1
|
Martinez-Laso J, Cervera I, Martinez-Carrasco MS, Sánchez-Menéndez C, Remesal M, Casado-Fernández G, Mateos E, Lemus-Aguilar L, Torres M, Coiras M. Truncated IFI16 mRNA transcripts can control its viral DNA defense activity. Mol Immunol 2025; 183:137-144. [PMID: 40359721 DOI: 10.1016/j.molimm.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
One of the most well-known viral receptors of the group called named ALRs is IFI16 (interferon-inducible protein 16) that are responsible for responses against viral dsDNA. A pyrin domain (PYD), two HIN domains, a NLS (nuclear localization sequence), and S/T/P repeats region form the structure of IFI16. Five alternatively transcripts have been described (V1, V2, V9, V4 and Vβ) that encode five isoforms (IFI16-iso1, 2, 3, 4 and β) with different structure, localization, and function. Another four transcripts (V3, V5, V6, and V8) and 12 predicted transcripts (VX1-VX7, VX1.1-VX5.1) have also been registered in the Genebank without any structural study. In the present study, we have performed a complete study of the presence of the IFI16 transcripts in a healthy population. All the alternative transcripts described except six of the so-called predicted transcripts were found, furthermore, two new transcripts (V10, V11) were described. The main mechanisms for the regulation of mRNA from IFI16 expression are due to the insertion of non-coding regions and the loss of almost all exons. A total of nine different isoforms were found and the corresponding protein models were constructed to establish the modification of its functionality to form inflammasomes or the binding to viral DNA.
Collapse
Affiliation(s)
- Jorge Martinez-Laso
- Immunogenetics Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid 28220, Spain.
| | - Isabel Cervera
- Immunogenetics Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid 28220, Spain
| | - Marina S Martinez-Carrasco
- Immunogenetics Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid 28220, Spain; Pediatrics Department. Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, Madrid 28041, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Manuel Remesal
- Department of Pharmacy and Nutrition. Faculty of Biomedical and Health Sciences. Universidad Europea de Madrid, Villaviciosa de Odón, Madrid 28670, Spain
| | - Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Luis Lemus-Aguilar
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
2
|
Zhang S, Hu W, Tang Y, Lin H, Chen X. Identification of hub immune-related genes and construction of predictive models for systemic lupus erythematosus by bioinformatics combined with machine learning. Front Med (Lausanne) 2025; 12:1557307. [PMID: 40438384 PMCID: PMC12116674 DOI: 10.3389/fmed.2025.1557307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that involves multiple systems. SLE is characterized by the production of autoantibodies and inflammatory tissue damage. This study further explored the role of immune-related genes in SLE. We downloaded the expression profiles of GSE50772 using the Gene Expression Omnibus (GEO) database for differentially expressed genes (DEGs) in SLE. The DEGs were also analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. The gene modules most closely associated with SLE were then derived by Weighted Gene Co-expression Network Analysis (WGCNA). Differentially expressed immune-related genes (DE-IRGs) in SLE were obtained by DEGs, key gene modules and IRGs. The protein-protein interaction (PPI) network was constructed through the STRING database. Three machine learning algorithms were applied to DE-IRGs to screen for hub DE-IRGs. Then, we constructed a diagnostic model. The model was validated by external cohort GSE61635 and peripheral blood mononuclear cells (PBMC) from SLE patients. Immune cell abundance assessment was achieved by CIBERSORT. The hub DE-IRGs and miRNA networks were made accessible through the NetworkAnalyst database. We screened 945 DEGs, which are closely related to the type I interferon pathway and NOD-like receptor signaling pathway. Machine learning identified a total of five hub DE-IRGs (CXCL2, CXCL8, FOS, NFKBIA, CXCR2), and validated in GSE61635 and PBMC from SLE patients. Immune cell abundance analysis showed that the hub genes may be involved in the development of SLE by regulating immune cells (especially neutrophils). In this study, we identified five hub DE-IRGs in SLE and constructed an effective predictive model. These hub genes are closely associated with immune cell in SLE. These may provide new insights into the immune-related pathogenesis of SLE.
Collapse
Affiliation(s)
- Su Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuchao Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hongjie Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Gao P, Zhou J, Sun L, Liu D. Neutrophil Extracellular Traps in Oral Diseases. Oral Dis 2025; 31:1084-1091. [PMID: 39530338 DOI: 10.1111/odi.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To summarize the current knowledge of the neutrophil extracellular traps (NETs) and its critical role in various oral diseases. METHODS We reviewed the recent research on NETs through PubMed and Web of Science. An analysis of recent research results was summarized from three aspects: NETs induction and formation, functions of NETs, and NETs in oral diseases. RESULTS The relationship between neutrophils and NETs is critical to the body's defense against microbial invasion. NETs can effectively combat pathogens with an anti-inflammatory effect and meanwhile it can contribute to inflammation. Moreover, it can synergize with other immune cells to respond to stimuli, such as pathogens, host-derived mediators, and drugs. It was revealed that NETs play different roles to influence various oral diseases like periodontitis, endodontic infection, oral mucosal diseases, maxillofacial tumors, and many other oral diseases. CONCLUSION The balance between the protective and potentially harmful effects of NETs is a key factor in determining the outcome of infections and inflammatory responses. The role of NETs in oral diseases needs to be further studied to enable better understanding of its role in the different oral diseases.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Periodontology, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China
| | - Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Dayong Liu
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Kim D, Shah M, Kim JH, Kim J, Baek YH, Jeong JS, Han SY, Lee YS, Park G, Cho JH, Roh YH, Lee SW, Choi GB, Park JH, Yoo KH, Seong RH, Lee YS, Woo HG. Integrative transcriptomic and genomic analyses unveil the IFI16 variants and expression as MASLD progression markers. Hepatology 2025; 81:962-975. [PMID: 38385945 DOI: 10.1097/hep.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.
