1
|
Wang M, Kim RY, Kohonen-Corish MRJ, Chen H, Donovan C, Oliver BG. Particulate matter air pollution as a cause of lung cancer: epidemiological and experimental evidence. Br J Cancer 2025; 132:986-996. [PMID: 40185876 PMCID: PMC12119916 DOI: 10.1038/s41416-025-02999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Air pollution has a significant global impact on human health. Epidemiological evidence strongly suggests that airborne particulate matter (PM), the dust components of polluted air, is associated with increased incidence and mortality of lung cancer. PM2.5 (PM less than 2.5 µm) from various sources carries different toxic substances, such as sulfates, organic compounds, polycyclic aromatic hydrocarbons, and heavy metals, which are considered major carcinogens that increase lung cancer risk. The incidence and mortality of lung cancer caused by PM2.5 exposure may be due to significant geographical differences, and can be influenced by various factors, including local sources of air pollution, socioeconomic conditions, and public health measures. This review aims to provide comprehensive insights into the health implications of air pollution and to inform strategies for lung cancer prevention, by summarising the relationship between exposure to PM2.5 and lung cancer development. We explore the different sources of PM2.5 and relevant carcinogenic mechanisms in the context of epidemiological studies on the development of lung cancer from various geographical regions worldwide.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Richard Y Kim
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Maija R J Kohonen-Corish
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
- Sydney Local Health District, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Xiang M, Chen C, Chen Y, Zhang Y, Shi L, Chen Y, Li J, Li B, Zeng B, Xing HR, Wang J, Zou Z. Unexpected Inhibitory Role of Silica Nanoparticles on Lung Cancer Development by Promoting M1 Polarization of Macrophages. Int J Nanomedicine 2024; 19:11087-11104. [PMID: 39502640 PMCID: PMC11537155 DOI: 10.2147/ijn.s472796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Inhalation exposure to silica nanoparticles (SiNPs) is frequently inevitable in modern times. Although the impact of SiNPs on the ecological niche of the lungs has been extensively explored, the role and mechanism of SiNPs in the microenvironment of lung tumors remain elusive. Methods In this investigation, Lewis lung carcinoma (LLC) was implanted into the left lung in situ after 28 days of intratracheal SiNPs injection into the lungs of mice. This study evaluates the effects of SiNPs on the tumor immune microenvironment both in vitro and in vivo. Our findings indicate that SiNPs can suppress lung cancer by modulating the immune microenvironment of tumors. Results SiNPs treatment promotes macrophage M1 polarization by activating both NF-κB pathway and glycolytic mechanisms. This phenomenon may be associated with lung inflammation and fluctuation in the pre-metastatic and metastatic microenvironments induced by SiNPs exposure in mice. Additionally, we have shown for the first time that SiNPs have an inhibitory effect on lung carcinogenesis and its progression. Conclusion This study uniquely demonstrates that SiNPs suppress lung cancer by promoting M1 polarization of macrophages in the immune microenvironment of lung tumors. Our findings are critical in exploring the interaction between SiNPs and lung cancer.
Collapse
Affiliation(s)
- Meng Xiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Chengzhi Chen
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lei Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jie Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bowen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bin Zeng
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jianyu Wang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
3
|
Samson SC, Rojas A, Zitnay RG, Carney KR, Hettinga W, Schaelling MC, Sicard D, Zhang W, Gilbert-Ross M, Dy GK, Cavnar MJ, Furqan M, Browning RF, Naqash AR, Schneider BP, Tarhini A, Tschumperlin DJ, Venosa A, Marcus AI, Emerson LL, Spike BT, Knudsen BS, Mendoza MC. Tenascin-C in the early lung cancer tumor microenvironment promotes progression through integrin αvβ1 and FAK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613509. [PMID: 39345541 PMCID: PMC11429853 DOI: 10.1101/2024.09.17.613509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pre-cancerous lung lesions are commonly initiated by activating mutations in the RAS pathway, but do not transition to lung adenocarcinomas (LUAD) without additional oncogenic signals. Here, we show that expression of the extracellular matrix protein Tenascin-C (TNC) is increased in and promotes the earliest stages of LUAD development in oncogenic KRAS-driven lung cancer mouse models and in human LUAD. TNC is initially expressed by fibroblasts and its expression extends to tumor cells as the tumor becomes invasive. Genetic deletion of TNC in the mouse models reduces early tumor burden and high-grade pathology and diminishes tumor cell proliferation, invasion, and focal adhesion kinase (FAK) activity. TNC stimulates cultured LUAD tumor cell proliferation and migration through engagement of αv-containing integrins and subsequent FAK activation. Intringuingly, lung injury causes sustained TNC accumulation in mouse lungs, suggesting injury can induce additional TNC signaling for early tumor cell transition to invasive LUAD. Biospecimens from patients with stage I/II LUAD show TNC in regions of FAK activation and an association of TNC with tumor recurrence after primary tumor resection. These results suggest that exogenous insults that elevate TNC in the lung parenchyma interact with tumor-initiating mutations to drive early LUAD progression and local recurrence.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Anthony Rojas
