1
|
Rencilin CF, Chatterjee A, Ansari MY, Deshpande S, Mukherjee S, Singh R, Jayatheertha SB, Reddy PM, Hingankar N, Varadarajan R, Bhattacharya J, Dutta S. Cryo-EM reveals conformational variability in the SARS-CoV-2 spike protein RBD induced by two broadly neutralizing monoclonal antibodies. RSC Adv 2025; 15:14385-14399. [PMID: 40330036 PMCID: PMC12053377 DOI: 10.1039/d5ra00373c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
SARS-CoV-2 spike proteins play a critical role in infection by interacting with the ACE2 receptors. Their receptor-binding domains and N-terminal domains exhibit remarkable flexibility and can adopt various conformations that facilitate receptor engagement. Previous structural studies have reported the RBD of the spike protein in "up", "down", and various intermediate states, as well as its different conformational changes during ACE2 binding. This flexibility also influences its interactions with the neutralizing antibodies, yet its role in the antibody complexes remains understudied. In this study, we used cryo-electron microscopy to investigate the structural properties of two broadly neutralizing monoclonal antibodies, THSC20.HVTR04 and THSC20.HVTR26. These antibodies were isolated from an unvaccinated individual and demonstrated potent neutralization of multiple SARS-CoV-2 variants. Our analysis revealed distinct binding characteristics and conformational changes in the spike RBD upon binding with the monoclonal antibodies. The structural characterization of the spike protein-monoclonal antibody complexes provided valuable insights into the structural variability of the spike protein and the possible mechanisms for antibody-mediated neutralization.
Collapse
Affiliation(s)
| | - Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science Bengaluru 560012 India
| | - Mohammad Yousuf Ansari
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Suprit Deshpande
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
- BRIC-Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Sohini Mukherjee
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
- IAVI Gurugram Haryana 122022 India
- IAVI New York NY 10004 USA
| | - Randhir Singh
- Mynvax Private Limited Vani Vilas Road, Basavanagudi Bengaluru 560004 India
| | | | - Poorvi M Reddy
- Mynvax Private Limited Vani Vilas Road, Basavanagudi Bengaluru 560004 India
| | - Nitin Hingankar
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science Bengaluru 560012 India
- Mynvax Private Limited Vani Vilas Road, Basavanagudi Bengaluru 560004 India
| | - Jayanta Bhattacharya
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
- BRIC-Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science Bengaluru 560012 India
| |
Collapse
|
2
|
Alshahrani M, Parikh V, Foley B, Verkhivker G. Exploring Diverse Binding Mechanisms of Broadly Neutralizing Antibodies S309, S304, CYFN-1006 and VIR-7229 Targeting SARS-CoV-2 Spike Omicron Variants: Integrative Computational Modeling Reveals Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.15.649027. [PMID: 40376091 PMCID: PMC12080943 DOI: 10.1101/2025.04.15.649027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. The cross-neutralization activity of antibodies against Omicron variants is governed by a complex and delicate interplay of multiple energetic factors and interaction contributions. In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309, and T385 and K386 for S304, underscoring their roles as evolutionary "weak spots" that balance viral fitness and immune evasion. The results of this energetic analysis demonstrate a good agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. The results of this study dissect distinct energetic mechanisms of binding and importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Broad-spectrum antibodies CYFN1006 and VIR-7229 maintain efficacy across multiple variants and achieve neutralization by targeting convergent evolution hotspots while enabling tolerance to mutations in these positions through structural adaptability and compensatory interactions at the binding interface. The results of this study underscore the diversity of binding mechanisms employed by different antibodies and molecular basis for high affinity and excellent neutralization activity of the latest generation of antibodies.
Collapse
|
3
|
Xie X, Zhang Y, Fang Y, Wu J, Li Q. Molecular Basis of High-Blood-Pressure-Enhanced and High-Fever-Temperature-Weakened Receptor-Binding Domain/Peptidase Domain Binding: A Molecular Dynamics Simulation Study. Int J Mol Sci 2025; 26:3250. [PMID: 40244099 PMCID: PMC11989460 DOI: 10.3390/ijms26073250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
The entry and infection of the Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) involve recognition and binding of the receptor-binding domain (RBD) of the virus surface spike protein to the peptidase domain (PD) of the host cellular Angiotensin-Converting Enzyme-2 (ACE2) receptor. ACE2 is also involved in normal blood pressure control. An association between hypertension and COVID-19 severity and fatality is evident, but how hypertension predisposes patients diagnosed with COVID-19 to unfavorable outcomes remains unclear. High temperature early during SARS-CoV-2 infection impairs binding to human cells and retards viral progression. Low body temperature can prelude poor prognosis. In this study, all-atom molecular dynamics simulations were performed to examine the effects of high pressure and temperature on RBD/PD binding. A high blood pressure of 940 mmHg enhanced RBD/PD binding. A high temperature above 315 K significantly weakened RBD/PD binding, while a low temperature of 305 K enhanced binding. The curvature of the PD α1-helix and proximity of the PD β3β4-hairpin tip to the RBM motif affected the compactness of the binding interface and, hence, binding affinity. These findings provide novel insights into the underlying mechanisms by which hypertension predisposes patients to unfavorable outcomes in COVID-19 and how an initial high temperature retards viral progression.
Collapse
Affiliation(s)
| | | | | | - Jianhua Wu
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.X.); (Y.Z.); (Y.F.)
| | - Quhuan Li
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.X.); (Y.Z.); (Y.F.)
| |
Collapse
|
4
|
Chakraborty S, Nguyen KN, Zhao M, Gnanakaran S. Allosteric Control and Glycan Shielding Adaptations in the SARS-CoV-2 Spike from Early to Peak Virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642723. [PMID: 40161746 PMCID: PMC11952406 DOI: 10.1101/2025.03.11.642723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The SARS-CoV-2 Spike glycoprotein is central to viral infectivity and immune evasion, making it a key target for vaccine and therapeutic design. This trimeric peplomer undergoes dynamic conformational changes, particularly in its Receptor Binding Domain (RBD), which transitions between closed (down) and ACE2-accessible (up) states relative to the rest of the protein, to facilitate host cell entry. Structural understanding of such critical inter-domain motions, as well as epitope exposure quantification, is essential for obtaining an effective molecular handle over this protein and, in turn, exploiting it towards improved immunogen development. Focusing on the early circulating D614G form and the later emerging Delta (B.1.617.2) variant with higher virulence, we performed large-scale molecular dynamics simulations of the soluble form of the Spike in both 'down' and 'up' conformations of the RBD. Guided by differences in overall fluctuations, we described reaction coordinates based on domain rotations and tilting to extract features that distinguish D614G versus Delta structural behavior of the N-terminal Domain (NTD) and RBD. Using reaction coordinate analysis and Principal Component Analysis (PCA), we identify allosteric coupling between the N-terminal Domain (NTD) and RBD, where NTD tilting influences RBD gating. While some of these motions are conserved across variants, Delta exhibits an optimized RBD-gating mechanism that enhances ACE2 accessibility. Additionally, glycan remodeling in Delta enhances shielding at the NTD supersite, contributing to reduced sensitivity to neutralizing antibodies. Finally, we uncover the impact of the D950N mutation in the HR1 region, which modulates downstream Spike dynamics and immune evasion. Together, our findings reveal variant-specific and conserved structural determinants of SARS-CoV-2 Spike function, providing a mechanistic basis for allosteric modulation, glycan-mediated immune evasion, and viral adaptation. These insights offer valuable guidance for rational vaccine and therapeutic design against SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | | | - Mingfei Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
5
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Mutational Scanning and Binding Free Energy Computations of the SARS-CoV-2 Spike Complexes with Distinct Groups of Neutralizing Antibodies: Energetic Drivers of Convergent Evolution of Binding Affinity and Immune Escape Hotspots. Int J Mol Sci 2025; 26:1507. [PMID: 40003970 PMCID: PMC11855367 DOI: 10.3390/ijms26041507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. In this study, we conducted a comprehensive structural and energetic analysis of SARS-CoV-2 spike receptor-binding domain (RBD) complexes with neutralizing antibodies from four distinct groups (A-D), including group A LY-CoV016, group B AZD8895 and REGN10933, group C LY-CoV555, and group D antibodies AZD1061, REGN10987, and LY-CoV1404. Using coarse-grained simplified simulation models, rapid energy-based mutational scanning, and rigorous MM-GBSA binding free energy calculations, we elucidated the molecular mechanisms of antibody binding and escape mechanisms, identified key binding hotspots, and explored the evolutionary strategies employed by the virus to evade neutralization. The residue-based decomposition analysis revealed energetic mechanisms and thermodynamic factors underlying the effect of mutations on antibody binding. The results demonstrate excellent qualitative agreement between the predicted binding hotspots and the latest experiments on antibody escape. These findings provide valuable insights into the molecular determinants of antibody binding and viral escape, highlighting the importance of targeting conserved epitopes and leveraging combination therapies to mitigate the risk of immune evasion.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Humans
- Immune Evasion
- Thermodynamics
- Mutation
- COVID-19/virology
- COVID-19/immunology
- Protein Binding
- Molecular Dynamics Simulation
- Evolution, Molecular
- Binding Sites
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
6
