1
|
Kreslavsky T. Thymflammation: The Role of a Constitutively Active Inflammatory Network and "Ectopic" Cell Types in the Thymus in the Induction of T Cell Tolerance and Beyond. Immunol Rev 2025; 332:e70037. [PMID: 40433806 PMCID: PMC12117520 DOI: 10.1111/imr.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
The thymus exhibits constitutive activation of nearly all major inflammatory pathways, including sterile MyD88-dependent signaling and interferon production by mTECs, the presence of cellular and molecular components of type 1, type 2, and type 3 responses, as well as sustained B cell activation. The reasons for the existence of such a complex constitutively active inflammatory network at the site of T cell development-where the initial pathogen encounter is unlikely-have remained enigmatic. We propose that this inflammatory thymic 'ecosystem' has evolved to promote immunological tolerance to 'inflammatory self'-endogenous molecules absent from most peripheral tissues at steady state but upregulated during pathogen invasion. The spatial and temporal overlap with pathogen presence makes the discrimination of the inflammatory self from pathogen-derived molecules a unique challenge for the adaptive immune system. The frequent occurrence of diseases associated with autoantibodies against proinflammatory cytokines underscores the persistent risk of these molecules being misidentified as foreign. Their abundant representation in the thymus, therefore, is likely to be critical for maintaining tolerance. This review explores current insights into the thymic inflammatory network, its cellular and molecular constituents, and their role in the induction of T cell tolerance.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Martinez RJ, Hogquist KA. Sterile production of interferons in the thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf048. [PMID: 40184034 DOI: 10.1093/jimmun/vkaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
T-cell central tolerance is controlled by thymocyte TCR recognition of self-peptides presented by thymic APCs. While thymic epithelial cells are essential for T-cell central tolerance, a variety of other traditional APCs also play critical roles in T-cell selection. Similar to how peripheral APCs require activation to become effective, thymic APCs also require activation to become tolerogenic. Recent studies have identified IFNs as an essential factor for the activation and generation of an optimally tolerogenic thymic environment. In this review, we focus on interferon (IFN) production within the thymus and its effects on thymic APCs and developing thymocytes. We also examine the importance of T-cell tolerance to IFN itself as well as to interferon-stimulated proteins generated during peripheral immune responses.
Collapse
Affiliation(s)
- Ryan J Martinez
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
3
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
4
|
Carter-Cusack D, Huang S, Keshvari S, Patkar O, Sehgal A, Allavena R, Byrne RAJ, Morgan BP, Bush SJ, Summers KM, Irvine KM, Hume DA. Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation. PLoS Genet 2025; 21:e1011525. [PMID: 39869647 PMCID: PMC11785368 DOI: 10.1371/journal.pgen.1011525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/31/2025] [Accepted: 12/04/2024] [Indexed: 01/29/2025] Open
Abstract
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival. To dissect the phenotype and function of macrophages in postnatal development, we generated transcriptomic profiles of all major organs of wild-type and Csf1rko rats at weaning and in selected organs following rescue by BMT. The transcriptomic profiles revealed subtle effects of macrophage deficiency on development of all major organs. Network analysis revealed a common signature of CSF1R-dependent resident tissue macrophages that includes the components of complement C1Q (C1qa/b/c genes). Circulating C1Q was almost undetectable in Csf1rko rats and rapidly restored to normal levels following BMT. Tissue-specific macrophage signatures were also identified, notably including sinus macrophage populations in the lymph nodes. Their loss in Csf1rko rats was confirmed by immunohistochemical localisation of CD209B (SIGNR1). By 6-12 weeks, Csf1rko rats succumb to emphysema-like pathology associated with the selective loss of interstitial macrophages and granulocytosis. This pathology was reversed by BMT. Along with physiological rescue, BMT precisely regenerated the abundance and expression profiles of resident macrophages. The exception was the brain, where BM-derived microglia-like cells had a distinct expression profile compared to resident microglia. In addition, the transferred BM failed to restore blood monocyte or CSF1R-positive bone marrow progenitors. These studies provide a model for the pathology and treatment of CSF1R mutations in humans and the innate immune deficiency associated with prematurity.
