1
|
Solyga M, Keller GB. Multimodal mismatch responses in mouse auditory cortex. eLife 2025; 13:RP95398. [PMID: 39928393 PMCID: PMC11810104 DOI: 10.7554/elife.95398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Our movements result in predictable sensory feedback that is often multimodal. Based on deviations between predictions and actual sensory input, primary sensory areas of cortex have been shown to compute sensorimotor prediction errors. How prediction errors in one sensory modality influence the computation of prediction errors in another modality is still unclear. To investigate multimodal prediction errors in mouse auditory cortex, we used a virtual environment to experimentally couple running to both self-generated auditory and visual feedback. Using two-photon microscopy, we first characterized responses of layer 2/3 (L2/3) neurons to sounds, visual stimuli, and running onsets and found responses to all three stimuli. Probing responses evoked by audiomotor (AM) mismatches, we found that they closely resemble visuomotor (VM) mismatch responses in visual cortex (V1). Finally, testing for cross modal influence on AM mismatch responses by coupling both sound amplitude and visual flow speed to the speed of running, we found that AM mismatch responses were amplified when paired with concurrent VM mismatches. Our results demonstrate that multimodal and non-hierarchical interactions shape prediction error responses in cortical L2/3.
Collapse
Affiliation(s)
- Magdalena Solyga
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Science, University of BaselBaselSwitzerland
| |
Collapse
|
2
|
Beazley C, Giannoni S, Ionta S. Body-Related Visual Biasing Affects Accuracy of Reaching. Brain Sci 2024; 14:1270. [PMID: 39766469 PMCID: PMC11675064 DOI: 10.3390/brainsci14121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Many daily activities depend on visual inputs to improve motor accuracy and minimize errors. Reaching tasks present an ecological framework for examining these visuomotor interactions, but our comprehension of how different amounts of visual input affect motor outputs is still limited. The present study fills this gap, exploring how hand-related visual bias affects motor performance in a reaching task (to draw a line between two dots). Methods: Our setup allowed us to show and hide the visual feedback related to the hand position (cursor of a computer mouse), which was further disentangled from the visual input related to the task (tip of the line). Results: Data from 53 neurotypical participants indicated that, when the hand-related visual cue was visible and disentangled from the task-related visual cue, accommodating movements in response to spatial distortions were less accurate than when the visual cue was absent. Conclusions: We interpret these findings with reference to the concepts of motor affordance of visual cues, shifts between internally- and externally-oriented cognitive strategies to perform movements, and body-related reference frames.
Collapse
Affiliation(s)
- Claude Beazley
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
| | - Stefano Giannoni
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
| | - Silvio Ionta
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
- Centre de compétences pour le déficit visuel (CPHV), 1004 Lausanne, Switzerland
| |
Collapse
|
3
|
Wang B, Audette NJ, Schneider DM, Aljadeff J. Desegregation of neuronal predictive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606684. [PMID: 39149380 PMCID: PMC11326200 DOI: 10.1101/2024.08.05.606684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Neural circuits construct internal 'world-models' to guide behavior. The predictive processing framework posits that neural activity signaling sensory predictions and concurrently computing prediction-errors is a signature of those internal models. Here, to understand how the brain generates predictions for complex sensorimotor signals, we investigate the emergence of high-dimensional, multi-modal predictive representations in recurrent networks. We find that robust predictive processing arises in a network with loose excitatory/inhibitory balance. Contrary to previous proposals of functionally specialized cell-types, the network exhibits desegregation of stimulus and prediction-error representations. We confirmed these model predictions by experimentally probing predictive-coding circuits using a rich stimulus-set to violate learned expectations. When constrained by data, our model further reveals and makes concrete testable experimental predictions for the distinct functional roles of excitatory and inhibitory neurons, and of neurons in different layers along a laminar hierarchy, in computing multi-modal predictions. These results together imply that in natural conditions, neural representations of internal models are highly distributed, yet structured to allow flexible readout of behaviorally-relevant information. The generality of our model advances the understanding of computation of internal models across species, by incorporating different types of predictive computations into a unified framework.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Keller GB, Sterzer P. Predictive Processing: A Circuit Approach to Psychosis. Annu Rev Neurosci 2024; 47:85-101. [PMID: 38424472 DOI: 10.1146/annurev-neuro-100223-121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.