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Quantitative Characterization and Prediction of the Binding Determinants and Immune Escape Hotspots for Groups of Broadly Neutralizing Antibodies Against Omicron Variants: Atomistic Modeling of the SARS-CoV-2 Spike Complexes with Antibodies. Biomolecules 2025; 15:249. [PMID: 40001552 PMCID: PMC11853647 DOI: 10.3390/biom15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of experimental and computational studies suggests that the cross-neutralization antibody activity against Omicron variants may be driven by the balance and tradeoff between multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with epitope residues, remain largely uncharacterized. In this study, we performed molecular dynamics simulations, an ensemble-based deep mutational scanning of SARS-CoV-2 spike residues, and binding free energy computations for two distinct groups of broadly neutralizing antibodies: the E1 group (BD55-3152, BD55-3546, and BD5-5840) and the F3 group (BD55-3372, BD55-4637, and BD55-5514). Using these approaches, we examined the energetic determinants by which broadly potent antibodies can largely evade immune resistance. Our analysis revealed the emergence of a small number of immune escape positions for E1 group antibodies that correspond to the R346 and K444 positions in which the strong van der Waals and interactions act synchronously, leading to the large binding contribution. According to our results, the E1 and F3 groups of Abs effectively exploit binding hotspot clusters of hydrophobic sites that are critical for spike functions along with the selective complementary targeting of positively charged sites that are important for ACE2 binding. Together with targeting conserved epitopes, these groups of antibodies can lead expand the breadth and resilience of neutralization to the antigenic shifts associated with viral evolution. The results of this study and the energetic analysis demonstrate excellent qualitative agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. We argue that the E1 and F3 groups of antibodies targeting binding epitopes may leverage strong hydrophobic interactions with the binding epitope hotspots that are critical for the spike stability and ACE2 binding, while escape mutations tend to emerge in sites associated with synergistically strong hydrophobic and electrostatic interactions.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Lyukmanova EN, Pichkur EB, Nolde DE, Kocharovskaya MV, Manuvera VA, Shirokov DA, Kharlampieva DD, Grafskaia EN, Svetlova JI, Lazarev VN, Varizhuk AM, Kirpichnikov MP, Shenkarev ZO. Structure and dynamics of the interaction of Delta and Omicron BA.1 SARS-CoV-2 variants with REGN10987 Fab reveal mechanism of antibody action. Commun Biol 2024; 7:1698. [PMID: 39719448 DOI: 10.1038/s42003-024-07422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody. S-protein adopts "two RBD-down and one RBD-up" conformation. Fab interacts with RBDs in both conformations, blocking the recognition of angiotensin converting enzyme-2. Three-dimensional variability analysis reveals high mobility of the RBD/Fab regions. Interaction of REGN10987 with Wuhan, Delta, Omicron BA.1, and mutated variants of RBDs is analyzed by microscale thermophoresis, molecular dynamics simulations, and ΔG calculations with umbrella sampling and one-dimensional potential of mean force. Variability in molecular dynamics trajectories results in a large scatter of calculated ΔG values, but Boltzmann weighting provides an acceptable correlation with experiment. REGN10987 evasion of the Omicron variant is found to be due to the additive effect of the N440K and G446S mutations located at the RBD/Fab binding interface with a small effect of Q498R mutation. Our study explains the influence of known-to-date SARS-CoV-2 RBD mutations on REGN10987 recognition and highlights the importance of dynamics data beyond the static structure of the RBD/Fab complex.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny B Pichkur
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Dmitry E Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitriy A Shirokov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina N Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Julia I Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vassili N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
8
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Quantitative Characterization and Prediction of the Binding Determinants and Immune Escape Hotspots for Groups of Broadly Neutralizing Antibodies Against Omicron Variants: Atomistic Modeling of the SARS-CoV-2 Spike Complexes with Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629520. [PMID: 39763975 PMCID: PMC11702672 DOI: 10.1101/2024.12.19.629520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514). Using these approaches, we examine the energetic determinants by which broadly potent antibodies can largely evade immune resistance. Our analysis revealed the emergence of a small number of immune escape positions for E1 group antibodies that correspond to R346 and K444 positions in which the strong van der Waals and interactions act synchronously leading to the large binding contribution. According to our results, E1 and F3 groups of Abs effectively exploit binding hotspot clusters of hydrophobic sites critical for spike functions along with selective complementary targeting of positively charged sites that are important for ACE2 binding. Together with targeting conserved epitopes, these groups of antibodies can lead to the expanded neutralization breadth and resilience to antigenic shift associated with viral evolution. The results of this study and the energetic analysis demonstrate excellent qualitative agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. We argue that E1 and F3 groups of antibodies targeting binding epitopes may leverage strong hydrophobic interactions with the binding epitope hotspots critical for the spike stability and ACE2 binding, while escape mutations tend to emerge in sites associated with synergistically strong hydrophobic and electrostatic interactions.
Collapse
|
9
|
Dey S, Pahari P, Mukherjee S, Munro JB, Das DK. Conformational dynamics of SARS-CoV-2 Omicron spike trimers during fusion activation at single molecule resolution. Structure 2024; 32:1910-1925.e6. [PMID: 39366371 PMCID: PMC11560620 DOI: 10.1016/j.str.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron entry involves spike (S) glycoprotein-mediated fusion of viral and late endosomal membranes. Here, using single-molecule Förster resonance energy transfer (sm-FRET) imaging and biochemical measurements, we directly visualized conformational changes of individual spike trimers on the surface of SARS-CoV-2 Omicron pseudovirions during fusion activation. We observed that the S2 domain of the Omicron spike is a dynamic fusion machine. S2 reversibly interchanges between the pre-fusion conformation and two previously undescribed intermediate conformations. Acidic pH shifts the conformational equilibrium of S2 toward an intermediate conformation and promotes the membrane hemi-fusion reaction. Moreover, we captured conformational reversibility in the S2 domain, which suggests that spike can protect itself from pre-triggering. Furthermore, we determined that Ca2+ directly promotes the S2 conformational change from an intermediate conformation to post-fusion conformation. In the presence of a target membrane, low pH and Ca2+ stimulate the irreversible transition to S2 post-fusion state and promote membrane fusion.
Collapse
Affiliation(s)
- Shuvankar Dey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Purba Pahari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Srija Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - James B Munro
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
10
|
Xu W, Han Y, Lu M. Multi-step shapeshifting of SARS-CoV-2 Omicron spikes during fusion. Structure 2024; 32:1850-1851. [PMID: 39515302 DOI: 10.1016/j.str.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
In this issue of Structure, Dey et al.1 employ single-molecule FRET to map the conformational trajectory of Omicron spikes during fusion, revealing a transition from pre-fusion to post-fusion through two intermediates. This study highlights the roles of acidic environments, Ca2+, and receptors in promoting SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Wang Xu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
11
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. AlphaFold2 Modeling and Molecular Dynamics Simulations of the Conformational Ensembles for the SARS-CoV-2 Spike Omicron JN.1, KP.2 and KP.3 Variants: Mutational Profiling of Binding Energetics Reveals Epistatic Drivers of the ACE2 Affinity and Escape Hotspots of Antibody Resistance. Viruses 2024; 16:1458. [PMID: 39339934 PMCID: PMC11437503 DOI: 10.3390/v16091458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that protect and restore ACE2-binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class 1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
12
|
Díaz-Salinas MA, Chatterjee D, Nayrac M, Medjahed H, Prévost J, Pazgier M, Finzi A, Munro JB. Conformational dynamics of the HIV-1 envelope glycoprotein from CRF01_AE is associated with susceptibility to antibody-dependent cellular cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609179. [PMID: 39229074 PMCID: PMC11370484 DOI: 10.1101/2024.08.22.609179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The HIV-1 envelope glycoprotein (Env) is expressed at the surface of infected cells and as such can be targeted by non-neutralizing antibodies (nnAbs) that mediate antibody-dependent cellular cytotoxicity (ADCC). Previous single-molecule Förster resonance energy transfer (smFRET) studies demonstrated that Env from clinical isolates predominantly adopt a "closed" conformation (State 1), which is resistant to nnAbs. After interacting with the cellular receptor CD4, the conformational equilibrium of Env shifts toward States 2 and 3, exposing the coreceptor binding site (CoRBS) and permitting binding of antibodies targeting this site. We showed that the binding of anti-CoRBS Abs enables the engagement of other nnAbs that target the cluster A epitopes on Env. Anti-cluster A nnAbs stabilize an asymmetric Env conformation, State 2A, and have potent ADCC activity. CRF01_AE strains were suggested to be intrinsically susceptible to ADCC mediated by nnAbs. This may be due to the presence of a histidine at position 375, known to shift Env towards more "open" conformations. In this work, through adaptation of an established smFRET imaging approach, we report that the conformational dynamics of native, unliganded HIV-1CRF01_AE Env indicates frequent sampling of the State 2A conformation. This is in striking contrast with Envs from clades A and B, for example HIV-1JR-FL, which do not transition to State 2A in the absence of ligands. These findings inform on the conformational dynamics of HIV-1CRF01_AE Env, which are relevant for structure-based design of both synthetic inhibitors of receptor binding, and enhancers of ADCC as therapeutic alternatives.
