1
|
Yu J, Lan Y, Zhu C, Chen Z, Pan J, Shi Y, Yang L, Hu T, Gao Y, Zhao Y, Chen X, Yang X, Lu S, Guddat LW, Yang H, Rao Z, Li J. Structure and mechanism of a mycobacterial isoniazid efflux pump MsRv1273c/72c with a degenerate nucleotide-binding site. Nat Commun 2025; 16:3969. [PMID: 40295516 PMCID: PMC12038006 DOI: 10.1038/s41467-025-59300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Heterodimeric ATP-binding cassette (ABC) transporters containing one catalytically impaired degenerate nucleotide-binding site (NBS) have a mechanism different from those with two active NBSs. However, the structural basis of their transport mechanism remains to be explained. Here, we determine mycobacterial MsRv1273c/72c to be an isoniazid efflux pump and determine several structures by cryo-electron microscopy showing specific asymmetrical features including an N-terminal extending loop and a periplasmic helical hairpin only found in MsRv1272c. In addition, we capture three distinct asymmetric states where the nucleotide-binding domains are partially dimerized at the degenerate site. Using these intermediate states, the D-WalkerB loop and X-signature loop of MsRv1272c modulate and couple the function of both NBSs through conformational changes. Thus, these data provide insights into the mechanism of this heterodimeric ABC transporter containing a degenerate NBS. The structures also provide a framework for the rational design of anti-tuberculosis drugs targeting this drug-efflux pump.
Collapse
Affiliation(s)
- Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuhui Lan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhendong Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Junyi Pan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanfeng Shi
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Lan Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaobo Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China.
- Laboratory of Structural Biology, Tsinghua University, 100084, Beijing, China.
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Hu ZL, Wei H, Sun L, Russinova E. Plant steroids on the move: mechanisms of brassinosteroid export. Trends Biochem Sci 2025:S0968-0004(25)00052-0. [PMID: 40251078 DOI: 10.1016/j.tibs.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
Brassinosteroids (BRs) are essential plant steroidal hormones that regulate growth and development. The recent discoveries of ATP-binding cassette subfamily B (ABCB) members, ABCB19 and ABCB1, as BR transporters highlight the significance of active export to the apoplast in maintaining BR homeostasis and enabling effective signaling. This review focuses on the latest progress in understanding ABCB-mediated BR transport, with particular attention to the structural and functional characterization of arabidopsis ABCB19 and ABCB1. These findings reveal both conserved and distinct features in substrate recognition and transport mechanisms, providing valuable insights into their roles in hormonal regulation. Additionally, the evolutionary conservation of ABC transporters in mediating steroid-based signaling across biological kingdoms underscores their fundamental biological significance.
Collapse
Affiliation(s)
- Zi-Liang Hu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
3
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
4
|
Gonda I, Sorrentino S, Galazzo L, Lichti NP, Arnold FM, Mehdipour AR, Bordignon E, Seeger MA. The mycobacterial ABC transporter IrtAB employs a membrane-facing crevice for siderophore-mediated iron uptake. Nat Commun 2025; 16:1133. [PMID: 39880813 PMCID: PMC11779899 DOI: 10.1038/s41467-024-55136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025] Open
Abstract
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface. Mutations introduced at the crevice abrogate mycobactin import and in corresponding structures, the crevice is collapsed. A conserved triple histidine motif coordinating a zinc ion is present below the mycobactin binding site. Substitution of these histidine residues with alanine results in a decoupled transporter, which hydrolyzes ATP, but lost its capacity to import mycobactins. Our data suggest that IrtAB imports mycobactin via a credit-card mechanism in a transport cycle that is coupled to the presence of zinc.