Collapse
Affiliation(s)
- Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- Faculty of Natural Science, University of Basel, Basel, Switzerland
| | - Philipp Sterzer
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Yogesh B, Keller GB. Cholinergic input to mouse visual cortex signals a movement state and acutely enhances layer 5 responsiveness. eLife 2024; 12:RP89986. [PMID: 39057843 PMCID: PMC11281783 DOI: 10.7554/elife.89986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.
Collapse
Affiliation(s)
- Baba Yogesh
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
6
|
O'Toole SM, Keller GB. Sample collection protocol for single-cell RNA sequencing of functionally identified neuronal populations in vivo. STAR Protoc 2024; 5:103135. [PMID: 38875113 PMCID: PMC11225893 DOI: 10.1016/j.xpro.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Here, we present a sample collection protocol for single-cell RNA sequencing of functionally identified neuronal populations in vivo with a virally delivered activity-dependent labeling tool (CaMPARI2). We describe steps for photoconversion in mice during the onset of computationally relevant events in a virtual reality environment, followed by removal and dissociation of the photo-labeled tissue, and separation of differentially labeled groups with fluorescence-activated cell sorting (FACS). We then detail procedures for characterizing and examining functionally relevant groups using standard bioinformatic techniques. For complete details on the use and execution of this protocol, please refer to O'Toole et al.1.
Collapse
Affiliation(s)
- Sean M O'Toole
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Zhou W, Schneider DM. Learning within a sensory-motor circuit links action to expected outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579532. [PMID: 38370770 PMCID: PMC10871315 DOI: 10.1101/2024.02.08.579532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cortex integrates sound- and movement-related signals to predict the acoustic consequences of behavior and detect violations from expectations. Although expectation- and prediction-related activity has been observed in the auditory cortex of humans, monkeys, and mice during vocal and non-vocal acoustic behaviors, the specific cortical circuitry required for forming memories, recalling expectations, and making predictions remains unknown. By combining closed-loop behavior, electrophysiological recordings, longitudinal pharmacology, and targeted optogenetic circuit activation, we identify a cortical locus for the emergence of expectation and error signals. Movement-related expectation signals and sound-related error signals emerge in parallel in the auditory cortex and are concentrated in largely distinct neurons, consistent with a compartmentalization of different prediction-related computations. On a trial-by-trial basis, expectation and error signals are correlated in auditory cortex, consistent with a local circuit implementation of an internal model. Silencing the auditory cortex during motor-sensory learning prevents the emergence of expectation signals and error signals, revealing the auditory cortex as a necessary node for learning to make predictions. Prediction-like signals can be experimentally induced in the auditory cortex, even in the absence of behavioral experience, by pairing optogenetic motor cortical activation with sound playback, indicating that cortical circuits are sufficient for movement-like predictive processing. Finally, motor-sensory experience realigns the manifold dimensions in which auditory cortical populations encode movement and sound, consistent with predictive processing. These findings show that prediction-related signals reshape auditory cortex dynamics during behavior and reveal a cortical locus for the emergence of expectation and error.
Collapse
Affiliation(s)
- WenXi Zhou
- Center for Neural Science, New York University, New York, NY, 10012
| | | |
Collapse
|
8
|
Jordan R. The locus coeruleus as a global model failure system. Trends Neurosci 2024; 47:92-105. [PMID: 38102059 DOI: 10.1016/j.tins.2023.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Predictive processing models posit that brains constantly attempt to predict their sensory inputs. Prediction errors signal when these predictions are incorrect and are thought to be instructive signals that drive corrective plasticity. Recent findings support the idea that the locus coeruleus (LC) - a brain-wide neuromodulatory system - signals several types of prediction error. I discuss how these findings support models proposing that the LC signals global model failures: instances where predictions about the world are strongly violated. Focusing on the cortex, I explore the utility of this signal in learning rate control, how the LC circuit may compute the signal, and how this view may aid our understanding of neurodivergence.