Collapse
Affiliation(s)
- Marco A. Díaz-Salinas
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - James B. Munro
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Eliadis P, Mais A, Papazisis A, Loxa EK, Dimitriadis A, Sarrigeorgiou I, Backovic M, Agallou M, Zouridakis M, Karagouni E, Lazaridis K, Mamalaki A, Lymberi P. Novel Competitive ELISA Utilizing Trimeric Spike Protein of SARS-CoV-2, Could Identify More Than RBD-RBM Specific Neutralizing Antibodies in Hybrid Sera. Vaccines (Basel) 2024; 12:914. [PMID: 39204038 PMCID: PMC11359269 DOI: 10.3390/vaccines12080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), which mainly block the interaction between the Spike protein (S) of SARS-CoV-2 and the host entry receptor ACE2. In this study, we aimed to develop and optimize conditions of a competitive ELISA to measure serum neutralizing titer, using a recombinant trimeric Spike protein modified to have six additional proline residues (S(6P)-HexaPro) and h-ACE2. The results of our surrogate Virus Neutralizing Assay (sVNA) were compared against the commercial sVNT (cPass, Nanjing GenScript Biotech Co., Nanjing City, China), using serially diluted sera from vaccinees, and a high correlation of ID50-90 titer values was observed between the two assays. Interestingly, when we tested and compared the neutralizing activity of sera from eleven fully vaccinated individuals who subsequently contracted COVID-19 (hybrid sera), we recorded a moderate correlation between the two assays, while higher sera neutralizing titers were measured with sVNA. Our data indicated that the sVNA, as a more biologically relevant model assay that paired the trimeric S(6P) with ACE2, instead of the isolated RBD-ACE2 pairing cPass test, could identify nAbs other than the RBD-RBM specific ones.
Collapse
Affiliation(s)
- Petros Eliadis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Annie Mais
- Laboratory of Molecular Biology and Immunobiotechnology, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Alexandros Papazisis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Eleni K. Loxa
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Alexios Dimitriadis
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Ioannis Sarrigeorgiou
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, Université Paris Cité, CNRS-UMR3569, 75724 Paris, France;
| | - Maria Agallou
- Immunology of Infection Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.A.); (E.K.)
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.A.); (E.K.)
| | - Konstantinos Lazaridis
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
| | - Avgi Mamalaki
- Biotechnology Unit, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (A.M.)
- Laboratory of Molecular Biology and Immunobiotechnology, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Peggy Lymberi
- Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.P.); (E.K.L.); (I.S.); (K.L.)
| |
Collapse
|
14
|
Zhang P, Luo W, Zhang Z, Lv M, Sang L, Wen Y, Wang L, Ding C, Wu K, Li F, Nie Y, Zhu J, Liu X, Yi Y, Ding X, Zeng Y, Liu Z. A Lipid-Sensitive Spider Peptide Toxin Exhibits Selective Anti-Leukemia Efficacy through Multimodal Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404937. [PMID: 38962935 PMCID: PMC11348133 DOI: 10.1002/advs.202404937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.
Collapse
Affiliation(s)
- Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Wu Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- College of BiologyHunan UniversityChangshaHunan410082China
| | - Zixin Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Mingchong Lv
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Longkang Sang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yuhan Wen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Lingxiang Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Changhao Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Kun Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Fengjiao Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Yueqi Nie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Jiaoyue Zhu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Xiaofeng Liu
- Department of HematologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yan Yi
- Department of HematologyThe Third Affiliated Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510630China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| | - Youlin Zeng
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of ResourcesHunan Normal UniversityChangshaHunan410081China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug DevelopmentCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
- Peptide and Small Molecule Drug R&D Platform, Furong LaboratoryChangshaHunan410081China
- Institute of Interdisciplinary StudiesHunan Normal UniversityChangsha410081China
| |
Collapse
|
15
|
Díaz-Salinas MA, Jain A, Durham ND, Munro JB. Single-molecule imaging reveals allosteric stimulation of SARS-CoV-2 spike receptor binding domain by host sialic acid. SCIENCE ADVANCES 2024; 10:eadk4920. [PMID: 39018397 PMCID: PMC466946 DOI: 10.1126/sciadv.adk4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Conformational dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S) mediate exposure of the binding site for the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The N-terminal domain (NTD) of S binds terminal sialic acid (SA) moieties on the cell surface, but the functional role of this interaction in virus entry is unknown. Here, we report that NTD-SA interaction enhances both S-mediated virus attachment and ACE2 binding. Through single-molecule Förster resonance energy transfer imaging of individual S trimers, we demonstrate that SA binding to the NTD allosterically shifts the S conformational equilibrium, favoring enhanced exposure of the ACE2-binding site. Antibodies that target the NTD block SA binding, which contributes to their mechanism of neutralization. These findings inform on mechanisms of S activation at the cell surface.
Collapse
Affiliation(s)
- Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Aastha Jain
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Atomistic Prediction of Structures, Conformational Ensembles and Binding Energetics for the SARS-CoV-2 Spike JN.1, KP.2 and KP.3 Variants Using AlphaFold2 and Molecular Dynamics Simulations: Mutational Profiling and Binding Free Energy Analysis Reveal Epistatic Hotspots of the ACE2 Affinity and Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602810. [PMID: 39026832 PMCID: PMC11257589 DOI: 10.1101/2024.07.09.602810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 Spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested that the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that enable to protect and restore ACE2 binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class-1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.
Collapse
|
17
|
Sasaki D, Arai T, Yang Y, Kuramochi M, Furuyama W, Nanbo A, Sekiguchi H, Morone N, Mio K, Sasaki YC. Micro-second time-resolved X-ray single-molecule internal motions of SARS-CoV-2 spike variants. Biochem Biophys Rep 2024; 38:101712. [PMID: 38903159 PMCID: PMC11187434 DOI: 10.1016/j.bbrep.2024.101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 06/22/2024] Open
Abstract
Single-molecule intramolecular dynamics were successfully measured for three variants of SARS-CoV-2 spike protein, alpha: B.1.1.7, delta: B.1.617, and omicron: B.1.1.529, with a time resolution of 100 μs using X-rays. The results were then compared with respect to the magnitude and directions of motions for the three variants. The largest 3-D intramolecular movement was observed for the omicron variant irrespective of ACE2 receptor binding. A more detailed analysis of the intramolecular motions revealed that the distribution state of intramolecular motion for the three variants was completely different with and without ACE2 receptor binding. The molecular dynamics for the trimeric spike protein of the omicron variant increased when ACE2 binding occurred. At that time, the diffusion constant increased from 71.0 [mrad2/ms] to 91.1 [mrad2/ms].
