mediated mitophagy regulating proline production to ameliorate skin aging. Exp Gerontol 2025; 204:112738. [PMID: 40147561 DOI: 10.1016/j.exger.2025.112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Collagen loss is one of the major contributor to signs of skin aging such as dryness, roughness, and wrinkle formation, which is closely linked to a decline in the amount of proline produced in mitochondria. Melatonin has been shown to improve several clinical signs of skin aging, while the mechanism is unclear. In our study, we found that mitophagy, proline synthesis key enzyme NADK2 and proline and collagen levels were significantly reduced, while oxidative stress levels increased in aging skin, and melatonin supplementation could effectively up-regulate mitophagy level and restore proline synthesis and further improved skin aging. However, proline supplementation could also exert an anti-aging effect, while it had no effect on the mitochondrial dysfunction. Moreover, our study indicated that melatonin enters the cell by binding to the MT1 receptor and then enters the mitochondria via the PEPT1 transporter to exert its mitochondrial protective effects. This study helps to elucidate the mechanism of mitochondrial dysfunction-induced skin aging, and provides new theoretical guidance for revealing the mechanism of skin aging and rationally utilizing endocrine hormones to improve skin aging, which has a broad application prospect.
Collapse
Affiliation(s)
- Tao Quan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Ran Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Ting Gao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Sharma S, Thomas E, Dahal S, Das S, Kothari S, Roy U, Kumari N, Gopalakrishnan V, Raghavan S. Formation of multiple G-quadruplexes contributes toward BCR fragility associated with chronic myelogenous leukemia. Nucleic Acids Res 2025; 53:gkaf167. [PMID: 40114373 PMCID: PMC11925732 DOI: 10.1093/nar/gkaf167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
The Philadelphia chromosome, the translocation between BCR and ABL genes, is seen in 95% of chronic myeloid leukemia (CML) patients. Although discovered >60 years ago, the molecular mechanism of BCR fragility is unclear. Here, we have identified several G4 DNA motifs at the BCR fragile region of CML patients. Various lines of experimentation revealed that the breakpoint regions could fold into multiple intramolecular G-quadruplex structures. The sodium bisulfite modification assay revealed single strandedness in the fragile region when present on a plasmid and human genome. Circular dichroism spectroscopy revealed the parallel G4 DNA formation, leading to polymerase arrest at the BCR breakpoints. Intracellular recombination assay revealed that DNA breakage at the BCR fragile region could join with the break generated by ISceI endonuclease. Finally, purified AID could bind and deaminate cytosines when present on single-stranded DNA generated due to G4 DNA, both in vitro and inside the cells. Therefore, our results suggest that AID binds to G4 DNA present at the BCR fragile region, resulting in the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, which can later get converted into a double-strand break, leading to t(9;22) chromosomal translocation.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Elizabeth Thomas
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayak Das
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shefali Kothari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Department of Zoology, St. Joseph's College, Irinjalakuda, Kerala 680121, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Xu X, Penjweini R, Székvölgyi L, Karányi Z, Heckel AM, Gurusamy D, Varga D, Yang S, Brown AL, Cui W, Park J, Nagy D, Podszun MC, Yang S, Singh K, Ashcroft SP, Kim J, Kim MK, Tarassov I, Zhu J, Philp A, Rotman Y, Knutson JR, Entelis N, Chung JH. Endonuclease G promotes hepatic mitochondrial respiration by selectively increasing mitochondrial tRNA Thr production. Proc Natl Acad Sci U S A 2025; 122:e2411298122. [PMID: 39752519 PMCID: PMC11725929 DOI: 10.1073/pnas.2411298122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known. Fat accumulation in metabolic dysfunction-associated steatotic liver disease (MASLD), which is more common in men, is caused in part by mitochondrial dysfunction. EndoG expression is reduced in MASLD liver, and EndoG deficiency causes MASLD in an obesity-independent manner but only in males. EndoG promotes mitochondrial respiration by resolving mitochondrial tRNA/DNA hybrids formed during mtDNA transcription by recruiting RNA helicase DHX30 to unwind them. EndoG also cleaves off the 3'-end of the H-strand transcript that can prevent mt-tRNAThr precursor cloverleaf-folding, and processing, which increases mt-tRNAThr production and mitochondrial translation. Using fluorescent lifetime imaging microscopy technology to visualize oxygen consumption at the individual mitochondrion level, we found that EndoG deficiency leads to the selective loss of a mitochondrial subpopulation with high-oxygen consumption. This defect was reversed with mt-tRNAThr supplementation. Thus, EndoG promotes mitochondrial respiration by selectively regulating the production of mt-tRNAThr in male mice.