Collapse
Affiliation(s)
- Rebecca Jordan
- Simons Initiative for the Developing Brain, University of Edinburgh, 1 George Square, EH8 9JZ, Edinburgh, UK.
| |
Collapse
|
9
|
Aqil M, Knapen T, Dumoulin SO. Computational model links normalization to chemoarchitecture in the human visual system. SCIENCE ADVANCES 2024; 10:eadj6102. [PMID: 38170784 PMCID: PMC10776006 DOI: 10.1126/sciadv.adj6102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
A goal of cognitive neuroscience is to provide computational accounts of brain function. Canonical computations-mathematical operations used by the brain in many contexts-fulfill broad information-processing needs by varying their algorithmic parameters. A key question concerns the identification of biological substrates for these computations and their algorithms. Chemoarchitecture-the spatial distribution of neurotransmitter receptor densities-shapes brain function. Here, we propose that local variations in specific receptor densities implement algorithmic modulations of canonical computations. To test this hypothesis, we combine mathematical modeling of brain responses with chemoarchitecture data. We compare parameters of divisive normalization obtained from 7-tesla functional magnetic resonance imaging with receptor density maps obtained from positron emission tomography. We find evidence that serotonin and γ-aminobutyric acid receptor densities are the biological substrate for algorithmic modulations of divisive normalization in the human visual system. Our model links computational and biological levels of vision, explaining how canonical computations allow the brain to fulfill broad information-processing needs.
Collapse
Affiliation(s)
- Marco Aqil
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Serge O. Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Experimental Psychology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Zoodsma JD, Gomes CI, Sirotkin HI, Wollmuth LP. Behavioral Assays Dissecting NMDA Receptor Function in Zebrafish. Methods Mol Biol 2024; 2799:243-255. [PMID: 38727911 DOI: 10.1007/978-1-0716-3830-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Zebrafish are a powerful system to study brain development and to dissect the activity of complex circuits. One advantage is that they display complex behaviors, including prey capture, learning, responses to photic and acoustic stimuli, and social interaction (Dreosti et al., Front Neural Circuits 9:39, 2015; Bruckner et al., PLoS Biol 20:e3001838, 2022; Zoodsma et al., Mol Autism 13:38, 2022) that can be probed to assess brain function. Many of these behaviors are easily assayed at early larval stages, offering a noninvasive and high-throughput readout of nervous system function. Additionally, larval zebrafish readily uptake small molecules dissolved in water making them ideal for behavioral-based drug screens. Together, larval zebrafish and their behavioral repertoire offer a means to rapidly dissect brain circuitry and can serve as a template for high-throughput small molecule screens.NMDA receptor subunits are highly conserved in zebrafish compared to mammals (Zoodsma et al., Mol Autism 13:38, 2022; Cox et al., Dev Dyn 234:756-766, 2005; Zoodsma et al., J Neurosci 40:3631-3645, 2020). High amino acid and domain structure homology between humans and zebrafish underlie conserved functional similarities. Here we describe a set of behavioral assays that are useful to study the NMDA receptor activity in brain function.
Collapse
Affiliation(s)
- Josiah D Zoodsma
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Carly I Gomes
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
- Department of Pediatrics, Stony Brook University, Stony Brook, NY, USA
| | - Howard I Sirotkin
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA.