Collapse
Affiliation(s)
- Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Stephen Huang
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Omkar Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Robert A. J. Byrne
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephen J. Bush
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
5
|
Klein L, Petrozziello E. Antigen presentation for central tolerance induction. Nat Rev Immunol 2025; 25:57-72. [PMID: 39294277 DOI: 10.1038/s41577-024-01076-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
The extent of central T cell tolerance is determined by the diversity of self-antigens that developing thymocytes 'see' on thymic antigen-presenting cells (APCs). Here, focusing on insights from the past decade, we review the functional adaptations of medullary thymic epithelial cells, thymic dendritic cells and thymic B cells for the purpose of tolerance induction. Their distinct cellular characteristics range from unconventional phenomena, such as promiscuous gene expression or mimicry of peripheral cell types, to strategic positioning in distinct microenvironments and divergent propensities to preferentially access endogenous or exogenous antigen pools. We also discuss how 'tonic' inflammatory signals in the thymic microenvironment may extend the intrathymically visible 'self' to include autoantigens that are otherwise associated with highly immunogenic peripheral environments.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Silva RCMC. The function of CD8 + T cells in the absence of MHC-I in target cells: what to learn from the deficiency of MHC-I expression in humans. Immunol Res 2024; 73:4. [PMID: 39661298 DOI: 10.1007/s12026-024-09556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
|
7
|
Weiss FD, Alvarez Y, Shakeri F, Sahu A, Leka P, Dernst A, Rollheiser J, Vasconcelos M, Geraci A, Duthie F, Stahl R, Lee HE, Gellner AK, Buness A, Latz E, Meissner F. Retention of ES cell-derived 129S genome drives NLRP1 hypersensitivity and transcriptional deregulation in Nlrp3 tm1Flv mice. Cell Death Differ 2024; 31:1717-1729. [PMID: 39289506 PMCID: PMC11618613 DOI: 10.1038/s41418-024-01379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Immune response genes are highly polymorphic in humans and mice, with heterogeneity amongst loci driving strain-specific host defence responses. The inadvertent retention of polymorphic loci can introduce confounding phenotypes, leading to erroneous conclusions, and impeding scientific advancement. In this study, we employ a combination of RNAseq and variant calling analyses to identify a substantial region of 129S genome, including the highly polymorphic Nlrp1 locus, proximal to Nlrp3, in one of the most commonly used mouse models of NLRP3 deficiency (Nlrp3tm1Flv). We show that the presence of the Nlrp1129S locus leads to an increase in NLRP1B protein expression, and a sensitising of Nlrp3tm1Flv macrophages to NLRP1 inflammasome activation, independent of NLRP3 deficiency. Retention of 129S genome further leads to protein sequence differences and altered gene regulation across multiple cell types, including of the key tissue-resident macrophage marker, TIM4. Using alternative models of NLRP3 deficiency, including a previously undescribed conditional Nlrp3 allele enabling precise temporal and cell-type specific control over Nlrp3 deletion, we further show that NLRP3 contributes to Talabostat-driven IL-1β release. Our study also establishes a generic framework to identify functionally relevant SNPs and assess genomic contamination in transgenic mice using RNAseq data. This allows for unambiguous attribution of phenotypes to the target gene and advances the precision and reliability of research in the field of host defence responses.
Collapse
Affiliation(s)
- Felix D Weiss
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Yubell Alvarez
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anshupa Sahu
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Petro Leka
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alesja Dernst
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jessika Rollheiser
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matilde Vasconcelos
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Adriana Geraci
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Rainer Stahl
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hye Eun Lee
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
9
|
Borelli A, Santamaria JC, Zamit C, Apert C, Chevallier J, Pierre P, Argüello RJ, Spinelli L, Irla M. Lymphotoxin limits Foxp3 + regulatory T cell development from Foxp3 lo precursors via IL-4 signaling. Nat Commun 2024; 15:6976. [PMID: 39143070 PMCID: PMC11324892 DOI: 10.1038/s41467-024-51164-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Treg) are critical players of immune tolerance that develop in the thymus via two distinct developmental pathways involving CD25+Foxp3- and CD25-Foxp3lo precursors. However, the mechanisms regulating the recently identified Foxp3lo precursor pathway remain unclear. Here, we find that the membrane-bound lymphotoxin α1β2 (LTα1β2) heterocomplex is upregulated during Treg development upon TCR/CD28 and IL-2 stimulation. We show that Lta expression limits the maturational development of Treg from Foxp3lo precursors by regulating their proliferation, survival, and metabolic profile. Transgenic reporter mice and transcriptomic analyses further reveal that medullary thymic epithelial cells (mTEC) constitute an unexpected source of IL-4. We demonstrate that LTα1β2-lymphotoxin β receptor-mediated interactions with mTEC limit Treg development by down-regulating IL-4 expression in mTEC. Collectively, our findings identify the lymphotoxin axis as the first inhibitory checkpoint of thymic Treg development that fine-tunes the Foxp3lo Treg precursor pathway by limiting IL-4 availability.