Collapse
Affiliation(s)
- Doyoon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jang Hyun Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - JungMo Kim
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Yang-Hyun Baek
- Department of Internal Medicine, Liver Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin-Sook Jeong
- Pathology and Laboratory Medicine, St Mary's Hospital, Busan, Republic of Korea
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Gaeul Park
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jin-Han Cho
- Department of Diagnostic Radiology, Dong-A University Medical Center, Busan, Republic of Korea
| | - Young-Hoon Roh
- Department of Surgery, Dong-A University Medical Center, Busan, Republic of Korea
| | - Sung-Wook Lee
- Department of Internal Medicine, Liver Center, Dong-A University Medical Center, Busan, Republic of Korea
| | - Gi-Bok Choi
- Department of Radiology, On Hospital, Busan, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Rho Hyun Seong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| |
Collapse
|
5
|
Zubiaur M, Terrón-Camero LC, Gordillo-González F, Andrés-León E, Barroso-del Jesús A, Canet-Antequera LM, Pérez Sánchez-Cañete MM, Martínez-Blanco Á, Domínguez-Pantoja M, Botia-Sánchez M, Pérez-Cabrera S, Bello-Iglesias N, Alcina A, Abadía-Molina AC, Matesanz F, Zumaquero E, Merino R, Sancho J. CD38 deficiency leads to a defective short-lived transcriptomic response to chronic graft-versus-host disease induction, involving purinergic signaling-related genes and distinct transcriptomic signatures associated with lupus. Front Immunol 2025; 16:1441981. [PMID: 39995666 PMCID: PMC11847871 DOI: 10.3389/fimmu.2025.1441981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
This study aimed to elucidate the transcriptomic signatures and dysregulated pathways associated with the autoimmune response in Cd38-/- mice compared to wild-type (WT) mice within the bm12 chronic graft-versus-host disease (cGVHD) lupus model. We conducted bulk RNA sequencing on peritoneal exudate cells (PECs) and spleen cells (SPC) at two and four weeks following adoptive cell transfer. We also analyzed cells from healthy, untreated mice. These analyses revealed a sustained upregulation of a transcriptional profile of purinergic receptors and ectonucleotidases in cGVHD WT PECs, which displayed a coordinated expression with several type I interferon-stimulated genes (ISGs) and with key molecules involved in the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, two hallmarks in the lupus pathology. A second purinergic receptor transcriptomic profile, which included P2rx7 and P2rx4, showed a coordinated gene expression of the components of the NLRP3 inflammasome with its potential activators. These processes were transcriptionally less active in cGVHD Cd38-/- PECs than in WT PECs. We have also shown evidence of a distinct enrichment in pathways signatures that define processes such as Ca2+ ion homeostasis, cell division, phagosome, autophagy, senescence, cytokine/cytokine receptor interactions, Th17 and Th1/Th2 cell differentiation in Cd38-/- versus WT samples, which reflected the milder inflammatory and autoimmune response elicited in Cd38-/- mice relative to WT counterparts in response to the allogeneic challenge. Last, we have shown an intense metabolic reprogramming toward oxidative phosphorylation in PECs and SPC from cGVHD WT mice, which may reflect an increased cellular demand for oxygen consumption, in contrast to PECs and SPC from cGVHD Cd38-/- mice, which showed a short-lived metabolic effect at the transcriptomic level. Overall, these findings support the pro-inflammatory and immunomodulatory role of CD38 during the development of the cGVHD-lupus disease.
Collapse
Affiliation(s)
- Mercedes Zubiaur
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | | | | | | | | - África Martínez-Blanco
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Marilú Domínguez-Pantoja
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María Botia-Sánchez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Sonia Pérez-Cabrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Nerea Bello-Iglesias
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Ana-Clara Abadía-Molina
- Department of Biochemistry, Molecular Biology and Immunology III, School of Medicine, University of Granada (UGR), Granada, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Esther Zumaquero
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Ramón Merino
- Department of Cell and Molecular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria (UC) and CSIC, Santander, Spain
| | - Jaime Sancho
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
6
|
Zhang C, Lu Y. MiR-223 within neutrophil axis promotes Th17 expansion by PI3K-AKT pathway in systemic lupus erythematosus. Arthritis Res Ther 2025; 27:21. [PMID: 39901260 PMCID: PMC11789401 DOI: 10.1186/s13075-025-03487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
INTRODUCTION Further investigation is required to determine the etiology of systemic lupus erythematosus (SLE). The aim of this study is to assess the presence of miR-223 within neutrophils in SLE and investigate its impact on the expansion of Th17 cells. METHODS Experiments were performed in MRL/lpr mice, which were divided into control and miR-223 knockdown (miR-223-) group. We assessed miR-223 expression within neutrophils and Th17 expansion in MRL/lpr mice and patients with SLE using RT-PCR, luciferase reporter assay, Elisa, flow cytometry analysis. Signaling pathway, RT-PCR and western blot were conducted to elucidate the mechanism by which miR-223 within neutrophils expands Th17. RESULTS We initially identified miR-223 as a pivotal factor in the pathogenesis of SLE in both MRL/lpr mice and SLE patients. Subsequently, knockdown of miR-223 led to a significant reduction in Th17 expansion in MRL/lpr mice. Moreover, inhibition of miR-223 effectively attenuated the recruitment and activation of neutrophils in SLE. Furthermore, we found rb6-8c5 treatment alleviated lupus symptoms of MRL/lpr mice and reduce the level of Th17. Finally, we elucidated that neutrophils potentiate the induction of Th17 through the activation of thePI3K-AKT pathway mediated by miR-223 during SLE-associated Th17 expansion. CONCLUSION MiR-223 within neutrophil axis contributes to Th17 expansion by PI3K-AKT pathway in SLE, and miR-223 could be a therapeutic target of SLE.