Collapse
Affiliation(s)
- Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan
| | - Yue Yang
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan
| | - Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Wakako Furuyama
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| |
Collapse
|
18
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Exploring conformational landscapes and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variant complexes with the ACE2 receptor using AlphaFold2-based structural ensembles and molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:17720-17744. [PMID: 38869513 DOI: 10.1039/d4cp01372g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles evolution and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamics (MD) simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and MD simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and MD simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
19
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2 Predictions of Conformational Ensembles and Atomistic Simulations of the SARS-CoV-2 Spike XBB Lineages Reveal Epistatic Couplings between Convergent Mutational Hotspots that Control ACE2 Affinity. J Phys Chem B 2024; 128:4696-4715. [PMID: 38696745 DOI: 10.1021/acs.jpcb.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In this study, we combined AlphaFold-based atomistic structural modeling, microsecond molecular simulations, mutational profiling, and network analysis to characterize binding mechanisms of the SARS-CoV-2 spike protein with the host receptor ACE2 for a series of Omicron XBB variants including XBB.1.5, XBB.1.5+L455F, XBB.1.5+F456L, and XBB.1.5+L455F+F456L. AlphaFold-based structural and dynamic modeling of SARS-CoV-2 Spike XBB lineages can accurately predict the experimental structures and characterize conformational ensembles of the spike protein complexes with the ACE2. Microsecond molecular dynamics simulations identified important differences in the conformational landscapes and equilibrium ensembles of the XBB variants, suggesting that combining AlphaFold predictions of multiple conformations with molecular dynamics simulations can provide a complementary approach for the characterization of functional protein states and binding mechanisms. Using the ensemble-based mutational profiling of protein residues and physics-based rigorous calculations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. Consistent with the experiments, the results revealed the mediating role of the Q493 hotspot in the synchronization of epistatic couplings between L455F and F456L mutations, providing a quantitative insight into the energetic determinants underlying binding differences between XBB lineages. We also proposed a network-based perturbation approach for mutational profiling of allosteric communications and uncovered the important relationships between allosteric centers mediating long-range communication and binding hotspots of epistatic couplings. The results of this study support a mechanism in which the binding mechanisms of the XBB variants may be determined by epistatic effects between convergent evolutionary hotspots that control ACE2 binding.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
20
|
Ose NJ, Campitelli P, Modi T, Kazan IC, Kumar S, Ozkan SB. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. eLife 2024; 12:RP92063. [PMID: 38713502 PMCID: PMC11076047 DOI: 10.7554/elife.92063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas James Ose
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - I Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple UniversityPhiladelphiaUnited States
- Department of Biology, Temple UniversityPhiladelphiaUnited States
- Center for Genomic Medicine Research, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Sefika Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| |
Collapse
|
21
|
Gupta G, Verkhivker G. Exploring Binding Pockets in the Conformational States of the SARS-CoV-2 Spike Trimers for the Screening of Allosteric Inhibitors Using Molecular Simulations and Ensemble-Based Ligand Docking. Int J Mol Sci 2024; 25:4955. [PMID: 38732174 PMCID: PMC11084335 DOI: 10.3390/ijms25094955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.
Collapse
Affiliation(s)
- Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
22
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Ensemble-Based Mutational Profiling and Network Analysis of the SARS-CoV-2 Spike Omicron XBB Lineages for Interactions with the ACE2 Receptor and Antibodies: Cooperation of Binding Hotspots in Mediating Epistatic Couplings Underlies Binding Mechanism and Immune Escape. Int J Mol Sci 2024; 25:4281. [PMID: 38673865 PMCID: PMC11049863 DOI: 10.3390/ijms25084281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we performed a computational study of binding mechanisms for the SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse class one antibodies. The central objective of this investigation was to examine the molecular factors underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simulations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2, we identified structural stability and binding affinity hotspots that are consistent with the results of biochemical studies. In agreement with the results of deep mutational scanning experiments, our quantitative analysis correctly reproduced strong and variant-specific epistatic effects in the XBB.1.5 and BA.2 variants. It was shown that Y453W and F456L mutations can enhance ACE2 binding when coupled with Q493 in XBB.1.5, while these mutations become destabilized when coupled with the R493 position in the BA.2 variant. The results provided a molecular rationale of the epistatic mechanism in Omicron variants, showing a central role of the Q493/R493 hotspot in modulating epistatic couplings between convergent mutational sites L455F and F456L in XBB lineages. The results of mutational scanning and binding analysis of the Omicron XBB spike variants with ACE2 receptors and a panel of class one antibodies provide a quantitative rationale for the experimental evidence that epistatic interactions of the physically proximal binding hotspots Y501, R498, Q493, L455F, and F456L can determine strong ACE2 binding, while convergent mutational sites F456L and F486P are instrumental in mediating broad antibody resistance. The study supports a mechanism in which the impact on ACE2 binding affinity is mediated through a small group of universal binding hotspots, while the effect of immune evasion could be more variant-dependent and modulated by convergent mutational sites in the conformationally adaptable spike regions.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (N.R.); (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
23
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Predicting Functional Conformational Ensembles and Binding Mechanisms of Convergent Evolution for SARS-CoV-2 Spike Omicron Variants Using AlphaFold2 Sequence Scanning Adaptations and Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587850. [PMID: 38617283 PMCID: PMC11014522 DOI: 10.1101/2024.04.02.587850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles and binding mechanisms of convergent evolution for the SARS-CoV-2 Spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron Spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamic simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron Spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and molecular dynamics simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and molecular dynamics simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
|
24
|
Ao Y, Grover JR, Gifford L, Han Y, Zhong G, Katte R, Li W, Bhattacharjee R, Zhang B, Sauve S, Qin W, Ghimire D, Haque MA, Arthos J, Moradi M, Mothes W, Lemke EA, Kwong PD, Melikyan GB, Lu M. Bioorthogonal click labeling of an amber-free HIV-1 provirus for in-virus single molecule imaging. Cell Chem Biol 2024; 31:487-501.e7. [PMID: 38232732 PMCID: PMC10960674 DOI: 10.1016/j.chembiol.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.
Collapse
Affiliation(s)
- Yuanyun Ao
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Levi Gifford
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Guohua Zhong
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Revansiddha Katte
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rajanya Bhattacharjee
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; International PhD Program of the Institute of Molecular Biology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Dibya Ghimire
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Md Anzarul Haque
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward A Lemke
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
25
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2-Enabled Atomistic Modeling of Structure, Conformational Ensembles, and Binding Energetics of the SARS-CoV-2 Omicron BA.2.86 Spike Protein with ACE2 Host Receptor and Antibodies: Compensatory Functional Effects of Binding Hotspots in Modulating Mechanisms of Receptor Binding and Immune Escape. J Chem Inf Model 2024; 64:1657-1681. [PMID: 38373700 PMCID: PMC12103816 DOI: 10.1021/acs.jcim.3c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The latest wave of SARS-CoV-2 Omicron variants displayed a growth advantage and increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with atomistic simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both the structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that the AlphaFold2-predicted structural ensemble of the BA.2.86 spike protein complex with ACE2 can accurately capture the main conformational states of the Omicron variant. Complementary to AlphaFold2 structural predictions, microsecond molecular dynamics simulations reveal the details of the conformational landscape and produced equilibrium ensembles of the BA.2.86 structures that are used to perform mutational scanning of spike residues and characterize structural stability and binding energy hotspots. The ensemble-based mutational profiling of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 revealed a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 convergent mutational hotspots R403K, F486P, and R493Q. To examine the immune evasion properties of BA.2.86 in atomistic detail, we performed structure-based mutational profiling of the spike protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against the BA.2.86 variant. The results revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have evolved to outcompete other Omicron subvariants by improving immune evasion while preserving binding affinity with ACE2 via through a compensatory effect of R493Q and F486P convergent mutational hotspots. This study demonstrated that an integrative approach combining AlphaFold2 predictions with complementary atomistic molecular dynamics simulations and robust ensemble-based mutational profiling of spike residues can enable accurate and comprehensive characterization of structure, dynamics, and binding mechanisms of newly emerging Omicron variants.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States of America
| |
Collapse
|
26
|
Ose NJ, Campitelli P, Modi T, Can Kazan I, Kumar S, Banu Ozkan S. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557827. [PMID: 37745560 PMCID: PMC10515954 DOI: 10.1101/2023.09.14.557827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 Spike (S) protein. With this approach, we first identified Candidate Adaptive Polymorphisms (CAPs) of the SARS-CoV-2 Spike protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas J. Ose
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
27
|
Malewana RD, Stalls V, May A, Lu X, Martinez DR, Schäfer A, Li D, Barr M, Sutherland LL, Lee E, Parks R, Beck WE, Newman A, Bock KW, Minai M, Nagata BM, DeMarco CT, Denny TN, Oguin TH, Rountree W, Wang Y, Mansouri K, Edwards RJ, Sempowski GD, Eaton A, Muramatsu H, Henderson R, Tam Y, Barbosa C, Tang J, Cain DW, Santra S, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Montefiori DC, Pardi N, Weissman D, Baric RS, Acharya P, Haynes BF, Saunders KO. Broadly neutralizing antibody induction by non-stabilized SARS-CoV-2 Spike mRNA vaccination in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572191. [PMID: 38187726 PMCID: PMC10769253 DOI: 10.1101/2023.12.18.572191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.