Collapse
Affiliation(s)
- Xihui Xu
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Lóránt Székvölgyi
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Zsolt Karányi
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Anne-Marie Heckel
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Devikala Gurusamy
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Dóra Varga
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Shutong Yang
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Alexandra L. Brown
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Wenqi Cui
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Jinsung Park
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Dénes Nagy
- Momentum Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary
| | - Maren C. Podszun
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Sarah Yang
- DNA Sequencing and Genomics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Komudi Singh
- Bioinformatics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Stephen P. Ashcroft
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, BirminghamB152TT, United Kingdom
| | - Jeonghan Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul06591, South Korea
| | - Myung K. Kim
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Ivan Tarassov
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Jun Zhu
- DNA Sequencing and Genomics Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Royal Prince Alfred Hospital, Sydney, NSW2050, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD20892
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| | - Nina Entelis
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Strasbourg University-CNRS, Strasbourg67000, France
| | - Jay H. Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD20892
| |
Collapse
|
4
|
Roy U, Sharma A, Sharma S, Dahal S, Kumari N, Desai SS, Kumari S, Dixit J, Sharma M A, Nujoom N, Choudhary B, Raghavan SC. Mutations at BCL11B Exon 4 Associated with T Cell Acute Lymphoblastic Leukemia Are Facilitated by AID and Formation of Non-B DNA Conformations. Mol Cell Biol 2024; 44:590-606. [PMID: 39511874 PMCID: PMC11583620 DOI: 10.1080/10985549.2024.2419661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
One of the primary reasons behind the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL) is the deregulation of the transcription factor BCL11B. The exon 4 of BCL11B harbors several driver mutations, which abolishes its DNA-binding ability. The high frequency of C > T or G > A conversion in close vicinity of AID (Activation-induced cytidine deaminase)-hotspot motifs in the deregulated gene prompted us to investigate the role of AID in BCL11B mutagenesis. Our results reveal that AID is expressed in T-ALL patient-derived cells, binds to BCL11B fragile region (FR) in exon 4 of T cells in vivo, and generates a signature mutation pattern in this region. The mutation frequency in BCL11B FR could be modulated upon overexpression of the AID gene in the knockout background, further suggesting the involvement of AID in BCL11B mutagenesis. Importantly, various lines of experimentation reveal that BCL11B FR could fold into parallel G-quadruplex, triplex, and hairpin structures, which could act as a replication/transcription block, causing mutagenesis. Thus, our results suggest that AID binds to BCL11B exon 4 due to non-B DNA formation, causing U:G mismatches or replication blocks, which, when repaired erroneously, generates deleterious mutations, resulting in loss of functionality of BCL11B, and thus becomes the cause of T-ALL.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Jyotika Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Arun Sharma M
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Najma Nujoom
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | | |
Collapse
|
5
|
Roy U, Desai SS, Kumari S, Bushra T, Choudhary B, Raghavan SC. Understanding the Role of miR-29a in the Regulation of RAG1, a Gene Associated with the Development of the Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1125-1138. [PMID: 39269689 DOI: 10.4049/jimmunol.2300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
The process of Ag receptor diversity is initiated by RAGs consisting of RAG1 and RAG2 in developing lymphocytes. Besides its role as a sequence-specific nuclease during V(D)J recombination, RAGs can also act as a structure-specific nuclease leading to genome instability. Thus, regulation of RAG expression is essential to maintaining genome stability. Previously, the role of miR29c in the regulation of RAG1 was identified. In this article, we report the regulation of RAG1 by miR-29a in the lymphocytes of both mice (Mus musculus) and humans (Homo sapiens). The level of RAG1 could be modulated by overexpression of miR-29a and inhibition using anti-miRs. Argonaute2-immunoprecipitation and high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation studies established the association of miR-29a and RAG1 with Argonaute proteins. We observed a negative correlation between miR-29a and RAG1 levels in mouse B and T cells and leukemia patients. Overexpression of pre-miR-29a in the bone marrow cells of mice led to the generation of mature miR-29a transcripts and reduced RAG1 expression, which led to a significant reduction in V(D)J recombination in pro-B cells. Importantly, our studies are consistent with the phenotype reported in miR-29a knockout mice, which showed impaired immunity and survival defects. Finally, we show that although both miR-29c and miR-29a can regulate RAG1 at mRNA and protein levels, miR-29a substantially impacts immunity and survival. Our results reveal that the repression of RAG1 activity by miR-29a in B cells of mice and humans is essential to maintain Ig diversity and prevent hematological malignancies resulting from aberrant RAG1 expression in lymphocytes.