Collapse
Affiliation(s)
- Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Simona Sorrentino
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas P Lichti
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ahmad R Mehdipour
- UGent Center for Molecular Modelling, Ghent University, Ghent, Belgium
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Luo C, Dai H, Liang S, Zhao H, Zhou L. Integration of GWAS and Co-Expression Network Analysis Identified Main Genes Responsible for Nitrogen Uptake Traits in Seedling Waxy Corn. Genes (Basel) 2025; 16:126. [PMID: 40004455 PMCID: PMC11854815 DOI: 10.3390/genes16020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Waxy corn has a unique taste and flavor that a majority of consumers love, and the market application prospect is broad. Nitrogen plays an important role in the growth and development of waxy corn. Exploring the key genes that affect nitrogen absorption can lay a foundation for improving the quality of waxy corn. Methods: In this study, a total of 534 local waxy corn inbred lines were used to perform genome-wide association studies (GWAS) to mine the significant Quantitative Trait Nucleotides (QTNs) for nitrogen content of waxy corn at seedling stage in two different environments. The Weighted Gene Co-Expression Network Analysis (WGCNA) nitrogen response co-expression network was also constructed to explore the differences of gene expression patterns and the co-expression relationship between transcription factors and functional genes to find candidate genes significantly associated with nitrogen uptake in waxy corn. Results: A total of 97 significant associations (LOD-value ≥ 3) were detected between SNPs and nitrate content traits under single and multi-environment conditions. Fifty-four candidate genes were identified around the significant SNPs in about a 20 Kb region. Combined with nitrogen response differential co-expression network analysis, 17 out of the 54 candidate genes were identified in the nitrogen response module, among which 4 main genes (Zm00001d029012, Zm00001d034035, Zm00001d007890, and Zm00001d045097) were repeatedly detected in multiple environments. Conclusions: This study jointly identified four stable and heritable candidate genes involved in the nitrogen metabolism process through GWAS and co-expression network analysis. The results of this study provide theoretical guidance for further elucidating the genetic mechanism of nitrogen efficiency in waxy corn and breeding new germplasm of waxy corn.
Collapse
Affiliation(s)
- Chunmei Luo
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Huixue Dai
- Nanjing Vegetables Research Institute, Nanjing 210042, China
| | - Shuaiqiang Liang
- Jiangsu Academy of Agricultural Sciences, Institute of Genetic Resources and Biotechnology, Nanjing 210014, China (H.Z.)
| | - Han Zhao
- Jiangsu Academy of Agricultural Sciences, Institute of Genetic Resources and Biotechnology, Nanjing 210014, China (H.Z.)
| | - Ling Zhou
- Jiangsu Academy of Agricultural Sciences, Institute of Genetic Resources and Biotechnology, Nanjing 210014, China (H.Z.)
| |
Collapse
|
6
|
Hossen ML, Bhattarai N, Chapagain PP, Gerstman BS. The Role of Protonation in the PfMATE Transporter Protein Structural Transitions. Methods Mol Biol 2025; 2870:315-340. [PMID: 39543042 DOI: 10.1007/978-1-0716-4213-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Multi-antimicrobial extrusion (MATE) transporter membrane proteins provide drug and toxin resistivity by expelling compounds from cells. MATE proteins can be pictured as V-shaped. To regulate its functioning, the protein structure can switch between outward-facing (OF) and inward-facing (IF). Pyrococcus furiosus MATE (PfMATE) is the only member of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily that has available both the IF and OF crystal structures. With the availability of both the IF and OF structures, we are able to perform computational investigations to determine how protonation of specific amino acids causes a cascade of changes in the protein conformation that allow PfMATE to change its state from OF to IF in order to regulate its antiporter function. Using a variety of computational and theoretical techniques, we investigated four different systems of IF and OF PfMATE along with the native archaeal lipid bilayer, without or with protonation at the experimentally determined locations within the protein. We performed molecular dynamics (MD) simulations to investigate the flexibility of the four different PfMATE structures and also performed targeted molecular dynamics (TMD) simulations, during which we observed occluded conformations. Our analysis of hydrogen bond changes, potential of mean force, dynamic network analysis, and transfer entropy analysis provides information on how protonation can induce cascading structural changes responsible for the transition between the IF and OF configurations.