Collapse
Affiliation(s)
- R Dilshan Malewana
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Immunobiology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Whitney Edwards Beck
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ying Tam
- Acuitas Therapeutics, LLC, Vancouver, BC, V6T 1Z3, Canada
| | | | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
28
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2-Enabled Atomistic Modeling of Epistatic Binding Mechanisms for the SARS-CoV-2 Spike Omicron XBB.1.5, EG.5 and FLip Variants: Convergent Evolution Hotspots Cooperate to Control Stability and Conformational Adaptability in Balancing ACE2 Binding and Antibody Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571185. [PMID: 38168257 PMCID: PMC10760024 DOI: 10.1101/2023.12.11.571185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, we combined AI-based atomistic structural modeling and microsecond molecular simulations of the SARS-CoV-2 Spike complexes with the host receptor ACE2 for XBB.1.5+L455F, XBB.1.5+F456L(EG.5) and XBB.1.5+L455F/F456L (FLip) lineages to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and physics-based rigorous computations of binding affinities, we identified binding energy hotspots and characterized molecular basis underlying epistatic couplings between convergent mutational hotspots. Consistent with the experiments, the results revealed the mediating role of Q493 hotspot in synchronization of epistatic couplings between L455F and F456L mutations providing a quantitative insight into the mechanism underlying differences between XBB lineages. Mutational profiling is combined with network-based model of epistatic couplings showing that the Q493, L455 and F456 sites mediate stable communities at the binding interface with ACE2 and can serve as stable mediators of non-additive couplings. Structure-based mutational analysis of Spike protein binding with the class 1 antibodies quantified the critical role of F456L and F486P mutations in eliciting strong immune evasion response. The results of this analysis support a mechanism in which the emergence of EG.5 and FLip variants may have been dictated by leveraging strong epistatic effects between several convergent revolutionary hotspots that provide synergy between the improved ACE2 binding and broad neutralization resistance. This interpretation is consistent with the notion that functionally balanced substitutions which simultaneously optimize immune evasion and high ACE2 affinity may continue to emerge through lineages with beneficial pair or triplet combinations of RBD mutations involving mediators of epistatic couplings and sites in highly adaptable RBD regions.
Collapse
|
29
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Accurate Characterization of Conformational Ensembles and Binding Mechanisms of the SARS-CoV-2 Omicron BA.2 and BA.2.86 Spike Protein with the Host Receptor and Distinct Classes of Antibodies Using AlphaFold2-Augmented Integrative Computational Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567697. [PMID: 38045395 PMCID: PMC10690158 DOI: 10.1101/2023.11.18.567697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The latest wave SARS-CoV-2 Omicron variants displayed a growth advantage and the increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with all-atom MD simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.86 spike variant with ACE2 host receptor and distinct classes of antibodies. We adapted several AlphaFold2 approaches to predict both structure and conformational ensembles of the Omicron BA.2.86 spike protein in the complex with the host receptor. The results showed that AlphaFold2-predicted conformational ensemble of the BA.2.86 spike protein complex can accurately capture the main dynamics signatures obtained from microscond molecular dynamics simulations. The ensemble-based dynamic mutational scanning of the receptor binding domain residues in the BA.2 and BA.2.86 spike complexes with ACE2 dissected the role of the BA.2 and BA.2.86 backgrounds in modulating binding free energy changes revealing a group of conserved hydrophobic hotspots and critical variant-specific contributions of the BA.2.86 mutational sites R403K, F486P and R493Q. To examine immune evasion properties of BA.2.86 in atomistic detail, we performed large scale structure-based mutational profiling of the S protein binding interfaces with distinct classes of antibodies that displayed significantly reduced neutralization against BA.2.86 variant. The results quantified specific function of the BA.2.86 mutations to ensure broad resistance against different classes of RBD antibodies. This study revealed the molecular basis of compensatory functional effects of the binding hotspots, showing that BA.2.86 lineage may have primarily evolved to improve immune escape while modulating binding affinity with ACE2 through cooperative effect of R403K, F486P and R493Q mutations. The study supports a hypothesis that the impact of the increased ACE2 binding affinity on viral fitness is more universal and is mediated through cross-talk between convergent mutational hotspots, while the effect of immune evasion could be more variant-dependent.
Collapse
|
30
|
Singh J, Vashishtha S, Kundu B. Spike Protein Mutation-Induced Changes in the Kinetic and Thermodynamic Behavior of Its Receptor Binding Domains Explain Their Higher Propensity to Attain Open States in SARS-CoV-2 Variants of Concern. ACS CENTRAL SCIENCE 2023; 9:1894-1904. [PMID: 37901170 PMCID: PMC10604015 DOI: 10.1021/acscentsci.3c00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 10/31/2023]
Abstract
Spike (S) protein opening in SARS-CoV-2 controls the accessibility of its receptor binding domains (RBDs) to host receptors and immune recognition. Along the evolution of SARS-CoV-2 to its variants of concern (VOC)-alpha, beta, gamma, delta, and omicron-their S proteins showed a higher propensity to attain open states. Deciphering how mutations in S protein can shape its conformational dynamics will contribute to the understanding of viral host tropism. Here using microsecond-scale multiple molecular dynamics simulations (MDS), we provide insights into the kinetic and thermodynamic contributions of these mutations to RBD opening pathways in S proteins of SARS-CoV-2 VOCs. Mutational effects were analyzed using atomistic (i) equilibrium MDS of closed and open states of S proteins and (ii) nonequilibrium MDS for closed-to-open transitions. In MDS of closed or open states, RBDs in S proteins of VOCs showed lower thermodynamic stability with higher kinetic fluctuations, compared to S proteins of ancestral SARS-CoV-2. For closed-to-open transitions in S proteins of VOCs, we observed apparently faster RBD opening with a 1.5-2-fold decrease in the thermodynamic free-energy barrier (ΔGclosed→open). Saturation mutagenesis studies highlighted S protein mutations that may control its conformational dynamics and presentation to host receptors.
Collapse
Affiliation(s)
- Jasdeep Singh
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80208, United States
| | - Shubham Vashishtha
- Kusuma
School of Biological Sciences, Indian Institute
of Technology-Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma
School of Biological Sciences, Indian Institute
of Technology-Delhi, New Delhi 110016, India
| |
Collapse
|
31
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites. Viruses 2023; 15:2073. [PMID: 37896850 PMCID: PMC10612107 DOI: 10.3390/v15102073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full-length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results are significant for understanding the functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
32
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Verkhivker G, Alshahrani M, Gupta G. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites. Viruses 2023; 15:2009. [PMID: 37896786 PMCID: PMC10610873 DOI: 10.3390/v15102009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron variants. By using a combination of atomistic simulations, a dynamics network analysis, and an allostery-guided network screening of binding pockets in the conformational ensembles of the BA.1 and BA.2 spike conformations, we identified all experimentally known allosteric sites and discovered significant variant-specific differences in the distribution of binding sites in the BA.1 and BA.2 trimers. This study provided a structural characterization of the predicted cryptic pockets and captured the experimentally known allosteric sites, revealing the critical role of conformational plasticity in modulating the distribution and cross-talk between functional binding sites. We found that mutational and dynamic changes in the BA.1 variant can induce the remodeling and stabilization of a known druggable pocket in the N-terminal domain, while this pocket is drastically altered and may no longer be available for ligand binding in the BA.2 variant. Our results predicted the experimentally known allosteric site in the receptor-binding domain that remains stable and ranks as the most favorable site in the conformational ensembles of the BA.2 variant but could become fragmented and less probable in BA.1 conformations. We also uncovered several cryptic pockets formed at the inter-domain and inter-protomer interface, including functional regions of the S2 subunit and stem helix region, which are consistent with the known role of pocket residues in modulating conformational transitions and antibody recognition. The results of this study are particularly significant for understanding the dynamic and network features of the universe of available binding pockets in spike proteins, as well as the effects of the Omicron-variant-specific modulation of preferential druggable pockets. The exploration of predicted druggable sites can present a new and previously underappreciated opportunity for therapeutic interventions for Omicron variants through the conformation-selective and variant-specific targeting of functional sites involved in allosteric changes.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| |
Collapse
|
34
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Examining Functional Linkages Between Conformational Dynamics, Protein Stability and Evolution of Cryptic Binding Pockets in the SARS-CoV-2 Omicron Spike Complexes with the ACE2 Host Receptor: Recombinant Omicron Variants Mediate Variability of Conserved Allosteric Sites and Binding Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557205. [PMID: 37745525 PMCID: PMC10515794 DOI: 10.1101/2023.09.11.557205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results of are significant for understanding functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
|
35
|
Qing E, Gallagher T. Adaptive variations in SARS-CoV-2 spike proteins: effects on distinct virus-cell entry stages. mBio 2023; 14:e0017123. [PMID: 37382441 PMCID: PMC10470846 DOI: 10.1128/mbio.00171-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 06/30/2023] Open
Abstract