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar Sanjiv Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Tanzeem Bushra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Giuliano M, Santa Paola S, Borgione E, Lo Giudice M, Di Blasi FD, Pettinato R, Romano C, Scuderi C. The 9 bp Deletion between the Mitochondrial COII and Lysine tRNA Genes in a Caucasian Population with Cognitive Disorders: An Observational Study. Int J Mol Sci 2024; 25:10826. [PMID: 39409155 PMCID: PMC11476479 DOI: 10.3390/ijms251910826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
The loss of one of the two copies of the 9 bp tandem repeat sequence (CCCCCTCTA) located in the small non-coding region between the cytochrome oxidase II (COII) and the lysine tRNA genes in human mtDNA has been reported to be polymorphic in Asian, Oceanian and Sub-Saharan African populations, but it has rarely been observed in Europe. In this study, we will evaluate the possible association between the MIC9D polymorphism and cognitive disorders. A genetic analysis of unrelated Sicilian patients with cognitive deficits was performed to identify the 9 bp deletion MIC9D polymorphism. The MIC9D polymorphism was found in six patients, whereas this variant was absent in control individuals without cognitive deficits. The patients with the MIC9D polymorphism exhibited more complex clinical presentations; in particular, all had neuromuscular disorders and five also presented with behavioral disorders. The present study suggests a potential association between the MIC9D polymorphism and cognitive impairment with concurrent neuromuscular and behavioral involvement.
Collapse
Affiliation(s)
- Marika Giuliano
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
| | - Sandro Santa Paola
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
| | - Eugenia Borgione
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
| | - Mariangela Lo Giudice
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
| | - Francesco Domenico Di Blasi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
| | - Rosa Pettinato
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
| | - Corrado Romano
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Carmela Scuderi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (S.S.P.); (E.B.); (M.L.G.); (F.D.D.B.); (R.P.); (C.R.); (C.S.)
| |
Collapse
|
7
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Yu Y, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading extranuclear DNA species. Nat Commun 2024; 15:7653. [PMID: 39227600 PMCID: PMC11372161 DOI: 10.1038/s41467-024-52147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA ( >10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.
Collapse
Affiliation(s)
- Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xin Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Jordan Fox
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Pilendra Thakre
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Brenna McCauley
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Nicolas Nikoloutsos
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, USA
| | - Yang Yu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Qian Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
8
|
Disha B, Mathew RP, Dalal AB, Mahato AK, Satyamoorthy K, Singh KK, Thangaraj K, Govindaraj P. Mitochondria in biology and medicine - 2023. Mitochondrion 2024; 76:101853. [PMID: 38423268 DOI: 10.1016/j.mito.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Mitochondria are an indispensable part of the cell that plays a crucial role in regulating various signaling pathways, energy metabolism, cell differentiation, proliferation, and cell death. Since mitochondria have their own genetic material, they differ from their nuclear counterparts, and dysregulation is responsible for a broad spectrum of diseases. Mitochondrial dysfunction is associated with several disorders, including neuro-muscular disorders, cancer, and premature aging, among others. The intricacy of the field is due to the cross-talk between nuclear and mitochondrial genes, which has also improved our knowledge of mitochondrial functions and their pathogenesis. Therefore, interdisciplinary research and communication are crucial for mitochondrial biology and medicine due to the challenges they pose for diagnosis and treatment. The ninth annual conference of the Society for Mitochondria Research and Medicine (SMRM)- India, titled "Mitochondria in Biology and Medicine" was organized at the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India, on June 21-23, 2023. The latest advancements in the field of mitochondrial biology and medicine were discussed at the conference. In this article, we summarize the entire event for the benefit of researchers working in the field of mitochondrial biology and medicine.