Collapse
Affiliation(s)
- Alexia Borelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Jérémy C Santamaria
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Cloé Zamit
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Cécile Apert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-University Toulouse III, Toulouse, France
- Microenvironment & Immunity Unit, Institut Pasteur, Paris, France
| | - Jessica Chevallier
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Philippe Pierre
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Lionel Spinelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Magali Irla
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
10
|
Ruiz Pérez M, Maueröder C, Steels W, Verstraeten B, Lameire S, Xie W, Wyckaert L, Huysentruyt J, Divert T, Roelandt R, Gonçalves A, De Rycke R, Ravichandran K, Lambrecht BN, Taghon T, Leclercq G, Vandenabeele P, Tougaard P. TL1A and IL-18 synergy promotes GM-CSF-dependent thymic granulopoiesis in mice. Cell Mol Immunol 2024; 21:807-825. [PMID: 38839915 PMCID: PMC11291760 DOI: 10.1038/s41423-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Wolf Steels
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wei Xie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Wyckaert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- VIB Single Cell Facility, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Ashby KM, Vobořil M, Salgado OC, Lee ST, Martinez RJ, O’Connor CH, Breed ER, Xuan S, Roll CR, Bachigari S, Heiland H, Stetson DB, Kotenko SV, Hogquist KA. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci Immunol 2024; 9:eadp1139. [PMID: 39058762 PMCID: PMC12052003 DOI: 10.1126/sciimmunol.adp1139] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.
Collapse
Affiliation(s)
- K. Maude Ashby
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Matouš Vobořil
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Oscar C. Salgado
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - S. Thera Lee
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan J. Martinez
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christine H. O’Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN 55455, USA
| | - Elise R. Breed
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Shuya Xuan
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles R. Roll
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Saumith Bachigari
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hattie Heiland
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel B. Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kristin A. Hogquist
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Lagou MK, Argyris DG, Vodopyanov S, Gunther-Cummins L, Hardas A, Poutahidis T, Panorias C, DesMarais S, Entenberg C, Carpenter RS, Guzik H, Nishku X, Churaman J, Maryanovich M, DesMarais V, Macaluso FP, Karagiannis GS. Morphometric Analysis of the Thymic Epithelial Cell (TEC) Network Using Integrated and Orthogonal Digital Pathology Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584509. [PMID: 38559037 PMCID: PMC10979902 DOI: 10.1101/2024.03.11.584509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Dimitrios G Argyris
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Stepan Vodopyanov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Leslie Gunther-Cummins
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Alexandros Hardas
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, United Kingdom
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Panorias
- Division of Statistics and Operational Research, Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia DesMarais
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Conner Entenberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hillary Guzik
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Xheni Nishku
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Joseph Churaman
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Vera DesMarais
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Frank P Macaluso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| |
Collapse
|
13
|
Root SH, Matthews BG, Torreggiani E, Aguila HL, Kalajzic I. Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Sci Rep 2023; 13:22403. [PMID: 38104230 PMCID: PMC10725438 DOI: 10.1038/s41598-023-49713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
- Division of Pediatric Dentistry, MC1610, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Brya G Matthews
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elena Torreggiani
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
14
|
Yayon N, Kedlian VR, Boehme L, Suo C, Wachter B, Beuschel RT, Amsalem O, Polanski K, Koplev S, Tuck E, Dann E, Van Hulle J, Perera S, Putteman T, Predeus AV, Dabrowska M, Richardson L, Tudor C, Kreins AY, Engelbert J, Stephenson E, Kleshchevnikov V, De Rita F, Crossland D, Bosticardo M, Pala F, Prigmore E, Chipampe NJ, Prete M, Fei L, To K, Barker RA, He X, Van Nieuwerburgh F, Bayraktar O, Patel M, Davies GE, Haniffa MA, Uhlmann V, Notarangelo LD, Germain RN, Radtke AJ, Marioni JC, Taghon T, Teichmann SA. A spatial human thymus cell atlas mapped to a continuous tissue axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.562925. [PMID: 37986877 PMCID: PMC10659407 DOI: 10.1101/2023.10.25.562925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.
Collapse
Affiliation(s)
- Nadav Yayon
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | | | - Lena Boehme
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Chenqu Suo
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Brianna Wachter
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Rebecca T Beuschel
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Oren Amsalem
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Endocrinology, Diabetes and Metabolism, Boston, MA, United States
| | | | - Simon Koplev
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Emma Dann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Jolien Van Hulle
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Shani Perera
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Tom Putteman
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | | | - Monika Dabrowska
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Catherine Tudor
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Alexandra Y Kreins
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Justin Engelbert
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | | | - Fabrizio De Rita
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - David Crossland
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - Marita Bosticardo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Francesca Pala
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Elena Prigmore
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | | | - Martin Prete
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Lijiang Fei
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Ken To
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Roger A Barker
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Xiaoling He
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Omer Bayraktar
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Minal Patel
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Graham E Davies
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Muzlifah A Haniffa
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Virginie Uhlmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Andrea J Radtke
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK, Cambridge, United Kingdom
| | - Tom Taghon
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
15
|
Reading the Ts and DCs of thymopoiesis. Nat Immunol 2023; 24:385-386. [PMID: 36829070 DOI: 10.1038/s41590-023-01439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|