Evolved SARS-CoV-2 variants of concern (VOCs) spread through human populations in succession. Major virus variations are in the entry-facilitating viral spike (S) proteins; Omicron VOCs have 29-40 S mutations relative to ancestral D614G viruses. The impacts of this Omicron divergence on S protein structure, antigenicity, cell entry pathways, and pathogenicity have been extensively evaluated, yet gaps remain in correlating specific alterations with S protein functions. In this study, we compared the functions of ancestral D614G and Omicron VOCs using cell-free assays that can reveal differences in several distinct steps of the S-directed virus entry process. Relative to ancestral D614G, Omicron BA.1 S proteins were hypersensitized to receptor activation, to conversion into intermediate conformational states, and to membrane fusion-activating proteases. We identified mutations conferring these changes in S protein character by evaluating domain-exchanged D614G/Omicron recombinants in the cell-free assays. Each of the three functional alterations was mapped to specific S protein domains, with the recombinants providing insights on inter-domain interactions that fine-tune S-directed virus entry. Our results provide a structure-function atlas of the S protein variations that may promote the transmissibility and infectivity of current and future SARS-CoV-2 VOCs. IMPORTANCE Continuous SARS-CoV-2 adaptations generate increasingly transmissible variants. These succeeding variants show ever-increasing evasion of suppressive antibodies and host factors, as well as increasing invasion of susceptible host cells. Here, we evaluated the adaptations enhancing invasion. We used reductionist cell-free assays to compare the entry steps of ancestral (D614G) and Omicron (BA.1) variants. Relative to D614G, Omicron entry was distinguished by heightened responsiveness to entry-facilitating receptors and proteases and by enhanced formation of intermediate states that execute virus-cell membrane fusion. We found that these Omicron-specific characteristics arose from mutations in specific S protein domains and subdomains. The results reveal the inter-domain networks controlling S protein dynamics and efficiencies of entry steps, and they offer insights on the evolution of SARS-CoV-2 variants that arise and ultimately dominate infections worldwide.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
36
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variant Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. J Chem Inf Model 2023; 63:5272-5296. [PMID: 37549201 PMCID: PMC11162552 DOI: 10.1021/acs.jcim.3c00778] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the functional conformational states and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant, which can be contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of the conformational states. The results suggested that variant-specific changes of the conformational mobility in the functional interfacial loops of the receptor-binding domain in the SARS-CoV-2 spike protein can be fine-tuned through crosstalk between convergent mutations which could provide an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulation of conformational plasticity and regulation of allosteric communications. This study also revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions.
Collapse
Affiliation(s)
- Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
37
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. Probing conformational landscapes of binding and allostery in the SARS-CoV-2 omicron variant complexes using microsecond atomistic simulations and perturbation-based profiling approaches: hidden role of omicron mutations as modulators of allosteric signaling and epistatic relationships. Phys Chem Chem Phys 2023; 25:21245-21266. [PMID: 37548589 PMCID: PMC10536792 DOI: 10.1039/d3cp02042h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.3 and BA.4/BA.5 spike protein complexes with the ACE2 host receptor using molecular dynamics simulations and perturbation-based network profiling approaches. Microsecond atomistic simulations provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the BA.2 variant which can be contrasted with the BA.4/BA.5 variants inducing a significant mobility of the complexes. Using the dynamics-based mutational scanning of spike residues, we identified structural stability and binding affinity hotspots in the Omicron complexes. Perturbation response scanning and network-based mutational profiling approaches probed the effect of the Omicron mutations on allosteric interactions and communications in the complexes. The results of this analysis revealed specific roles of Omicron mutations as conformationally plastic and evolutionary adaptable modulators of binding and allostery which are coupled to the major regulatory positions through interaction networks. Through perturbation network scanning of allosteric residue potentials in the Omicron variant complexes performed in the background of the original strain, we characterized regions of epistatic couplings that are centered around the binding affinity hotspots N501Y and Q498R. Our results dissected the vital role of these epistatic centers in regulating protein stability, efficient ACE2 binding and allostery which allows for accumulation of multiple Omicron immune escape mutations at other sites. Through integrative computational approaches, this study provides a systematic analysis of the effects of Omicron mutations on thermodynamics, binding and allosteric signaling in the complexes with ACE2 receptor.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| |
Collapse
|
38
|
Chen C, Zhu R, Hodge EA, Díaz-Salinas MA, Nguyen A, Munro JB, Lee KK. hACE2-Induced Allosteric Activation in SARS-CoV versus SARS-CoV-2 Spike Assemblies Revealed by Structural Dynamics. ACS Infect Dis 2023; 9:1180-1189. [PMID: 37166130 PMCID: PMC10228703 DOI: 10.1021/acsinfecdis.3c00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/12/2023]
Abstract
SARS-CoV and SARS-CoV-2 cell entry begins when spike glycoprotein (S) docks with the human ACE2 (hACE2) receptor. While the two coronaviruses share a common receptor and architecture of S, they exhibit differences in interactions with hACE2 as well as differences in proteolytic processing of S that trigger the fusion machine. Understanding how those differences impact S activation is key to understand its function and viral pathogenesis. Here, we investigate hACE2-induced activation in SARS-CoV and SARS-CoV-2 S using hydrogen/deuterium-exchange mass spectrometry (HDX-MS). HDX-MS revealed differences in dynamics in unbound S, including open/closed conformational switching and D614G-induced S stability. Upon hACE2 binding, notable differences in transduction of allosteric changes were observed extending from the receptor binding domain to regions proximal to proteolytic cleavage sites and the fusion peptide. Furthermore, we report that dimeric hACE2, the native oligomeric form of the receptor, does not lead to any more pronounced structural effect in S compared to saturated monomeric hACE2 binding. These experiments provide mechanistic insights into receptor-induced activation of Sarbecovirus spike proteins.
Collapse
Affiliation(s)
- Chengbo Chen
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
- Biological
Physics Structure and Design Program, University
of Washington, Seattle, Washington 98195, USA
| | - Richard Zhu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Edgar A. Hodge
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Marco A. Díaz-Salinas
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Adam Nguyen
- Biological
Physics Structure and Design Program, University
of Washington, Seattle, Washington 98195, USA
| | - James B. Munro
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Kelly K. Lee
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
- Biological
Physics Structure and Design Program, University
of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
39
|
Xiao S, Alshahrani M, Gupta G, Tao P, Verkhivker G. Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variants Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541592. [PMID: 37292827 PMCID: PMC10245745 DOI: 10.1101/2023.05.20.541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and the increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, extensive microsecond MD simulations and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants. Microsecond simulations and Markovian modeling provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the XBB.1.5 subvariant which is contrasted to more dynamic BQ.1 and BQ.1.1 subvariants. Despite considerable structural similarities, Omicron mutations can induce unique dynamic signatures and specific distributions of conformational states. The results suggested that variant-specific changes of conformational mobility in the functional interfacial loops of the spike receptor binding domain can be fine-tuned through cross-talk between convergent mutations thereby providing an evolutionary path for modulation of immune escape. By combining atomistic simulations and Markovian modeling analysis with perturbation-based approaches, we determined important complementary roles of convergent mutation sites as effectors and receivers of allosteric signaling involved in modulating conformational plasticity at the binding interface and regulating allosteric responses. This study also characterized the dynamics-induced evolution of allosteric pockets in the Omicron complexes that revealed hidden allosteric pockets and suggested that convergent mutation sites could control evolution and distribution of allosteric pockets through modulation of conformational plasticity in the flexible adaptable regions. Through integrative computational approaches, this investigation provides a systematic analysis and comparison of the effects of Omicron subvariants on conformational dynamics and allosteric signaling in the complexes with the ACE2 receptor. For Table of Contents Use Only
Collapse
|
40
|
Lundin SB, Kann H, Fulurija A, Andersson B, Nakka SS, Andersson LM, Gisslén M, Harandi AM. A novel precision-serology assay for SARS-CoV-2 infection based on linear B-cell epitopes of Spike protein. Front Immunol 2023; 14:1166924. [PMID: 37251407 PMCID: PMC10213285 DOI: 10.3389/fimmu.2023.1166924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The COVID-19 pandemic illustrates the need for serology diagnostics with improved accuracy. While conventional serology based on recognition of entire proteins or subunits thereof has made significant contribution to the antibody assessment space, it often suffers from sub-optimal specificity. Epitope-based, high-precision, serology assays hold potential to capture the high specificity and diversity of the immune system, hence circumventing the cross-reactivity with closely related microbial antigens. Methods We herein report mapping of linear IgG and IgA antibody epitopes of the SARS-CoV-2 Spike (S) protein in samples from SARS-CoV-2 exposed individuals along with certified SARS-CoV-2 verification plasma samples using peptide arrays. Results We identified 21 distinct linear epitopes. Importantly, we showed that pre-pandemic serum samples contain IgG antibodies reacting to the majority of protein S epitopes, most likely as a result of prior infection with seasonal coronaviruses. Only 4 of the identified SARS-CoV-2 protein S linear epitopes were specific for SARS-CoV-2 infection. These epitopes are located at positions 278-298 and 550-586, just proximal and distal to the RBD, as well as at position 1134-1156 in the HR2 subdomain and at 1248-1271 in the C-terminal subdomain of protein S. To substantiate the applicability of our findings, we tested three of the high-accuracy protein S epitopes in a Luminex assay, using a certified validation plasma sample set from SARS-CoV-2 infected individuals. The Luminex results were well aligned with the peptide array results, and correlated very well with in-house and commercial immune assays for RBD, S1 and S1/S2 domains of protein S. Conclusion We present a comprehensive mapping of linear B-cell epitopes of SARS-CoV-2 protein S, that identifies peptides suitable for a precision serology assay devoid of cross-reactivity. These results have implications for development of highly specific serology test for exposure to SARS-CoV-2 and other members of the coronaviridae family, as well as for rapid development of serology tests for future emerging pandemic threats.