Collapse
Affiliation(s)
- B Disha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Rohan Peter Mathew
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Ashwin B Dalal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Ajay K Mahato
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, SDM College of Medical Sciences and Hospital, Manjushree Nagar, Sattur, Dharwad 580009, India
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Kaul Genetics Building, Rm. 620, 720 20th St. South, Birmingham, AL, 35294, USA
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Periyasamy Govindaraj
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Department of Neuropathology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru 560029, India.
| |
Collapse
|
9
|
Gopalakrishnan V, Roy U, Srivastava S, Kariya KM, Sharma S, Javedakar SM, Choudhary B, Raghavan SC. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell Mol Life Sci 2024; 81:21. [PMID: 38196006 PMCID: PMC11072719 DOI: 10.1007/s00018-023-05042-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India
- Department of Zoology, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, 680121, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Khyati M Kariya
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Saniya M Javedakar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
10
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading cytoplasmic DNA. RESEARCH SQUARE 2024:rs.3.rs-3641411. [PMID: 38260641 PMCID: PMC10802722 DOI: 10.21203/rs.3.rs-3641411/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease 1. Cytoplasmic nucleases degrade these DNA species to limit inflammation 2,3. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nuclear mtDNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.
Collapse
Affiliation(s)
- Yang Yu
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Xin Wang
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jordan Fox
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Ruofan Yu
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Pilendra Thakre
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Brenna McCauley
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nicolas Nikoloutsos
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Qian Li
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - P. J. Hastings
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| | - Weiwei Dang
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Grzegorz Ira
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
11
|
Kumari R, Roy U, Desai S, Mondal AS, Nair RR, Nilavar N, Choudhary B, Raghavan SC. MicroRNA, miR-501 regulate the V(D)J recombination in B cells. Biochem J 2023; 480:2061-2077. [PMID: 38084601 DOI: 10.1042/bcj20230250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The stringent regulation of RAGs (Recombination activating genes), the site-specific endonuclease responsible for V(D)J recombination, is important to prevent genomic rearrangements and chromosomal translocations in lymphoid cells. In the present study, we identify a microRNA, miR-501, which can regulate the expression of RAG1 in lymphoid cells. Overexpression of the pre-miRNA construct led to the generation of mature miRNAs and a concomitant reduction in RAG1 expression, whereas inhibition using anti-miRs resulted in its enhanced expression. The direct interaction of the 3'UTR of miR-501 with RAG1 was confirmed by the reporter assay. Importantly, overexpression of miRNAs led to inhibition of V(D)J recombination in B cells, revealing their impact on the physiological function of RAGs. Of interest is the inverse correlation observed for miR-501 with RAG1 in various leukemia patients and lymphoid cell lines, suggesting its possible use in cancer therapy. Thus, our results reveal the regulation of RAG1 by miR-501-3p in B cells and thus V(D)J recombination and its possible implications on immunoglobulin leukemogenesis.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Arannya S Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rajshree R Nair
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Namrata Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading cytoplasmic DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571550. [PMID: 38168242 PMCID: PMC10760121 DOI: 10.1101/2023.12.13.571550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease. Cytoplasmic nucleases degrade these DNA species to limit inflammation. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nu clear mt DNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (∼45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.