Collapse
Affiliation(s)
- Chengzhong Zhang
- Department of Dermatology, the First affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, the First affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Huang L, Chen C, Cheng Y, Wang L, Ye W, Yang H, Wu W, Yang S, Wan W, Zhu X, Xue Y, Yu Y, Chen X, Zou H, Liang M. The predictive value of anti-IFI16 antibodies for the development or persistence of digital ulcers in systemic sclerosis. Clin Rheumatol 2025; 44:727-738. [PMID: 39789317 DOI: 10.1007/s10067-024-07296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
To evaluate the association of anti-IFI16 antibodies with peripheral vasculopathy and the predictive value of anti-IFI16 antibodies for the development or persistence of digital ulcers (DPDU) in SSc. A total of 42 SSc patients and 42 age- and sex-matched healthy controls were enrolled. Anti-IFI16 antibodies were examined by ELISA. Nailfold videocapillaroscopy (NVC) and power Doppler ultrasound (PDUS) were used to assess the micro- and macro-vascular involvement in SSc. All patients were followed up for 6 months to evaluate DPDU. Potential risk factors for DPDU were analyzed by a Firth's penalized logistic regression model. Of the 42 SSc patients enrolled, 19.05% patients were positive for anti-IFI16 antibodies, compared to a significantly low positivity rate of 4.76% in healthy controls (p < 0.001). SSc patients who were positive for anti-IFI16 antibodies manifested higher ulnar artery resistance index than anti-IFI16 negative patients (p = 0.018). Within a 6-month follow-up, 14 (33.3%) patients suffered from DPDU, and the prevalence of anti-IFI16 antibodies in patients with DPDU was 42.9%, remarkably higher than 7.1% in those without DPDU (p = 0.012). Additionally, patients with DPDU were more likely to have digital ulcers (DUs) at enrollment and manifest lower finger pulp blood flow, lower ulnar artery (UA) flow velocity, lower UA resistance index, and higher UA resistance index at baseline in comparison to patients without DPDU. Multivariate analysis further identified DUs at enrollment (OR 5.81; 95% CI 1.09-30.86; p = 0.046) and the positivity of anti-IFI16 antibody (OR 8.64; 95% CI 1.05-70.87; p = 0.045) as independent risk factors for DPDU. Presence of anti-IFI16 antibody is associated with higher UA resistance index in SSc. Multivariate analysis further identified anti-IFI16 antibody as a predictive marker for DPDU in SSc. Key Points • SSc patients who were positive for anti-IFI16 antibodies manifested higher ulnar artery resistance at baseline. • The prevalence of anti-IFI16 antibodies in patients with DPDU during the 6-month follow-up was remarkably higher than those without DPDU. • Multivariate analysis identified DUs at enrollment and anti-IFI16 antibody positivity as independent risk factors for DPDU. • Anti-IFI16 antibody is associated with peripheral vasculopathy in SSc. Multivariate analysis further identified anti-IFI16 as a predictive biomarker for the development of DUs.
Collapse
Affiliation(s)
- Linlin Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Cheng
- Department of Ultrasound, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Lingbiao Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Haihua Yang
- Department of Respiratory and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqin Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sen Yang
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Yu
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Minrui Liang
- Department of Rheumatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Liu X, Zheng Y, Meng Z, Wang H, Zhang Y, Xue D. Gene Regulation of Neutrophils Mediated Liver and Lung Injury through NETosis in Acute Pancreatitis. Inflammation 2025; 48:393-411. [PMID: 38884700 DOI: 10.1007/s10753-024-02071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal emergencies, often resulting in self-digestion, edema, hemorrhage, and even necrosis of pancreatic tissue. When AP progresses to severe acute pancreatitis (SAP), it often causes multi-organ damage, leading to a high mortality rate. However, the molecular mechanisms underlying SAP-mediated organ damage remain unclear. This study aims to systematically mine SAP data from public databases and combine experimental validation to identify key molecules involved in multi-organ damage caused by SAP. Retrieve transcriptomic data of mice pancreatic tissue for AP, lung and liver tissue for SAP, and corresponding normal tissue from the Gene Expression Omnibus (GEO) database. Conduct gene differential analysis using Limma and DEseq2 methods. Perform enrichment analysis using the clusterProfiler package in R software. Score immune cells and immune status in various organs using single-sample gene set enrichment analysis (ssGSEA). Evaluate mRNA expression levels of core genes using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Validate serum amylase, TNF-α, IL-1β, and IL-6 levels in peripheral blood using enzyme-linked immunosorbent assay (ELISA), and detect the formation of neutrophil extracellular traps (NETs) in mice pancreatic, liver, and lung tissues using immunofluorescence. Differential analysis reveals that 46 genes exhibit expression dysregulation in mice pancreatic tissue for AP, liver and lung tissue for SAP, as well as peripheral blood in humans. Functional enrichment analysis indicates that these genes are primarily associated with neutrophil-related biological processes. ROC curve analysis indicates that 12 neutrophil-related genes have diagnostic potential for SAP. Immune infiltration analysis reveals high neutrophil infiltration in various organs affected by SAP. Single-cell sequencing analysis shows that these genes are predominantly expressed in neutrophils and macrophages. FPR1, ITGAM, and C5AR1 are identified as key genes involved in the formation of NETs and activation of neutrophils. qPCR and IHC results demonstrate upregulation of FPR1, ITGAM, and C5AR1 expression in pancreatic, liver, and lung tissues of mice with SAP. Immunofluorescence staining shows increased levels of neutrophils and NETs in SAP mice. Inhibition of NETs formation can alleviate the severity of SAP as well as the levels of inflammation in the liver and lung tissues. This study identified key genes involved in the formation of NETs, namely FPR1, ITGAM, and C5AR1, which are upregulated during multi-organ damage in SAP. Inhibition of NETs release effectively reduces the systemic inflammatory response and liver-lung damage in SAP. This research provides new therapeutic targets for the multi-organ damage associated with SAP.