Collapse
Affiliation(s)
- Md Lokman Hossen
- Department of Physics, Florida International University, Miami, FL, USA
| | - Nisha Bhattarai
- Department of Physics, Florida International University, Miami, FL, USA
| | - Prem P Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Bernard S Gerstman
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
7
|
Senapati DK, Yarava JR, Ramanathan KV, Raghothama S. Deciphering the Conformations of Glutathione Oxidized Peptide: A Comparative NMR Study in Solution and Solid-State Environments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415464 DOI: 10.1002/mrc.5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Glutathione (GSH) and its oxidized dimer (GSSG) play an important role in living systems as an antioxidant, balancing the presence of reactive oxygen species (ROS). The central thiol (-S-S-) bond in GSSG can undergo free rotation, providing multiple conformations with respect to the S-S bridge. The six titratable sites of GSSG, which are influenced by pH variations, affect these conformations in solution, whereas in solids, additionally crystal packing effects come into play. In view of differing reports about the structure of GSSG in literature, we have here conducted an extensive reexamination of its conformations using NMR, and contrasting results have been obtained for solution and solid state. In solution, the existence of more than one antiparallel orientation of the monomer unit with different hydrogen bonding schemes has been indicated by NOE and amide temperature coefficient results. On the other hand, in the solid-state, a 1H-1H double-quantum (DQ) to 13C single-quantum (SQ) correlation study has confirmed a parallel orientation, consistent with the reported X-ray crystal structure. Experimentally assigned solid-state NMR resonances have been validated using GIPAW calculations incorporated in the Quantum ESPRESSO package.
Collapse
Affiliation(s)
- Dillip K Senapati
- NMR Research Centre, Bangalore, India
- Department of Physics, Indian Institute of Science, Bangalore, India
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jayasubba Reddy Yarava
- NMR Research Centre, Bangalore, India
- Department of Physics, Indian Institute of Science, Bangalore, India
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | | | - S Raghothama
- NMR Research Centre, Bangalore, India
- Department of Chemistry, Central University of Karnataka, Kalaburagi, India
| |
Collapse
|
8
|
Maclean AE, Sloan MA, Renaud EA, Argyle BE, Lewis WH, Ovciarikova J, Demolombe V, Waller RF, Besteiro S, Sheiner L. The Toxoplasma gondii mitochondrial transporter ABCB7L is essential for the biogenesis of cytosolic and nuclear iron-sulfur cluster proteins and cytosolic translation. mBio 2024; 15:e0087224. [PMID: 39207139 PMCID: PMC11481526 DOI: 10.1128/mbio.00872-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous inorganic cofactors required for numerous essential cellular pathways. Since they cannot be scavenged from the environment, Fe-S clusters are synthesized de novo in cellular compartments such as the apicoplast, mitochondrion, and cytosol. The cytosolic Fe-S cluster biosynthesis pathway relies on the transport of an intermediate from the mitochondrial pathway. An ATP-binding cassette (ABC) transporter called ABCB7 is responsible for this role in numerous commonly studied organisms, but its role in the medically important apicomplexan parasites has not yet been studied. Here we identify and characterize a Toxoplasma gondii ABCB7 homolog, which we name ABCB7-like (ABCB7L). Genetic depletion shows that it is essential for parasite growth and that its disruption triggers partial stage conversion. Characterization of the knock-down line highlights a defect in the biogenesis of cytosolic and nuclear Fe-S proteins leading to defects in protein translation and other pathways including DNA and RNA replication and metabolism. Our work provides support for a broad conservation of the connection between mitochondrial and cytosolic pathways in Fe-S cluster biosynthesis and reveals its importance for parasite survival. IMPORTANCE Iron-sulfur (Fe-S) clusters are inorganic cofactors of proteins that play key roles in numerous essential biological processes, for example, respiration and DNA replication. Cells possess dedicated biosynthetic pathways to assemble Fe-S clusters, including a pathway in the mitochondrion and cytosol. A single transporter, called ABCB7, connects these two pathways, allowing an essential intermediate generated by the mitochondrial pathway to be used in the cytosolic pathway. Cytosolic and nuclear Fe-S proteins are dependent on the mitochondrial pathway, mediated by ABCB7, in numerous organisms studied to date. Here, we study the role of a homolog of ABCB7, which we name ABCB7-like (ABCB7L), in the ubiquitous unicellular apicomplexan parasite Toxoplasma gondii. We generated a depletion mutant of Toxoplasma ABCB7L and showed its importance for parasite fitness. Using comparative quantitative proteomic analysis and experimental validation of the mutants, we show that ABCB7L is required for cytosolic and nuclear, but not mitochondrial, Fe-S protein biogenesis. Our study supports the conservation of a protein homologous to ABCB7 and which has a similar function in apicomplexan parasites and provides insight into an understudied aspect of parasite metabolism.