Collapse
Affiliation(s)
- Samuel B. Lundin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Biotome Pty Ltd, Perth, WA, Australia
- Biotome AB, Kullavik, Sweden
| | - Hanna Kann
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alma Fulurija
- Biotome Pty Ltd, Perth, WA, Australia
- Biotome AB, Kullavik, Sweden
- School of Biomedical Sciences, Marshall Centre, University of Western Australia, Perth, WA, Australia
| | - Björn Andersson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sravya S. Nakka
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Verkhivker G, Alshahrani M, Gupta G. Balancing Functional Tradeoffs between Protein Stability and ACE2 Binding in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic and Energetic Changes. Viruses 2023; 15:1143. [PMID: 37243229 PMCID: PMC10221141 DOI: 10.3390/v15051143] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Evolutionary and functional studies suggested that the emergence of the Omicron variants can be determined by multiple fitness trade-offs including the immune escape, binding affinity for ACE2, conformational plasticity, protein stability and allosteric modulation. In this study, we systematically characterize conformational dynamics, structural stability and binding affinities of the SARS-CoV-2 Spike Omicron complexes with the host receptor ACE2 for BA.2, BA.2.75, XBB.1 and XBB.1.5 variants. We combined multiscale molecular simulations and dynamic analysis of allosteric interactions together with the ensemble-based mutational scanning of the protein residues and network modeling of epistatic interactions. This multifaceted computational study characterized molecular mechanisms and identified energetic hotspots that can mediate the predicted increased stability and the enhanced binding affinity of the BA.2.75 and XBB.1.5 complexes. The results suggested a mechanism driven by the stability hotspots and a spatially localized group of the Omicron binding affinity centers, while allowing for functionally beneficial neutral Omicron mutations in other binding interface positions. A network-based community model for the analysis of epistatic contributions in the Omicron complexes is proposed revealing the key role of the binding hotspots R498 and Y501 in mediating community-based epistatic couplings with other Omicron sites and allowing for compensatory dynamics and binding energetic changes. The results also showed that mutations in the convergent evolutionary hotspot F486 can modulate not only local interactions but also rewire the global network of local communities in this region allowing the F486P mutation to restore both the stability and binding affinity of the XBB.1.5 variant which may explain the growth advantages over the XBB.1 variant. The results of this study are consistent with a broad range of functional studies rationalizing functional roles of the Omicron mutation sites that form a coordinated network of hotspots enabling a balance of multiple fitness tradeoffs and shaping up a complex functional landscape of virus transmissibility.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| |
Collapse
|
42
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. Probing Conformational Landscapes of Binding and Allostery in the SARS-CoV-2 Omicron Variant Complexes Using Microsecond Atomistic Simulations and Perturbation-Based Profiling Approaches: Hidden Role of Omicron Mutations as Modulators of Allosteric Signaling and Epistatic Relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539337. [PMID: 37205479 PMCID: PMC10187228 DOI: 10.1101/2023.05.03.539337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.3 and BA.4/BA.5 complexes with the ACE2 host receptor using molecular dynamics simulations and perturbation-based network profiling approaches. Microsecond atomistic simulations provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the BA.2 variant which is contrasted with the BA.4/BA.5 variants inducing a significant mobility of the complexes. Using ensemble-based mutational scanning of binding interactions, we identified binding affinity and structural stability hotspots in the Omicron complexes. Perturbation response scanning and network-based mutational profiling approaches probed the effect of the Omicron variants on allosteric communications. The results of this analysis revealed specific roles of Omicron mutations as "plastic and evolutionary adaptable" modulators of binding and allostery which are coupled to the major regulatory positions through interaction networks. Through perturbation network scanning of allosteric residue potentials in the Omicron variant complexes, which is performed in the background of the original strain, we identified that the key Omicron binding affinity hotspots N501Y and Q498R could mediate allosteric interactions and epistatic couplings. Our results suggested that the synergistic role of these hotspots in controlling stability, binding and allostery can enable for compensatory balance of fitness tradeoffs with conformationally and evolutionary adaptable immune-escape Omicron mutations. Through integrative computational approaches, this study provides a systematic analysis of the effects of Omicron mutations on thermodynamics, binding and allosteric signaling in the complexes with ACE2 receptor. The findings support a mechanism in which Omicron mutations can evolve to balance thermodynamic stability and conformational adaptability in order to ensure proper tradeoff between stability, binding and immune escape.
Collapse
|
43
|
Egri SB, Wang X, Díaz-Salinas MA, Luban J, Dudkina NV, Munro JB, Shen K. Detergent modulates the conformational equilibrium of SARS-CoV-2 Spike during cryo-EM structural determination. Nat Commun 2023; 14:2527. [PMID: 37137903 PMCID: PMC10154187 DOI: 10.1038/s41467-023-38251-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
The Spike glycoprotein of SARS-CoV-2 mediates viral entry into the host cell via the interaction between its receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2). Spike RBD has been reported to adopt two primary conformations, a closed conformation in which the binding site is shielded and unable to interact with ACE2, and an open conformation that is capable of binding ACE2. Many structural studies have probed the conformational space of the homotrimeric Spike from SARS-CoV-2. However, how sample buffer conditions used during structural determination influence the Spike conformation is currently unclear. Here, we systematically explored the impact of commonly used detergents on the conformational space of Spike. We show that in the presence of detergent, the Spike glycoprotein predominantly occupies a closed conformational state during cryo-EM structural determination. However, in the absence of detergent, such conformational compaction was neither observed by cryo-EM, nor by single-molecule FRET designed to visualize the movement of RBD in solution in real-time. Our results highlight the highly sensitive nature of the Spike conformational space to buffer composition during cryo-EM structural determination, and emphasize the importance of orthogonal biophysical approaches to validate the structural models obtained.
Collapse
Affiliation(s)
- Shawn B Egri
- Program in Molecular Medicine and Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
| | - Xue Wang
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, The Netherlands
| | - Marco A Díaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA, 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine and Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Natalya V Dudkina
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, The Netherlands.
| | - James B Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA, 01605, USA.
| | - Kuang Shen
- Program in Molecular Medicine and Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA.