Collapse
Affiliation(s)
- Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Zheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziang Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heming Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Horton MK, Nititham J, Taylor KE, Katz P, Ye CJ, Yazdany J, Dall'Era M, Hurabielle C, Barcellos LF, Criswell LA, Lanata CM. Changes in DNA methylation are associated with systemic lupus erythematosus flare remission and clinical subtypes. Clin Epigenetics 2024; 16:181. [PMID: 39696438 PMCID: PMC11656870 DOI: 10.1186/s13148-024-01792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) has numerous symptoms across organs and an unpredictable flare-remittance pattern. This has made it challenging to understand drivers of long-term SLE outcomes. Our objective was to identify whether changes in DNA methylation over time, in an actively flaring SLE cohort, were associated with remission and whether these changes meaningfully subtype SLE patients. METHODS Fifty-nine multi-ethnic SLE patients had clinical visits and DNA methylation profiles at a flare and approximately 3 months later. Methylation was measured using the Illumina EPIC array. We identified sites where methylation change between visits was associated with remission at the follow-up visit using limma package and a time x remission interaction term. Models adjusted for batch, age at diagnosis, time between visits, age at flare, sex, medications, and cell-type proportions. Separately, a paired T-test identified Bonferroni significant methylation sites with ≥ 3% change between visits (n = 546). Methylation changes at these sites were used for unsupervised consensus hierarchical clustering. Associations between clusters and patient features were assessed. RESULTS Nineteen patients fully remitted at the follow-up visit. For 1,953 CpG sites, methylation changed differently for remitters vs. non-remitters (Bonferroni p < 0.05). Nearly half were within genes regulated by interferon. The largest effect was at cg22873177; on average, remitters had 23% decreased methylation between visits while non-remitters had no change. Three SLE patient clusters were identified using methylation differences agnostic of clinical outcomes. All Cluster 1 subjects (n = 12) experienced complete flare remission, despite similar baseline disease activity scores, medications, and demographics as other clusters. Methylation changes at six CpG sites, including within immune-related CD45 and IFI genes, were particularly distinct for each cluster, suggesting these may be good candidates for stratifying patients in the future. CONCLUSIONS Changes in DNA methylation during active SLE were associated with remission status and identified subgroups of SLE patients with several distinct clinical and biological characteristics. DNA methylation patterns might help inform SLE subtypes, leading to targeted therapies based on relevant underlying biological pathways.
Collapse
Affiliation(s)
- Mary K Horton
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Joanne Nititham
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly E Taylor
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patricia Katz
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Jinoos Yazdany
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Dall'Era
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, University of California, Berkeley, CA, USA
| | - Lindsey A Criswell
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristina M Lanata
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Song Y, Peng Y, Wang B, Zhou X, Cai Y, Chen H, Miao C. The roles of pyroptosis in the pathogenesis of autoimmune diseases. Life Sci 2024; 359:123232. [PMID: 39537097 DOI: 10.1016/j.lfs.2024.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The occurrence of autoimmune diseases is a result of the immune system's immune response against healthy components of the body. Pyroptosis is an innovative form of programmed cell death dependent on inflammatory caspases, leading to the release of cytokines. Excessive pyroptosis can lead to a sustained inflammatory response, which may aggravate the development of autoimmune diseases. In rheumatoid arthritis (RA), tumor necrosis factor (TNF) and NLRP3 enhance pyroptosis, exacerbating the disease. In systemic lupus erythematosus (SLE), the release of nuclear antigen promotes the development of SLE. In multiple sclerosis (MS), elevated active caspase-11 in primary astrocytes induces oligodendrocyte pyroptosis, advancing MS progression. This review outlines the mechanisms of pyroptosis in autoimmune diseases. Meanwhile, we elaborated the possible therapeutic targets from the perspective of pyroptosis. We conclude that pyroptosis is expected to be a therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yingqiu Song
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yanhui Peng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bing Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinyue Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yikang Cai
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| | - Chenggui Miao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, Anhui, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
11
|
Thawanaphong S, Nair A, Volfson E, Nair P, Mukherjee M. IL-18 biology in severe asthma. Front Med (Lausanne) 2024; 11:1486780. [PMID: 39554494 PMCID: PMC11566457 DOI: 10.3389/fmed.2024.1486780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The role of interleukin-18 (IL-18) and inflammasomes in chronic inflammatory airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), has garnered significant attention in recent years. This review aims to provide an overview of the current understanding of IL-18 biology, the associated signaling pathways, and the involvement of inflammasome complexes in airway diseases. We explore the multifaceted role of IL-18 in asthma pathophysiology, including its interactions with other cytokines and contributions to both T2 and non-T2 inflammation. Importantly, emerging evidence highlights IL-18 as a critical player in severe asthma, contributing to chronic airway inflammation, airway hyperresponsiveness (AHR), and mucus impaction. Furthermore, we discuss the emerging evidence of IL-18's involvement in autoimmunity and highlight potential therapeutic targets within the IL-18 and inflammasome pathways in severe asthma patients with evidence of infections and airway autoimmune responses. By synthesizing recent advancements and ongoing research, this review underscores the importance of IL-18 as a potential novel therapeutic target in the treatment of severe asthma and other related conditions.
Collapse
Affiliation(s)
- Sarita Thawanaphong
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aswathi Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Emily Volfson
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Parameswaran Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Manali Mukherjee
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
12
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Zhao G, Wang X, Lei H, Ruan N, Yuan B, Tang S, Ni N, Zuo Z, Xun L, Luo M, Zhao Q, Qi J, Fu P. Serum HMGB-1 released by ferroptosis and necroptosis as a novel potential biomarker for systemic lupus erythematosus. Int Immunopharmacol 2024; 140:112886. [PMID: 39128419 DOI: 10.1016/j.intimp.2024.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
High mobility group box proterin-1 (HMGB-1) is a multifunctional protein that can be released by various programmed cell deaths (PCDs), such as necroptosis and ferroptosis. PCDs play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). However, the role of HMGB-1 in the process of SLE remains unclear. This study aims to demonstrate the potential diagnosing role of serum HMGB-1 in SLE that released by necroptosis and ferroptosis. We found that the serum levels of HMGB-1, receptor-interacting protein kinase 3 (RIPK3) /mixed lineage kinase domain-like protein (MLKL) related with necroptosis, and metabolites associated with ferroptosis were significantly upregulated in SLE patients compared to HC individuals. These serum levels were positively correlated with SLE disease activity. Additionally, the serum level of HMGB-1 showed a strong positive correlated with the levels of RIPK3/MLKL and ferroptosis metabolites. Moreover, the serum level of HMGB-1 was correlated with renal involvement and high-antinuclear antibodies (ANA) titer. After SLE serum and interferon γ (IFN-γ) treatment in vitro, the level of necroptosis and ferroptosis markers were activated and HMGB1 was released both in HEK293 and HK2 cells. Clinically, HMGB-1 was considered as a significant independent risk factor in SLE serum by binary logistic assay. Notably, HMGB-1 exhibited outstanding diagnostic ability for SLE by the area under the curve (AUC) in receiver operating characteristic (ROC) curve analysis. Taken together, our study indicates that the serum level of HMGB-1 is a promising biomarker for the diagnosis and monitoring of SLE.
