1
|
Rannap M, Ohara S, Winterstein J, Roth FC, Draguhn A, Egorov AV. Functional and structural organization of medial entorhinal cortex layer VI. iScience 2025; 28:112207. [PMID: 40235593 PMCID: PMC11999471 DOI: 10.1016/j.isci.2025.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Deep layers (V/VI) of the entorhinal cortex transfer hippocampal neuronal activity to downstream neocortical networks. In addition, neurons in layer VI (LVI) of the medial entorhinal cortex (MEC) project back to all hippocampal subregions and contribute to spatial coding and memory. Their role in the processing of hippocampal output signals and their interaction with LV neurons is, however, unknown. We show that spontaneously occurring hippocampal sharp wave-ripple complexes reliably propagate from area CA1 to MEC LVI. Using anterograde tracing and in vitro optogenetics, we confirm direct hippocampal projections to LVI and show that these follow a parallel dorsoventral topography. Further investigation of the MEC deep layer network revealed very sparse excitatory connections between LVI and LVb or LVI and LVa neurons in both directions. Together, our results establish organizational principles for the hippocampal-MEC LVI output circuit and suggest largely parallel signal processing through different cellular subpopulations in MEC deep layers.
Collapse
Affiliation(s)
- Märt Rannap
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| | - Janis Winterstein
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian C. Roth
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexei V. Egorov
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Chandra S, Sharma S, Chaudhuri R, Fiete I. Episodic and associative memory from spatial scaffolds in the hippocampus. Nature 2025; 638:739-751. [PMID: 39814883 DOI: 10.1038/s41586-024-08392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories1-5. Although there have been advances in modelling spatial representations in the hippocampus6-10, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory. By factoring content storage from the dynamics of generating error-correcting stable states, the circuit (which we call vector hippocampal scaffolded heteroassociative memory (Vector-HaSH)) avoids the memory cliff of prior memory models11,12, and instead exhibits a graceful trade-off between number of stored items and recall detail. A pre-structured internal scaffold based on grid cell states is essential for constructing even non-spatial episodic memory: it enables high-capacity sequence memorization by abstracting the chaining problem into one of learning low-dimensional transitions. Vector-HaSH reproduces several hippocampal experiments on spatial mapping and context-based representations, and provides a circuit model of the 'memory palaces' used by memory athletes13. Thus, this work provides a unified understanding of the spatial mapping and associative and episodic memory roles of the hippocampus.
Collapse
Affiliation(s)
- Sarthak Chandra
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA
| | - Sugandha Sharma
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA
| | - Rishidev Chaudhuri
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
- Department of Mathematics, University of California Davis, Davis, CA, USA
| | - Ila Fiete
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Huang LW, Garden DLF, McClure C, Nolan MF. Synaptic interactions between stellate cells and parvalbumin interneurons in layer 2 of the medial entorhinal cortex are organized at the scale of grid cell clusters. eLife 2024; 12:RP92854. [PMID: 39485383 PMCID: PMC11530233 DOI: 10.7554/elife.92854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Interactions between excitatory and inhibitory neurons are critical to computations in cortical circuits but their organization is difficult to assess with standard electrophysiological approaches. Within the medial entorhinal cortex, representation of location by grid and other spatial cells involves circuits in layer 2 in which excitatory stellate cells interact with each other via inhibitory parvalbumin expressing interneurons. Whether this connectivity is structured to support local circuit computations is unclear. Here, we introduce strategies to address the functional organization of excitatory-inhibitory interactions using crossed Cre- and Flp-driver mouse lines to direct targeted presynaptic optogenetic activation and postsynaptic cell identification. We then use simultaneous patch-clamp recordings from postsynaptic neurons to assess their shared input from optically activated presynaptic populations. We find that extensive axonal projections support spatially organized connectivity between stellate cells and parvalbumin interneurons, such that direct connections are often, but not always, shared by nearby neurons, whereas multisynaptic interactions coordinate inputs to neurons with greater spatial separation. We suggest that direct excitatory-inhibitory synaptic interactions may operate at the scale of grid cell clusters, with local modules defined by excitatory-inhibitory connectivity, while indirect interactions may coordinate activity at the scale of grid cell modules.
Collapse
Affiliation(s)
- Li-Wen Huang
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Derek LF Garden
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Christina McClure
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
- Centre for Statistics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
4
|
Yuan L, Chen X, Zhan H, Henry GL, Zador AM. Massive multiplexing of spatially resolved single neuron projections with axonal BARseq. Nat Commun 2024; 15:8371. [PMID: 39333158 PMCID: PMC11437104 DOI: 10.1038/s41467-024-52756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Neurons in the cortex are heterogeneous, sending diverse axonal projections to multiple brain regions. Unraveling the logic of these projections requires single-neuron resolution. Although a growing number of techniques have enabled high-throughput reconstruction, these techniques are typically limited to dozens or at most hundreds of neurons per brain, requiring that statistical analyses combine data from different specimens. Here we present axonal BARseq, a high-throughput approach based on reading out nucleic acid barcodes using in situ RNA sequencing, which enables analysis of even densely labeled neurons. As a proof of principle, we have mapped the long-range projections of >8000 primary auditory cortex neurons from a single male mouse. We identified major cell types based on projection targets and axonal trajectory. The large sample size enabled us to systematically quantify the projections of intratelencephalic (IT) neurons, and revealed that individual IT neurons project to different layers in an area-dependent fashion. Axonal BARseq is a powerful technique for studying the heterogeneity of single neuronal projections at high throughput within individual brains.