Collapse
|
13
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
14
|
Kumari N, Antil H, Kumari S, Raghavan SC. Deficiency of ligase IV leads to reduced NHEJ, accumulation of DNA damage, and can sensitize cells to cancer therapeutics. Genomics 2023; 115:110731. [PMID: 37871849 DOI: 10.1016/j.ygeno.2023.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Himanshu Antil
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
15
|
Joy R, Siddiqua H, Sharma S, Raveendran M, John F, Hassan P, Gawali SL, Raghavan SC, George J. Block Copolymer Encapsulation of Disarib, an Inhibitor of BCL2 for Improved Chemotherapeutic Potential. ACS OMEGA 2023; 8:40729-40740. [PMID: 37929147 PMCID: PMC10621013 DOI: 10.1021/acsomega.3c05802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
A chemical inhibitor of antiapoptotic protein, BCL2, known as Disarib, suffers poor solubility in aqueous environments; thereby limiting its potential as a chemotherapeutic agent. To overcome this limitation and enhance the therapeutic efficacy of Disarib, we have employed the encapsulation of this small molecule inhibitor within P123 copolymer matrix. Micelles were synthesized using a thin-film hydration technique, and a comprehensive analysis was undertaken to evaluate the resulting micelle properties, including morphology, particle size, intermolecular interactions, encapsulation efficiency, and in vitro release characteristics. This assessment utilized various physicochemical techniques including UV spectroscopy, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). Disarib-loaded P123 micelle formulation denoted as P123D exhibited a well-defined particle size of approximately 29.2 nm spherical core-shell morphology. Our investigations revealed a notable encapsulation efficiency of 75%, and we observed a biphasic release pattern for the encapsulated Disarib. Furthermore, our cytotoxicity assessment of P123D micelles against mouse breast adenocarcinoma, mouse lymphoma, and human leukemic cell lines showed 40-45% increase in cytotoxicity compared with the administration of Disarib alone in the breast adenocarcinoma cell line. Enhancement in the cytotoxicity of P123D was found to be higher or limited; however, it is important to observe that the encapsulation method significantly enhanced the aqueous solubility of Disarib as it has the best solubility in dimethyl sulfoxide (DMSO) in the unencapsulated state.
Collapse
Affiliation(s)
- Reshma Joy
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| | - Humaira Siddiqua
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shivangi Sharma
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manthra Raveendran
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Franklin John
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| | | | - Santosh L Gawali
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sathees C. Raghavan
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jinu George
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| |
Collapse
|
16
|
Wang W, Tan J, Liu X, Guo W, Li M, Liu X, Liu Y, Dai W, Hu L, Wang Y, Lu Q, Lee WX, Tang HW, Zhou Q. Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress. Nat Commun 2023; 14:6201. [PMID: 37794041 PMCID: PMC10550995 DOI: 10.1038/s41467-023-41757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Endonuclease G (ENDOG), a nuclear-encoded mitochondrial intermembrane space protein, is well known to be translocated into the nucleus during apoptosis. Recent studies have shown that ENDOG might enter the mitochondrial matrix to regulate mitochondrial genome cleavage and replication. However, little is known about the role of ENDOG in the cytosol. Our previous work showed that cytoplasmic ENDOG competitively binds with 14-3-3γ, which released TSC2 to repress mTORC1 signaling and induce autophagy. Here, we demonstrate that cytoplasmic ENDOG could also release Rictor from 14-3-3γ to activate the mTORC2-AKT-ACLY axis, resulting in acetyl-CoA production. Importantly, we observe that ENDOG could translocate to the ER, bind with Bip, and release IRE1a/PERK to activate the endoplasmic reticulum stress response, promoting lipid synthesis. Taken together, we demonstrate that loss of ENDOG suppresses acetyl-CoA production and lipid synthesis, along with reducing endoplasmic reticulum stress, which eventually alleviates high-fat diet-induced nonalcoholic fatty liver disease in female mice.
Collapse
Affiliation(s)
- Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Junyang Tan
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaomin Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenqi Guo
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Mengmeng Li
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xinjie Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yanyan Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liubing Hu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yimin Wang
- GeneMind Biosciences Company Limited, No. 116, Qingshuihe 1st Road, Luohu District, Shenzhen, Guangdong, 518000, China
| | - Qiuxia Lu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|