Collapse
Affiliation(s)
- Guowang Zhao
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Xingzi Wang
- Department of Nephrology, Yueyang Central Hospital, Hunan Province, Yueyang 414000, China
| | - Hongtao Lei
- School of Public Health, Kunming Medical University, Yunnan Province, Kunmin 650500, China
| | - Ni Ruan
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Bo Yuan
- Department of organ transplantation department, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunmin 650033, China
| | - Songbiao Tang
- Department of Rheumatology, Yueyang Central Hospital, Hunan Province, Yueyang 414000, China
| | - Nan Ni
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China
| | - Zan Zuo
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Linting Xun
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Mei Luo
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China
| | - Qiuyan Zhao
- Department of Gastroenterology, First People's Hospital of Qujing, Yunnan Province, Qujing, China.
| | - Jialong Qi
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Yunnan Province, Kunming 650033, China; Yunnan Provincial Key Laboratory of Clinical Virology, The First People's Hospital of Yunnan Province, Kunming, Yunnan,650032, China; Yunnan Provincial Key Laboratory of Birth Defects and Genetic Diseases, First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Geriatric Disorders, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650032, China.
| | - Ping Fu
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Province, Kunming 650101, China.
| |
Collapse
|
14
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
15
|
Huang Y, Jiang W, Zhou R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat Rev Immunol 2024; 24:703-719. [PMID: 38684933 DOI: 10.1038/s41577-024-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
16
|
Yalcinkaya M, Tall AR. Genetic and epigenetic regulation of inflammasomes: Role in atherosclerosis. Atherosclerosis 2024; 396:118541. [PMID: 39111028 PMCID: PMC11374466 DOI: 10.1016/j.atherosclerosis.2024.118541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
The cardiovascular complications of atherosclerosis are thought to arise from an inflammatory response to the accumulation of cholesterol-rich lipoproteins in the arterial wall. The positive outcome of CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) provided key evidence to support this concept and suggested that inflammasomes and IL-1β are important inflammatory mediators in human atherosclerotic cardiovascular diseases (ACVD). In specific settings NLRP3 or AIM2 inflammasomes can induce inflammatory responses in the arterial wall and promote the formation of unstable atherosclerotic plaques. Clonal hematopoiesis (CH) has recently emerged as a major independent risk factor for ACVD. CH mutations arise during ageing and commonly involves variants in genes mediating epigenetic modifications (TET2, DNMT3A, ASXL1) or cytokine signaling (JAK2). Accumulating evidence points to the role of inflammasomes in the progression of CH-induced ACVD events and has shed light on the regulatory pathways and possible therapeutic approaches that specifically target inflammasomes in atherosclerosis. Epigenetic dynamics play a vital role in regulating the generation and activation of inflammasome components by causing changes in DNA methylation patterns and chromatin assembly. This review examines the genetic and epigenetic regulation of inflammasomes, the intersection of macrophage cholesterol accumulation with inflammasome activation and their roles in atherosclerosis. Understanding the involvement of inflammasomes in atherosclerosis pathogenesis may lead to customized treatments that reduce the burden of ACVD.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
18
|
Jiang Q, Chen Y, Zheng S, Sui L, Yu D, Qing F, He W, Xiao Q, Guo T, Xu L, Liu Z, Liu Z. AIM2 enhances Candida albicans infection through promoting macrophage apoptosis via AKT signaling. Cell Mol Life Sci 2024; 81:280. [PMID: 38918243 PMCID: PMC11335202 DOI: 10.1007/s00018-024-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.
Collapse
Affiliation(s)
- Qian Jiang
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Nursing, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yayun Chen
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Siping Zheng
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lina Sui
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dalang Yu
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Furong Qing
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenji He
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhichun Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhiping Liu
- School of Graduate, China Medical University, Shenyang, Liaoning, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
19
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
20
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
21
|
Chen J, Wang X, Liu Y, Zhang X. Recent advances on neutrophil dysregulation in the pathogenesis of rheumatic diseases. Curr Opin Rheumatol 2024; 36:142-147. [PMID: 37916474 DOI: 10.1097/bor.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW The exact pathogenic mechanisms of rheumatic diseases (RMD) remain largely unknown. Increasing evidence highlights a pathogenic role of neutrophil dysregulation in the development of RMD. RECENT FINDINGS The purpose of this review is to present a current overview of recent advancements in understanding the role of neutrophil dysfunction in the development of RMD. Additionally, this review will discuss strategies for targeting pathways associated with neutrophil dysregulation as potential treatments for RMD. One specific aspect of neutrophil dysregulation, known as neutrophil extracellular traps (NETs), will be explored. NETs have been found to contribute to chronic pulmonary inflammation and fibrosis, as well as serve as DNA scaffolds for binding autoantigens, including both citrullinated and carbamylated autoantigens. Putative therapies, such as 6-gingerol or defibrotide, have demonstrated beneficial effects in the treatment of RMD by suppressing NETs formation. SUMMARY Recent advances have significantly reinforced the crucial role of neutrophil dysregulation in the pathogenesis of RMD. A deeper understanding of the potential mechanisms underlying this pathogenic process would aid in the development of more precise and effective targeting strategies, thus ultimately improving the outcomes of RMD.