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Rebecca G Zitnay
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Keith R Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Wakeiyo Hettinga
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Mary C Schaelling
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Wei Zhang
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Michael J Cavnar
- Department of Surgery, University of Kentucky, Lexington, KY 40508
| | - Muhammad Furqan
- Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA 52246
| | - Robert F Browning
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD 20889
| | - Abdul R Naqash
- Division of Medical Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Bryan P Schneider
- Department of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ahmad Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL 33612
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Long Island University, College of Veterinary Medicine, Brookville, NY 11548
| | - Lyska L Emerson
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Benjamin T Spike
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Beatrice S Knudsen
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
4
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
5
|
Wyllie K, Panagopoulos V, Cox TR. The role of peroxidasin in solid cancer progression. Biochem Soc Trans 2023; 51:1881-1895. [PMID: 37801286 PMCID: PMC10657184 DOI: 10.1042/bst20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Peroxidasin is a heme-containing peroxidase enzyme that plays a vital role in the cross-linking of collagen IV molecules in basement membranes. Collagen IV cross-links are essential for providing structure and mechanical stability throughout tissue development, homeostasis, and wound healing. During cancer progression, the basement membrane is degraded, and proteins typically found in the basement membrane, including peroxidasin and collagen IV, can be found spread throughout the tumour microenvironment where they interact with cancer cells and alter cell behaviour. Whilst peroxidasin is reported to be up-regulated in a number of different cancers, the role that it plays in disease progression and metastasis has only recently begun to be studied. This review highlights the current literature exploring the known roles of peroxidasin in normal tissues and cancer progression, regulators of peroxidasin expression, and the reported relationships between peroxidasin expression and patient outcome in cancer.
Collapse
Affiliation(s)
- Kaitlin Wyllie
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Thomas R. Cox
- Matrix & Metastasis Lab, The Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Ecosystems Program, Sydney, NSW 2010, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Salem HS. Cancer status in the Occupied Palestinian Territories: types; incidence; mortality; sex, age, and geography distribution; and possible causes. J Cancer Res Clin Oncol 2023; 149:5139-5163. [PMID: 36350411 PMCID: PMC9645346 DOI: 10.1007/s00432-022-04430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Cancer is a disease in which some cells of the body grow uncontrollably and occasionally spread to other parts of the body. With a group of more than 100 different types, cancer can start almost anywhere in the body. Defective cells may form a mass called a tumor which can be cancerous (malignant), which grows and spreads to other parts of the body, or benign that can grow but not spread throughout the body. In 2021, more than 10 million people died of cancer worldwide (1 out of 6 deaths). This paper has thoroughly investigated the cancer status in the Occupied Palestinian Territories (OPT), in terms of its various types; incidence; mortality; sex, age, and geography distribution; and potential causes. In the OPT, with a population of 5.35 million, cancer mortality was 14% in 2016, being the second cause of death after cardiovascular diseases accounting 30.6% of all causes of death. Cancer mortality in the OPT increased by 136% from 2000 to 2016, and by 14% from 2016 to 2020. In addition to other types of cancer in the OPT, its main types are lung (highest in males), breast (highest in females), colorectal (highest in both sexes), and leukemia (highest in children). The high rates of different types of cancer in the OPT can be attributed to various causes, including those related to environmental pollution, nutrition, stress, and lifestyle factors (smoking, lack of activity, increased dependence on technologies, etc.), whereas only 10-30% of cancer cases are attributed to genetics.
Collapse
Affiliation(s)
- Hilmi S Salem
- Sustainable Development Research Institute, Bethlehem, West Bank, Palestine.
| |
Collapse
|
7
|
Titmarsh HF, von Kriegsheim A, Wills JC, O’Connor RA, Dhaliwal K, Frame MC, Pattle SB, Dorward DA, Byron A, Akram AR. Quantitative proteomics identifies tumour matrisome signatures in patients with non-small cell lung cancer. Front Oncol 2023; 13:1194515. [PMID: 37397358 PMCID: PMC10313119 DOI: 10.3389/fonc.2023.1194515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.