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
11
|
Matmat K, Conart JB, Graindorge PH, El Kouche S, Hassan Z, Siblini Y, Umoret R, Safar R, Baspinar O, Robert A, Alberto JM, Oussalah A, Coelho D, Guéant JL, Guéant-Rodriguez RM. A transgenic mice model of retinopathy of cblG-type inherited disorder of one-carbon metabolism highlights epigenome-wide alterations related to cone photoreceptor cells development and retinal metabolism. Clin Epigenetics 2023; 15:158. [PMID: 37798757 PMCID: PMC10557304 DOI: 10.1186/s13148-023-01567-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND MTR gene encodes the cytoplasmic enzyme methionine synthase, which plays a pivotal role in the methionine cycle of one-carbon metabolism. This cycle holds a significant importance in generating S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the respective universal methyl donor and end-product of epigenetic transmethylation reactions. cblG type of inherited disorders of vitamin B12 metabolism due to mutations in MTR gene exhibits a wide spectrum of symptoms, including a retinopathy unresponsive to conventional therapies. METHODS To unveil the underlying epigenetic pathological mechanisms, we conducted a comprehensive study of epigenomic-wide alterations of DNA methylation by NGS of bisulfited retinal DNA in an original murine model with conditional Mtr deletion in retinal tissue. Our focus was on postnatal day 21, a critical developmental juncture for ocular structure refinement and functional maturation. RESULTS We observed delayed eye opening and impaired visual acuity and alterations in the one-carbon metabolomic profile, with a notable dramatic decline in SAM/SAH ratio predicted to impair DNA methylation. This metabolic disruption led to epigenome-wide changes in genes involved in eye development, synaptic plasticity, and retinoid metabolism, including promoter hypermethylation of Rarα, a regulator of Lrat expression. Consistently, we observed a decline in cone photoreceptor cells and reduced expression of Lrat, Rpe65, and Rdh5, three pivotal genes of eye retinoid metabolism. CONCLUSION We introduced an original in vivo model for studying cblG retinopathy, which highlighted the pivotal role of altered DNA methylation in eye development, cone differentiation, and retinoid metabolism. This model can be used for preclinical studies of novel therapeutic targets.
Collapse
Affiliation(s)
- Karim Matmat
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Baptiste Conart
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- Department of Ophthalmology, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Paul-Henri Graindorge
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Sandra El Kouche
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ziad Hassan
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Youssef Siblini
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Rémy Umoret
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Okan Baspinar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Aurélie Robert
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Marc Alberto
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| | - Rosa-Maria Guéant-Rodriguez
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
12
|
Li JS, Sarma AA, Sejnowski TJ, Doyle JC. Internal feedback in the cortical perception-action loop enables fast and accurate behavior. Proc Natl Acad Sci U S A 2023; 120:e2300445120. [PMID: 37738297 PMCID: PMC10523540 DOI: 10.1073/pnas.2300445120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023] Open
Abstract
Animals move smoothly and reliably in unpredictable environments. Models of sensorimotor control, drawing on control theory, have assumed that sensory information from the environment leads to actions, which then act back on the environment, creating a single, unidirectional perception-action loop. However, the sensorimotor loop contains internal delays in sensory and motor pathways, which can lead to unstable control. We show here that these delays can be compensated by internal feedback signals that flow backward, from motor toward sensory areas. This internal feedback is ubiquitous in neural sensorimotor systems, and we show how internal feedback compensates internal delays. This is accomplished by filtering out self-generated and other predictable changes so that unpredicted, actionable information can be rapidly transmitted toward action by the fastest components, effectively compressing the sensory input to more efficiently use feedforward pathways: Tracts of fast, giant neurons necessarily convey less accurate signals than tracts with many smaller neurons, but they are crucial for fast and accurate behavior. We use a mathematically tractable control model to show that internal feedback has an indispensable role in achieving state estimation, localization of function (how different parts of the cortex control different parts of the body), and attention, all of which are crucial for effective sensorimotor control. This control model can explain anatomical, physiological, and behavioral observations, including motor signals in the visual cortex, heterogeneous kinetics of sensory receptors, and the presence of giant cells in the cortex of humans as well as internal feedback patterns and unexplained heterogeneity in neural systems.