Collapse
Affiliation(s)
- Jianing Chen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Xinyu Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| |
Collapse
|
22
|
Wu S, Garg A, Mazanek Z, Belotte G, Zhou JJ, Stallings CM, Lueck J, Roland A, Chattergoon MA, Sohn J. Design principles for inflammasome inhibition by pyrin-only-proteins. eLife 2024; 13:e81918. [PMID: 38252125 PMCID: PMC10803020 DOI: 10.7554/elife.81918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammasomes are filamentous signaling platforms essential for host defense against various intracellular calamities such as pathogen invasion and genotoxic stresses. However, dysregulated inflammasomes cause an array of human diseases including autoinflammatory disorders and cancer. It was recently identified that endogenous pyrin-only-proteins (POPs) regulate inflammasomes by directly inhibiting their filament assembly. Here, by combining Rosetta in silico, in vitro, and in cellulo methods, we investigate the target specificity and inhibition mechanisms of POPs. We find here that POP1 is ineffective in directly inhibiting the central inflammasome adaptor ASC. Instead, POP1 acts as a decoy and targets the assembly of upstream receptor pyrin-domain (PYD) filaments such as those of AIM2, IFI16, NLRP3, and NLRP6. Moreover, not only does POP2 directly suppress the nucleation of ASC, but it can also inhibit the elongation of receptor filaments. In addition to inhibiting the elongation of AIM2 and NLRP6 filaments, POP3 potently suppresses the nucleation of ASC. Our Rosetta analyses and biochemical experiments consistently suggest that a combination of favorable and unfavorable interactions between POPs and PYDs is necessary for effective recognition and inhibition. Together, we reveal the intrinsic target redundancy of POPs and their inhibitory mechanisms.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Archit Garg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zachary Mazanek
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gretchen Belotte
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeffery J Zhou
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christina M Stallings
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jacob Lueck
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Aubrey Roland
- Division of Infectious Diseases, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael A Chattergoon
- Division of Infectious Diseases, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
- Division of Rheumatology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
23
|
Li Y, Wu Y, Huang J, Cao X, An Q, Peng Y, Zhao Y, Luo Y. A variety of death modes of neutrophils and their role in the etiology of autoimmune diseases. Immunol Rev 2024; 321:280-299. [PMID: 37850797 DOI: 10.1111/imr.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinlan Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Qiyuan An
- School of Inspection and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Yi Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Thomas MA, Kim SY, Curran AM, Smith B, Antiochos B, Na CH, Darrah E. An unbiased proteomic analysis of PAD4 in human monocytes: novel substrates, binding partners and subcellular localizations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220477. [PMID: 37778379 PMCID: PMC10542449 DOI: 10.1098/rstb.2022.0477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Peptidylarginine deiminase IV (PAD4) post-translationally converts arginine residues in proteins to citrullines and is implicated in playing a central role in the pathogenesis of several diseases. Although PAD4 was historically thought to be a nuclear enzyme, recent evidence has revealed a more complex localization of PAD4 with evidence of additional cytosolic and cell surface localization and activity. However, the mechanisms by which PAD4, which lacks conventional secretory signal sequences, traffics to extranuclear localizations are unknown. In this study, we show that PAD4 was enriched in the organelle fraction of monocytes with evidence of citrullination of organelle proteins. We also demonstrated that PAD4 can bind to several cytosolic, nuclear and organelle proteins that may serve as binding partners for PAD4 to traffic intracellularly. Additionally, cell surface expression of PAD4 increased with monocyte differentiation into monocyte-derived dendritic cells and co-localized with several endocytic/autophagic and conventional secretory pathway markers, implicating the use of these pathways by PAD4 to traffic within the cell. Our results suggest that PAD4 is expressed in multiple subcellular localizations and may play previously unappreciated roles in physiological and pathological conditions. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Mekha A. Thomas
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| | - Seok-Young Kim
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ashley M. Curran
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| | - Barbara Smith
- Department of Cell Biology, Institute for Basic Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brendan Antiochos
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Ave, Suite 5200, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
Kubota T. An Emerging Role for Anti-DNA Antibodies in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:16499. [PMID: 38003689 PMCID: PMC10671047 DOI: 10.3390/ijms242216499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Anti-DNA antibodies are hallmark autoantibodies produced in systemic lupus erythematosus (SLE), but their pathogenetic role is not fully understood. Accumulating evidence suggests that some anti-DNA antibodies enter different types of live cells and affect the pathophysiology of SLE by stimulating or impairing these cells. Circulating neutrophils in SLE are activated by a type I interferon or other stimuli and are primed to release neutrophil extracellular traps (NETs) on additional stimulation. Anti-DNA antibodies are also involved in this process and may induce NET release. Thereafter, they bind and protect extracellular DNA in the NETs from digestion by nucleases, resulting in increased NET immunogenicity. This review discusses the pathogenetic role of anti-DNA antibodies in SLE, mainly focusing on recent progress in the two research fields concerning antibody penetration into live cells and NETosis.
Collapse
Affiliation(s)
- Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Tsuchiura 300-0051, Ibaraki, Japan
| |
Collapse
|
26
|
Zou H, Chen M, Wang X, Yu J, Li X, Xie Y, Liu J, Liu M, Xu L, Zhang Q, Tian X, Zhang F, Guo B. C/EBPβ isoform-specific regulation of podocyte pyroptosis in lupus nephritis-induced renal injury. J Pathol 2023; 261:269-285. [PMID: 37602503 DOI: 10.1002/path.6174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023]
Abstract