Collapse
Affiliation(s)
- Li Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | |
Collapse
|
5
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
6
|
Shao Q, Chen L, Li X, Li M, Cui H, Li X, Zhao X, Shi Y, Sun Q, Yan K, Wang G. A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation. Nat Commun 2024; 15:4122. [PMID: 38750027 PMCID: PMC11096324 DOI: 10.1038/s41467-024-48483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.
Collapse
Affiliation(s)
- Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Miao Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
7
|
Yamamoto N, Yokose J, Ramesh K, Kitamura T, Ogawa SK. Outer layer of Vb neurons in medial entorhinal cortex project to hippocampal dentate gyrus in mice. Mol Brain 2024; 17:5. [PMID: 38317261 PMCID: PMC10845563 DOI: 10.1186/s13041-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Entorhinal cortical (EC)-hippocampal (HPC) circuits are crucial for learning and memory. Although it was traditionally believed that superficial layers (II/III) of the EC mainly project to the HPC and deep layers (V/VI) receive input from the HPC, recent studies have highlighted the significant projections from layers Va and VI of the EC into the HPC. However, it still remains unknown whether Vb neurons in the EC provide projections to the hippocampus. In this study, using a molecular marker for Vb and retrograde tracers, we identified that the outer layer of Vb neurons in the medial EC (MEC) directly project to both dorsal and ventral hippocampal dentate gyrus (DG), with a significant preference for the ventral DG. In contrast to the distribution of DG-projecting Vb cells, anterior thalamus-projecting Vb cells are distributed through the outer to the inner layer of Vb. Furthermore, dual tracer injections revealed that DG-projecting Vb cells and anterior thalamus-projecting Vb cells are distinct populations. These results suggest that the roles of MEC Vb neurons are not merely limited to the formation of EC-HPC loop circuits, but rather contribute to multiple neural processes for learning and memory.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kritika Ramesh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Chen Y, Fernandez Z, Scheel N, Gifani M, Zhu DC, Counts SE, Dorrance AM, Razansky D, Yu X, Qian W, Qian C. Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal from susceptibility compensation in rats. Cereb Cortex 2024; 34:bhad479. [PMID: 38100332 PMCID: PMC10793587 DOI: 10.1093/cercor/bhad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Zachary Fernandez
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Scott E Counts
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49508, United States
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105, United States
| | - Anne M Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich 8006, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Institute for Biomedical Engineering, , Zurich 8092, Switzerland
- Zurich Neuroscience Center, Zurich 8057, Switzerland
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Chunqi Qian
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
9
|
Feldmeyer D. Structure and function of neocortical layer 6b. Front Cell Neurosci 2023; 17:1257803. [PMID: 37744882 PMCID: PMC10516558 DOI: 10.3389/fncel.2023.1257803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Cortical layer 6b is considered by many to be a remnant of the subplate that forms during early stages of neocortical development, but its role in the adult is not well understood. Its neuronal complement has only recently become the subject of systematic studies, and its axonal projections and synaptic input structures have remained largely unexplored despite decades of research into neocortical function. In recent years, however, layer 6b (L6b) has attracted increasing attention and its functional role is beginning to be elucidated. In this review, I will attempt to provide an overview of what is currently known about the excitatory and inhibitory neurons in this layer, their pre- and postsynaptic connectivity, and their functional implications. Similarities and differences between different cortical areas will be highlighted. Finally, layer 6b neurons are highly responsive to several neuropeptides such as orexin/hypocretin, neurotensin and cholecystokinin, in some cases exclusively. They are also strongly controlled by neurotransmitters such as acetylcholine and norepinephrine. The interaction of these neuromodulators with L6b microcircuitry and its functional consequences will also be discussed.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine 10 (INM-10), Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
10
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Ohara S, Rannap M, Tsutsui KI, Draguhn A, Egorov AV, Witter MP. Hippocampal-medial entorhinal circuit is differently organized along the dorsoventral axis in rodents. Cell Rep 2023; 42:112001. [PMID: 36680772 DOI: 10.1016/j.celrep.2023.112001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The general understanding of hippocampal circuits is that the hippocampus and the entorhinal cortex (EC) are topographically connected through parallel identical circuits along the dorsoventral axis. Our anterograde tracing and in vitro electrophysiology data, however, show a markedly different dorsoventral organization of the hippocampal projection to the medial EC (MEC). While dorsal hippocampal projections are confined to the dorsal MEC, ventral hippocampal projections innervate both dorsal and ventral MEC. Further, whereas the dorsal hippocampus preferentially targets layer Vb (LVb) neurons, the ventral hippocampus mainly targets cells in layer Va (LVa). This connectivity scheme differs from hippocampal projections to the lateral EC, which are topographically organized along the dorsoventral axis. As LVa neurons project to telencephalic structures, our findings indicate that the ventral hippocampus regulates LVa-mediated entorhinal-neocortical output from both dorsal and ventral MEC. Overall, the marked dorsoventral differences in hippocampal-entorhinal connectivity impose important constraints on signal flow in hippocampal-neocortical circuits.
Collapse
Affiliation(s)
- Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan; Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway; PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Märt Rannap
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
12
|
Ben-Simon Y, Kaefer K, Velicky P, Csicsvari J, Danzl JG, Jonas P. A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nat Commun 2022; 13:4826. [PMID: 35974109 PMCID: PMC9381769 DOI: 10.1038/s41467-022-32559-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.
Collapse
Affiliation(s)
- Yoav Ben-Simon
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- Department of Neurophysiology and Pharmacology, Vienna Medical University, Vienna, Austria.
| | - Karola Kaefer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Department of Neuroinformatics, Radboud University, Nijmegen, The Netherlands
| | - Philipp Velicky
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|