Collapse
Affiliation(s)
- Jing Shuang Li
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Anish A. Sarma
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
- School of Medicine, Vanderbilt University, Nashville, TN37232
| | - Terrence J. Sejnowski
- Department of Neurobiology, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA92037
- Department of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - John C. Doyle
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
13
|
Majumder S, Hirokawa K, Yang Z, Paletzki R, Gerfen CR, Fontolan L, Romani S, Jain A, Yasuda R, Inagaki HK. Cell-type-specific plasticity shapes neocortical dynamics for motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552699. [PMID: 37609277 PMCID: PMC10441538 DOI: 10.1101/2023.08.09.552699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn new behavior.
Collapse
Affiliation(s)
- Shouvik Majumder
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Koichi Hirokawa
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Zidan Yang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ronald Paletzki
- National Institute of Mental Health, Bethesda, MD 20814, USA
| | | | - Lorenzo Fontolan
- Turing Centre for Living Systems, Aix- Marseille University, INSERM, INMED U1249, Marseille, France
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Sandro Romani
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Anant Jain
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | |
Collapse
|
14
|
Jordan R, Keller GB. The locus coeruleus broadcasts prediction errors across the cortex to promote sensorimotor plasticity. eLife 2023; 12:RP85111. [PMID: 37285281 PMCID: PMC10328511 DOI: 10.7554/elife.85111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prediction errors are differences between expected and actual sensory input and are thought to be key computational signals that drive learning related plasticity. One way that prediction errors could drive learning is by activating neuromodulatory systems to gate plasticity. The catecholaminergic locus coeruleus (LC) is a major neuromodulatory system involved in neuronal plasticity in the cortex. Using two-photon calcium imaging in mice exploring a virtual environment, we found that the activity of LC axons in the cortex correlated with the magnitude of unsigned visuomotor prediction errors. LC response profiles were similar in both motor and visual cortical areas, indicating that LC axons broadcast prediction errors throughout the dorsal cortex. While imaging calcium activity in layer 2/3 of the primary visual cortex, we found that optogenetic stimulation of LC axons facilitated learning of a stimulus-specific suppression of visual responses during locomotion. This plasticity - induced by minutes of LC stimulation - recapitulated the effect of visuomotor learning on a scale that is normally observed during visuomotor development across days. We conclude that prediction errors drive LC activity, and that LC activity facilitates sensorimotor plasticity in the cortex, consistent with a role in modulating learning rates.
Collapse
Affiliation(s)
- Rebecca Jordan
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
15
|
Vasilevskaya A, Widmer FC, Keller GB, Jordan R. Locomotion-induced gain of visual responses cannot explain visuomotor mismatch responses in layer 2/3 of primary visual cortex. Cell Rep 2023; 42:112096. [PMID: 36821437 PMCID: PMC9945359 DOI: 10.1016/j.celrep.2023.112096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
The aim of this work is to provide a comment on a recent paper by Muzzu and Saleem (2021), which claims that visuomotor mismatch responses in mouse visual cortex can be explained by a locomotion-induced gain of visual halt responses. Our primary concern is that without directly comparing these responses with mismatch responses, the claim that one response can explain the other appears difficult to uphold, more so because previous work finds that a uniform locomotion-induced gain cannot explain mismatch responses. To support these arguments, we analyze layer 2/3 calcium imaging datasets and show that coupling between visual flow and locomotion greatly enhances mismatch responses in an experience-dependent manner compared with halts in non-coupled visual flow. This is consistent with mismatch responses representing visuomotor prediction errors. Thus, we conclude that while feature selectivity might contribute to mismatch responses in mouse visual cortex, it cannot explain these responses.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Felix C Widmer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Rebecca Jordan
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
16
|
Muzzu T, Saleem AB. Redefining sensorimotor mismatch selectivity in the visual cortex. Cell Rep 2023; 42:112098. [PMID: 36821444 PMCID: PMC10632662 DOI: 10.1016/j.celrep.2023.112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
This Matters Arising Response contains our commentary to the response written by Vasilevskaya et al., 2023, publishing concurrently in Cell Reports, for our recent article "Feature selectivity can explain mismatch signals in mouse visual cortex." We find that results in the response reinforced many of our findings and, further supported by their new results, we argue for the necessity to redefine sensorimotor mismatch selectivity in the mouse visual system.