As an essential factor in the prognosis of systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease. Podocytes now appear to be a possible direct target in LN in addition to being prone to collateral damage from glomerular capillary lesions induces by immune complexes and inflammatory processes. The NLRP3 inflammasome is regulated by CCAAT/enhancer-binding protein β (C/EBPβ), which is involved in the pathogenesis of SLE. However, the role and mechanism of C/EBPβ in LN remain unclear. In this investigation, glomerular podocytes treated with LN serum and MRL/lpr mice were employed as in vivo and in vitro models of LN, respectively. In vivo, the expression of C/EBPβ isoforms was detected in kidney specimens of humans and mice with LN. Then we assessed the effect of C/EBPβ inhibition on renal structure and function by injecting RNAi adeno-associated virus of C/EBPβ shRNA into MRL/lpr mice. In vitro, glomerular podocytes were treated with LN serum and C/EBPβ siRNA to explore the role of C/EBPβ in the activation of the AIM2 inflammasome and podocyte injury. C/EBPβ-LAP and C/EBPβ-LIP were significantly overexpressed in kidney tissue samples from LN patients and mice, and C/EBPβ inhibition significantly alleviated renal function damage and ameliorated renal structural deficiencies. Inflammatory pathways downstream from the AIM2 inflammasome could be suppressed by C/EBPβ knockdown. Furthermore, the upregulation of C/EBPβ-LAP could activate the AIM2 inflammasome and podocyte pyroptosis by binding to the promoters of AIM2 and CASPASE1 to enhance their expression, and the knockdown of AIM2 or (and) caspase-1 reversed the effects of C/EBPβ-LAP overexpression. Interestingly, C/EBPβ-LIP overexpression could transcriptionally inhibit IRAG and promote Ca2+ release-mediated activation of the AIM2 inflammasome. This finding suggests that C/EBPβ is not only involved in the regulation of the expression of key proteins of the AIM2 inflammasome but also affects the polymerization of key proteins of the AIM2 inflammasome through the regulation of Ca2+ release. In conclusion, this study provides a new idea for studying the regulatory mechanism of C/EBPβ and provides a theoretical basis for the early diagnosis and treatment of LN in the future. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- School of Nursing, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Min Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Xiuhong Wang
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Xiaoying Li
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, PR China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Jun Liu
- Department of Rheumatology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Miao Liu
- Department of Urinary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Qiong Zhang
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Xiaoxue Tian
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
27
|
Melbouci D, Haidar Ahmad A, Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases. RMD Open 2023; 9:e003104. [PMID: 37562857 PMCID: PMC10423839 DOI: 10.1136/rmdopen-2023-003104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/14/2023] [Indexed: 08/12/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) represent one of the first lines of defence against invading pathogens and are the most abundant leucocytes in the circulation. Generally described as pro-inflammatory cells, recent data suggest that PMN also have immunomodulatory capacities. In response to certain stimuli, activated PMN expel neutrophil extracellular traps (NET), structures made of DNA and associated proteins. Although originally described as an innate immune mechanism fighting bacterial infection, NET formation (or probably rather an excess of NET together with impaired clearance of NET) may be deleterious. Indeed, NET have been implicated in the development of several inflammatory and autoimmune diseases as rheumatoid arthritis or systemic lupus erythematosus, as well as fibrosis or cancer. They have been suggested as a source of (neo)autoantigens or regulatory proteins like proteases or to act as a physical barrier. Different mechanisms of NET formation have been described, leading to PMN death or not, depending on the stimulus. Interestingly, NET may be both pro-inflammatory and anti-inflammatory and this probably partly depends on the mechanism, and thus the stimuli, triggering NET formation. Within this review, we will describe the pro-inflammatory and anti-inflammatory activities of NET and especially how NET may modulate immune responses.
Collapse
Affiliation(s)
- Dyhia Melbouci
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Ahmad Haidar Ahmad
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| | - Patrice Decker
- Inserm UMR 1125, Li2P, Université Sorbonne Paris Nord-Campus de Bobigny, Bobigny, Île-de-France, France
| |
Collapse
|
28
|
Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023; 12:1766. [PMID: 37443800 PMCID: PMC10340308 DOI: 10.3390/cells12131766] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| |
Collapse
|
29
|
Abstract
The CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) and colchicine trials suggest an important role of inflammasomes and their major product IL-1β (interleukin 1β) in human atherosclerotic cardiovascular disease. Moreover, studies in mouse models indicate a causal role of inflammasomes and IL-1β in atherosclerosis. However, recent studies have led to a more granular view of the role of inflammasomes in atherosclerosis. Studies in hyperlipidemic mouse models suggest that prominent activation of the NLRP3 inflammasome requires a second hit such as defective cholesterol efflux, defective DNA repair, clonal hematopoiesis or diabetes. Similarly in humans some mutations promoting clonal hematopoiesis increase coronary artery disease risk in part by promoting inflammasome activation. Recent studies in mice and humans point to a wider role of the AIM2 (absent in melanoma 2) inflammasome in promoting cardiovascular disease including in some forms of clonal hematopoiesis and diabetes. These developments suggest a precision medicine approach in which treatments targeting inflammasomes or IL-1β might be best employed in clinical settings involving increased inflammasome activation.
Collapse
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York (A.R.T.)
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle (K.E.B.)
| |
Collapse
|
30
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Valková N, Kratochvilová L, Martinková L, Brázda V. Dual mode of IFI16 binding to supercoiled and linear DNA: A closer insight. Biochem Biophys Res Commun 2023; 667:89-94. [PMID: 37209567 DOI: 10.1016/j.bbrc.2023.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
IFI16 (Interferon inducible protein 16) is a DNA sensor responsible for innate immune response stimulation and a direct viral restriction by modulating gene expression and replication. Many IFI16-DNA binding properties were described - length-dependent and sequence-independent binding, oligomerization of IFI16 upon recognition, sliding on the DNA, and preference for supercoiled DNA. However, the question of the role of IFI16-DNA binding in distinct IFI16 functions remains unclear. Here we demonstrate two modes of IFI16 binding to DNA using atomic force microscopy and electrophoretic mobility shift assays. In our study, we show that IFI16 can bind to DNA in the form of globular complexes or oligomers depending on DNA topology and molar ratios. The stability of the complexes is different in higher salt concentrations. In addition, we observed no preferential binding with the HIN-A or HIN-B domains to supercoiled DNA, revealing the importance of the whole protein for this specificity. These results provide more profound insight into IFI16-DNA interactions and may be important in answering the question of self- and non-self-DNA binding by the IFI16 protein and potentially could shed light on the role of DNA binding in distinct IFI16 functions.
Collapse
Affiliation(s)
- Natália Valková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Libuše Kratochvilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Lucia Martinková
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65, Brno, Czech Republic.
| |
Collapse
|
32
|
Antiochos B, Casciola-Rosen L. Interferon and autoantigens: intersection in autoimmunity. Front Med (Lausanne) 2023; 10:1165225. [PMID: 37228405 PMCID: PMC10203243 DOI: 10.3389/fmed.2023.1165225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Interferon (IFN) is a key component of the innate immune response. For reasons that remain incompletely understood, the IFN system is upregulated in several rheumatic diseases, particularly those that feature autoantibody production, such as SLE, Sjögren's syndrome, myositis and systemic sclerosis. Interestingly, many of the autoantigens targeted in these diseases are components of the IFN system, representing IFN-stimulated genes (ISGs), pattern recognition receptors (PRRs), and modulators of the IFN response. In this review, we describe features of these IFN-linked proteins that may underlie their status as autoantigens. Note is also made of anti-IFN autoantibodies that have been described in immunodeficiency states.