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA.
| |
Collapse
|
44
|
Adams LE, Leist SR, Dinnon KH, West A, Gully KL, Anderson EJ, Loome JF, Madden EA, Powers JM, Schäfer A, Sarkar S, Castillo IN, Maron JS, McNamara RP, Bertera HL, Zweigert MR, Higgins JS, Hampton BK, Premkumar L, Alter G, Montgomery SA, Baxter VK, Heise MT, Baric RS. Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Rep 2023; 42:112326. [PMID: 37000623 PMCID: PMC10063157 DOI: 10.1016/j.celrep.2023.112326] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
Collapse
Affiliation(s)
- Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny S Maron
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Harry L Bertera
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Mark R Zweigert
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jaclyn S Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Dallas Tissue Research, Dallas, TX, USA
| | - Victoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Yurkovetskiy L, Egri S, Kurhade C, Diaz-Salinas MA, Jaimes JA, Nyalile T, Xie X, Choudhary MC, Dauphin A, Li JZ, Munro JB, Shi PY, Shen K, Luban J. S:D614G and S:H655Y are gateway mutations that act epistatically to promote SARS-CoV-2 variant fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.535005. [PMID: 37034621 PMCID: PMC10081308 DOI: 10.1101/2023.03.30.535005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
SARS-CoV-2 variants bearing complex combinations of mutations that confer increased transmissibility, COVID-19 severity, and immune escape, were first detected after S:D614G had gone to fixation, and likely originated during persistent infection of immunocompromised hosts. To test the hypothesis that S:D614G facilitated emergence of such variants, S:D614G was reverted to the ancestral sequence in the context of sequential Spike sequences from an immunocompromised individual, and within each of the major SARS-CoV-2 variants of concern. In all cases, infectivity of the S:D614G revertants was severely compromised. The infectivity of atypical SARS-CoV-2 lineages that propagated in the absence of S:D614G was found to be dependent upon either S:Q613H or S:H655Y. Notably, Gamma and Omicron variants possess both S:D614G and S:H655Y, each of which contributed to infectivity of these variants. Among sarbecoviruses, S:Q613H, S:D614G, and S:H655Y are only detected in SARS-CoV-2, which is also distinguished by a polybasic S1/S2 cleavage site. Genetic and biochemical experiments here showed that S:Q613H, S:D614G, and S:H655Y each stabilize Spike on virions, and that they are dispensable in the absence of S1/S2 cleavage, consistent with selection of these mutations by the S1/S2 cleavage site. CryoEM revealed that either S:D614G or S:H655Y shift the Spike receptor binding domain (RBD) towards the open conformation required for ACE2-binding and therefore on pathway for infection. Consistent with this, an smFRET reporter for RBD conformation showed that both S:D614G and S:H655Y spontaneously adopt the conformation that ACE2 induces in the parental Spike. Data from these orthogonal experiments demonstrate that S:D614G and S:H655Y are convergent adaptations to the polybasic S1/S2 cleavage site which stabilize S1 on the virion in the open RBD conformation and act epistatically to promote the fitness of variants bearing complex combinations of clinically significant mutations.
Collapse
Affiliation(s)
- Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- These authors contributed equally
| | - Shawn Egri
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- These authors contributed equally
| | - Marco A. Diaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Javier A. Jaimes
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- These authors contributed equally
| | - Thomas Nyalile
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Manish C. Choudhary
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Jonathan Z. Li
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. From Deep Mutational Mapping of Allosteric Protein Landscapes to Deep Learning of Allostery and Hidden Allosteric Sites: Zooming in on "Allosteric Intersection" of Biochemical and Big Data Approaches. Int J Mol Sci 2023; 24:7747. [PMID: 37175454 PMCID: PMC10178073 DOI: 10.3390/ijms24097747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric regulation, the emerging structural biology technologies and AI approaches remains largely unexplored, calling for the development of AI-augmented integrative structural biology. In this review, we focus on the latest remarkable progress in deep high-throughput mining and comprehensive mapping of allosteric protein landscapes and allosteric regulatory mechanisms as well as on the new developments in AI methods for prediction and characterization of allosteric binding sites on the proteome level. We also discuss new AI-augmented structural biology approaches that expand our knowledge of the universe of protein dynamics and allostery. We conclude with an outlook and highlight the importance of developing an open science infrastructure for machine learning studies of allosteric regulation and validation of computational approaches using integrative studies of allosteric mechanisms. The development of community-accessible tools that uniquely leverage the existing experimental and simulation knowledgebase to enable interrogation of the allosteric functions can provide a much-needed boost to further innovation and integration of experimental and computational technologies empowered by booming AI field.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| |
Collapse
|
47
|
Calvaresi V, Wrobel AG, Toporowska J, Hammerschmid D, Doores KJ, Bradshaw RT, Parsons RB, Benton DJ, Roustan C, Reading E, Malim MH, Gamblin SJ, Politis A. Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. Nat Commun 2023; 14:1421. [PMID: 36918534 PMCID: PMC10013288 DOI: 10.1038/s41467-023-36745-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
SARS-CoV-2 spike glycoprotein mediates receptor binding and subsequent membrane fusion. It exists in a range of conformations, including a closed state unable to bind the ACE2 receptor, and an open state that does so but displays more exposed antigenic surface. Spikes of variants of concern (VOCs) acquired amino acid changes linked to increased virulence and immune evasion. Here, using HDX-MS, we identified changes in spike dynamics that we associate with the transition from closed to open conformations, to ACE2 binding, and to specific mutations in VOCs. We show that the RBD-associated subdomain plays a role in spike opening, whereas the NTD acts as a hotspot of conformational divergence of VOC spikes driving immune evasion. Alpha, beta and delta spikes assume predominantly open conformations and ACE2 binding increases the dynamics of their core helices, priming spikes for fusion. Conversely, substitutions in omicron spike lead to predominantly closed conformations, presumably enabling it to escape antibodies. At the same time, its core helices show characteristics of being pre-primed for fusion even in the absence of ACE2. These data inform on SARS-CoV-2 evolution and omicron variant emergence.
Collapse
Affiliation(s)
- Valeria Calvaresi
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| | | | | | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | | | | | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Chloë Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT, London, UK
| | - Eamonn Reading
- Department of Chemistry, King's College London, SE1 1DB, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, SE1 9RT, London, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, SE1 1DB, London, UK.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, M13 9PT, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, M1 7DN, Manchester, UK.
| |
Collapse
|
48
|
Agajanian S, Alshahrani M, Bai F, Tao P, Verkhivker GM. Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches. J Chem Inf Model 2023; 63:1413-1428. [PMID: 36827465 PMCID: PMC11162550 DOI: 10.1021/acs.jcim.2c01634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
Collapse
Affiliation(s)
- Steve Agajanian
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology and Information Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
49
|
da Costa HHM, Orts DJB, Moura AD, Duarte-Neto AN, Cirqueira CS, Réssio RA, Kanamura CT, Miguita K, Ferreira JE, Santos RTM, Adriani PP, Cunha-Junior JP, Astray RM, Catarino RM, Lancelotti M, Prudencio CR. RBD and Spike DNA-Based Immunization in Rabbits Elicited IgG Avidity Maturation and High Neutralizing Antibody Responses against SARS-CoV-2. Viruses 2023; 15:555. [PMID: 36851769 PMCID: PMC9959588 DOI: 10.3390/v15020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Neutralizing antibodies (nAbs) are a critical part of coronavirus disease 2019 (COVID-19) research as they are used to gain insight into the immune response to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections. Among the technologies available for generating nAbs, DNA-based immunization methods are an alternative to conventional protocols. In this pilot study, we investigated whether DNA-based immunization by needle injection in rabbits was a viable approach to produce a functional antibody response. We demonstrated that three doses of DNA plasmid carrying the gene encoding the full-length spike protein (S) or the receptor binding domain (RBD) of SARS-CoV-2 induced a time-dependent increase in IgG antibody avidity maturation. Moreover, the IgG antibodies displayed high cross neutralization by live SARS-CoV-2 and pseudoviruses neutralization assays. Thus, we established a simple, low cost and feasible DNA-based immunization protocol in rabbits that elicited high IgG avidity maturation and nAbs production against SARS-CoV-2, highlighting the importance of DNA-based platforms for developing new immunization strategies against SARS-CoV-2 and future emerging epidemics.
Collapse
Affiliation(s)
- Hernan H. M. da Costa
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
- Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Diego J. B. Orts
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | - Andrew D. Moura
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | | | - Rodrigo A. Réssio
- Pathology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | - Karen Miguita
- Pathology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | | | - Patricia P. Adriani
- Skinzymes Biotechnology Ltd., São Paulo 05441-040, Brazil
- Laboratory of Nanopharmaceuticals and Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jair P. Cunha-Junior
- Laboratory of Immunochemistry and Immunotechnology, Department of Immunology, Federal University of Uberlândia, Uberlândia 38405-317, Brazil
| | - Renato M. Astray
- Multi-Purpose Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
| | | | - Marcelo Lancelotti
- Faculty of Pharmaceutical Sciences, Campinas State University, Campinas 13083-871, Brazil
| | - Carlos R. Prudencio
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
- Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
50
|
Cox M, Peacock TP, Harvey WT, Hughes J, Wright DW, Willett BJ, Thomson E, Gupta RK, Peacock SJ, Robertson DL, Carabelli AM. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol 2023; 21:112-124. [PMID: 36307535 PMCID: PMC9616429 DOI: 10.1038/s41579-022-00809-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.
Collapse
Affiliation(s)
- MacGregor Cox
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Derek W Wright
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Emma Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|