Collapse
Affiliation(s)
- Tomaso Muzzu
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK
| | - Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK.
| |
Collapse
|
17
|
李 莉, 张 倩, 刘 欢, 吴 琼, 杨 亭, 陈 洁, 李 廷. Involvement of retinoic acid receptor α in the autistic-like behavior of rats with vitamin A deficiency by regulating neurexin 1 in the visual cortex: a mechanism study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:928-935. [PMID: 36036133 PMCID: PMC9425865 DOI: 10.7499/j.issn.1008-8830.2204016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To study the mechanism of retinoic acid receptor α (RARα) signal change to regulate neurexin 1 (NRXN1) in the visual cortex and participate in the autistic-like behavior in rats with vitamin A deficiency (VAD). METHODS The models of vitamin A normal (VAN) and VAD pregnant rats were established, and some VAD maternal and offspring rats were given vitamin A supplement (VAS) in the early postnatal period. Behavioral tests were performed on 20 offspring rats in each group at the age of 6 weeks. The three-chamber test and the open-field test were used to observe social behavior and repetitive stereotyped behavior. High-performance liquid chromatography was used to measure the serum level of retinol in the offspring rats in each group. Electrophysiological experiments were used to measure the long-term potentiation (LTP) level of the visual cortex in the offspring rats. Quantitative real-time PCR and Western blot were used to measure the expression levels of RARα, NRXN1, and N-methyl-D-aspartate receptor 1 (NMDAR1). Chromatin co-immunoprecipitation was used to measure the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene. RESULTS The offspring rats in the VAD group had autistic-like behaviors such as impaired social interactions and repetitive stereotypical behaviors, and VAS started immediately after birth improved most of the behavioral deficits in offspring rats. The offspring rats in the VAD group had a significantly lower serum level of retinol than those in the VAN and VAS groups (P<0.05). Compared with the offspring rats in the VAN and VAS groups, the offspring rats in the VAD group had significant reductions in the mRNA and protein expression levels of NMDAR1, RARα, and NRXN1 and the LTP level of the visual cortex (P<0.05). The offspring rats in the VAD group had a significant reduction in the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene in the visual cortex compared with those in the VAN and VAS groups (P<0.05). CONCLUSIONS RARα affects the synaptic plasticity of the visual cortex in VAD rats by regulating NRXN1, thereby participating in the formation of autistic-like behaviors in VAD rats.
Collapse
|
18
|
Mahringer D, Zmarz P, Okuno H, Bito H, Keller GB. Functional correlates of immediate early gene expression in mouse visual cortex. PEER COMMUNITY JOURNAL 2022; 2:e45. [PMID: 37091727 PMCID: PMC7614465 DOI: 10.24072/pcjournal.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
During visual development, response properties of layer 2/3 neurons in visual cortex are shaped by experience. Both visual and visuomotor experience are necessary to co-ordinate the integration of bottom-up visual input and top-down motor-related input. Whether visual and visuomotor experience engage different plasticity mechanisms, possibly associated with the two separate input pathways, is still unclear. To begin addressing this, we measured the expression level of three different immediate early genes (IEG) (c-fos, egr1 or Arc) and neuronal activity in layer 2/3 neurons of visual cortex before and after a mouse's first visual exposure in life, and subsequent visuomotor learning. We found that expression levels of all three IEGs correlated positively with neuronal activity, but that first visual and first visuomotor exposure resulted in differential changes in IEG expression patterns. In addition, IEG expression levels differed depending on whether neurons exhibited primarily visually driven or motor-related activity. Neurons with strong motor-related activity preferentially expressed EGR1, while neurons that developed strong visually driven activity preferentially expressed Arc. Our findings are consistent with the interpretation that bottom-up visual input and top-down motor-related input are associated with different IEG expression patterns and hence possibly also with different plasticity pathways.
Collapse
Affiliation(s)
- David Mahringer
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Zmarz
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890-8544, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Georg B Keller
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|