Collapse
Affiliation(s)
- Helen F. Titmarsh
- The EPSRC and MRC Centre for Doctoral Training in Optical Medical Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C. Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Margaret C. Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel B. Pattle
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Dorward
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell 2023; 186:1541-1563. [PMID: 37059064 DOI: 10.1016/j.cell.2023.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Recent identification of oncogenic cells within healthy tissues and the prevalence of indolent cancers found incidentally at autopsies reveal a greater complexity in tumor initiation than previously appreciated. The human body contains roughly 40 trillion cells of 200 different types that are organized within a complex three-dimensional matrix, necessitating exquisite mechanisms to restrain aberrant outgrowth of malignant cells that have the capacity to kill the host. Understanding how this defense is overcome to trigger tumorigenesis and why cancer is so extraordinarily rare at the cellular level is vital to future prevention therapies. In this review, we discuss how early initiated cells are protected from further tumorigenesis and the non-mutagenic pathways by which cancer risk factors promote tumor growth. By nature, the absence of permanent genomic alterations potentially renders these tumor-promoting mechanisms clinically targetable. Finally, we consider existing strategies for early cancer interception with perspectives on the next steps for molecular cancer prevention.
Collapse
Affiliation(s)
- Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
9
|
Identifying tumour microenvironment-related signature that correlates with prognosis and immunotherapy response in breast cancer. Sci Data 2023; 10:119. [PMID: 36869083 PMCID: PMC9984471 DOI: 10.1038/s41597-023-02032-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Tumor microenvironment (TME) plays important roles in prognosis and immune evasion. However, the relationship between TME-related genes and clinical prognosis, immune cell infiltration, and immunotherapy response in breast cancer (BRCA) remains unclear. This study described the TME pattern to construct a TME-related prognosis signature, including risk factors PXDNL, LINC02038 and protective factors SLC27A2, KLRB1, IGHV1-12 and IGKV1OR2-108, as an independent prognostic factor for BRCA. We found that the prognosis signature was negatively correlated with the survival time of BRCA patients, infiltration of immune cells and the expression of immune checkpoints, while positively correlated with tumor mutation burden and adverse treatment effects of immunotherapy. Upregulation of PXDNL and LINC02038 and downregulation of SLC27A2, KLRB1, IGHV1-12 and IGKV1OR2-108 in high-risk score group synergistically contribute to immunosuppressive microenvironment which characterized by immunosuppressive neutrophils, impaired cytotoxic T lymphocytes migration and natural killer cell cytotoxicity. In summary, we identified a TME-related prognostic signature in BRCA, which was connected with immune cell infiltration, immune checkpoints, immunotherapy response and could be developed for immunotherapy targets.
Collapse
|
10
|
Lord BD, Harris AR, Ambs S. The impact of social and environmental factors on cancer biology in Black Americans. Cancer Causes Control 2023; 34:191-203. [PMID: 36562901 DOI: 10.1007/s10552-022-01664-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Low socioeconomic status (SES) is associated with early onset of chronic diseases and reduced life expectancy. The involvement of neighborhood-level factors in defining cancer risk and outcomes for marginalized communities has been an active area of research for decades. Yet, the biological processes that underlie the impact of SES on chronic health conditions, such as cancer, remain poorly understood. To date, limited studies have shown that chronic life stress is more prevalent in low SES communities and can affect important molecular processes implicated in tumor biology such as DNA methylation, inflammation, and immune response. Further efforts to elucidate how neighborhood-level factors function physiologically to worsen cancer outcomes for disadvantaged communities are underway. This review provides an overview of the current literature on how socioenvironmental factors within neighborhoods contribute to more aggressive tumor biology, specifically in Black U.S. women and men, including the impact of environmental pollutants, neighborhood deprivation, social isolation, structural racism, and discrimination. We also summarize commonly used methods to measure deprivation, discrimination, and structural racism at the neighborhood-level in cancer health disparities research. Finally, we offer recommendations to adopt a multi-faceted intersectional approach to reduce cancer health disparities and develop effective interventions to promote health equity.
Collapse
Affiliation(s)
- Brittany D Lord
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bldg. 37/Room 3050, Bethesda, MD, 20892-4258, USA.
| | - Alexandra R Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bldg. 37/Room 3050, Bethesda, MD, 20892-4258, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bldg. 37/Room 3050, Bethesda, MD, 20892-4258, USA
| |
Collapse
|