Collapse
Affiliation(s)
- Brendan Antiochos
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
33
|
Vinuesa CG, Grenov A, Kassiotis G. Innate virus-sensing pathways in B cell systemic autoimmunity. Science 2023; 380:478-484. [PMID: 37141353 DOI: 10.1126/science.adg6427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK
- China Centre for Personalised Immunology, Renji Hospital, Shanghai, China
| | | | - George Kassiotis
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
34
|
Garg A, Stallings CM, Sohn J. Filament assembly underpins the double-stranded DNA specificity of AIM2-like receptors. Nucleic Acids Res 2023; 51:2574-2585. [PMID: 36864667 PMCID: PMC10085679 DOI: 10.1093/nar/gkad090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Upon sensing cytosolic- and/or viral double-stranded (ds)DNA, absent-in-melanoma-2 (AIM2)-like-receptors (ALRs) assemble into filamentous signaling platforms to initiate inflammatory responses. The versatile yet critical roles of ALRs in host innate defense are increasingly appreciated; however, the mechanisms by which AIM2 and its related IFI16 specifically recognize dsDNA over other nucleic acids remain poorly understood (i.e. single-stranded (ss)DNA, dsRNA, ssRNA and DNA:RNA hybrid). Here, we find that although AIM2 can interact with various nucleic acids, it preferentially binds to and assembles filaments faster on dsDNA in a duplex length-dependent manner. Moreover, AIM2 oligomers assembled on nucleic acids other than dsDNA not only display less ordered filamentous structures, but also fail to induce the polymerization of downstream ASC. Likewise, although showing broader nucleic acid selectivity than AIM2, IFI16 binds to and oligomerizes most readily on dsDNA in a duplex length-dependent manner. Nevertheless, IFI16 fails to form filaments on single-stranded nucleic acids and does not accelerate the polymerization of ASC regardless of bound nucleic acids. Together, we reveal that filament assembly is integral to nucleic acid distinction by ALRs.
Collapse
Affiliation(s)
- Archit Garg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christina M Stallings
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Divisions of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Ma S, Jiang W, Zhang X, Liu W. Insights into the pathogenic role of neutrophils in systemic lupus erythematosus. Curr Opin Rheumatol 2023; 35:82-88. [PMID: 36255744 DOI: 10.1097/bor.0000000000000912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Although dysregulated adaptive immune response has been considered as the main culprit for systemic lupus erythematosus (SLE), emerging studies have indicated that innate immunity, functioning upstream of adaptive immunity, acts as an important trigger of autoimmune diseases and promotes SLE development. Here, we have reviewed the most recent findings to highlight the influence of neutrophils on SLE pathogenesis. RECENT FINDINGS Neutrophils participate in SLE development mainly via promoting self-antigen exposure and autoantibody production, advocating the release of type I interferons (IFNs) and other pro-inflammatory cytokines, and mediating systemic tissue injury. A recent study revealed that neutrophil ferroptosis exerts a strong pathogenic effect in SLE, and that dysregulated innate immunity is adequate to disrupt the homeostasis of immune tolerance. SUMMARY Insights into the pathogenic role of neutrophils in SLE will contribute to a more comprehensive understanding of this disease and may propose novel clinical targets for accurate diagnosis and precision medicine.
Collapse
Affiliation(s)
- Shiliang Ma
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Wanlan Jiang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Autoantibodies are cornerstone biomarkers in systemic lupus erythematosus (SLE), an autoimmune disease characterized by autoantibody-mediated tissue damage. Autoantibodies can inform about disease susceptibility, clinical course, outcomes and the cause of SLE. Identifying pathogenic autoantibodies in SLE, however, remains a significant challenge. This review summarizes recent advances in the field of autoantibodies in SLE. RECENT FINDINGS High-throughput technologies and innovative hypothesis have been applied to identify autoantibodies linked to pathogenic pathways in SLE. This work has led to the discovery of functional autoantibodies targeting key components is SLE pathogenesis (e.g. DNase1L3, cytokines, extracellular immunoregulatory receptors), as well as the identification of endogenous retroelements and interferon-induced proteins as sources of autoantigens in SLE. Others have reinvigorated the study of mitochondria, which has antigenic parallels with bacteria, as a trigger of autoantibodies in SLE, and identified faecal IgA to nuclear antigens as potential biomarkers linking gut permeability and microbial translocation in SLE pathogenesis. Recent studies showed that levels of autoantibodies against dsDNA, C1q, chromatin, Sm and ribosomal P may serve as biomarkers of proliferative lupus nephritis, and identified novel autoantibodies to several unique species of Ro52 overexpressed by SLE neutrophils. SUMMARY Autoantibodies hold promise as biomarkers of pathogenic mechanisms in SLE.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Andrea Fava
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine. Baltimore, MD, 21224. U.S.A
| |
Collapse
|
37
|
Aubé FA, Bidias A, Pépin G. Who and how, DNA sensors in NETs-driven inflammation. Front Immunol 2023; 14:1190177. [PMID: 37187738 PMCID: PMC10179500 DOI: 10.3389/fimmu.2023.1190177] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
During infections, neutrophil extracellular traps act like a meshwork of molecules that captures microbes. In contrast, during sterile inflammation the presence of NETs is usually associated with tissue damage and uncontrolled inflammation. In this context, DNA acts both as activator of NETs formation and immunogenic molecule fueling inflammation within the injured tissue microenvironment. Pattern recognition receptors that specifically bind to and get activated by DNA such as Toll-like receptor-9 (TLR9), cyclic GMP-AMP synthase (cGAS), Nod-like receptor protein 3 (NLRP3) and Absence in Melanoma-2 (AIM2) have been reported to play a role in NETs formation and detection. However, how these DNA sensors contribute to NETs-driven inflammation is not well understood. Whether these DNA sensors have unique roles or on the contrary they are mostly redundant is still elusive. In this review, we summarize the known contribution of the above DNA sensors to the formation and detection of NETs in the context of sterile inflammation. We also highlight scientific gaps needed to be addressed and propose future direction for therapeutic targets.
Collapse
Affiliation(s)
- Félix-Antoine Aubé
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Amel Bidias
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Geneviève Pépin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- *Correspondence: Geneviève Pépin,
| |
Collapse
|
38
|
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 2022; 23:274-288. [PMID: 36257987 PMCID: PMC9579530 DOI: 10.1038/s41577-022-00787-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.
Collapse
|
39
|
Affiliation(s)
- Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany. .,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden.
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
40
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|