Collapse
Affiliation(s)
- Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Megan A. Sloan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Eléa A. Renaud
- LPHI, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Blythe E. Argyle
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - William H. Lewis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Vincent Demolombe
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Choi SH, Lee SS, Lee HY, Kim S, Kim JW, Jin MS. Cryo-EM structure of cadmium-bound human ABCB6. Commun Biol 2024; 7:672. [PMID: 38822018 PMCID: PMC11143254 DOI: 10.1038/s42003-024-06377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.
Collapse
Affiliation(s)
- Seung Hun Choi
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Sang Soo Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Hyeon You Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea.
| |
Collapse
|
11
|
Soong TH, Hotze C, Khandelwal NK, Tomasiak TM. Structural Basis for Oxidized Glutathione Recognition by the Yeast Cadmium Factor 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578287. [PMID: 38352558 PMCID: PMC10862839 DOI: 10.1101/2024.01.31.578287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Transporters from the ABCC family have an essential role in detoxifying electrophilic compounds including metals, drugs, and lipids, often through conjugation with glutathione complexes. The Yeast Cadmium Factor 1 (Ycf1) transports glutathione alone as well as glutathione conjugated to toxic heavy metals including Cd2+, Hg2+, and As3+. To understand the complicated selectivity and promiscuity of heavy metal substrate binding, we determined the cryo-EM structure of Ycf1 bound to the substrate, oxidized glutathione. We systematically tested binding determinants with cellular survival assays against cadmium to determine how the substrate site accommodates different-sized metal complexes. We identify a "flex-pocket" for substrate binding that binds glutathione complexes asymmetrically and flexes to accommodate different size complexes.
Collapse
Affiliation(s)
- Tik Hang Soong
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Clare Hotze
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Nitesh Kumar Khandelwal
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Biochemistry and Physics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Thomas M Tomasiak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Tamizhselvan P, Madhavan S, Constan-Aguilar C, Elrefaay ER, Liu J, Pěnčík A, Novák O, Cairó A, Hrtyan M, Geisler M, Tognetti VB. Chloroplast Auxin Efflux Mediated by ABCB28 and ABCB29 Fine-Tunes Salt and Drought Stress Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 13:7. [PMID: 38202315 PMCID: PMC10780339 DOI: 10.3390/plants13010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Photosynthesis is among the first processes negatively affected by environmental cues and its performance directly determines plant cell fitness and ultimately crop yield. Primarily sites of photosynthesis, chloroplasts are unique sites also for the biosynthesis of precursors of the growth regulator auxin and for sensing environmental stress, but their role in intracellular auxin homeostasis, vital for plant growth and survival in changing environments, remains poorly understood. Here, we identified two ATP-binding cassette (ABC) subfamily B transporters, ABCB28 and ABCB29, which export auxin across the chloroplast envelope to the cytosol in a concerted action in vivo. Moreover, we provide evidence for an auxin biosynthesis pathway in Arabidopsis thaliana chloroplasts. The overexpression of ABCB28 and ABCB29 influenced stomatal regulation and resulted in significantly improved water use efficiency and survival rates during salt and drought stresses. Our results suggest that chloroplast auxin production and transport contribute to stomata regulation for conserving water upon salt stress. ABCB28 and ABCB29 integrate photosynthesis and auxin signals and as such hold great potential to improve the adaptation potential of crops to environmental cues.
Collapse
Affiliation(s)
- Prashanth Tamizhselvan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Sharmila Madhavan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Christian Constan-Aguilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Eman Ryad Elrefaay
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Jie Liu
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland; (J.L.); (M.G.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Albert Cairó
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland; (J.L.); (M.G.)
| | - Vanesa Beatriz Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| |
Collapse
|
13
|
Lee SS, Park JG, Jang E, Choi SH, Kim S, Kim JW, Jin MS. W546 stacking disruption traps the human porphyrin transporter ABCB6 in an outward-facing transient state. Commun Biol 2023; 6:960. [PMID: 37735522 PMCID: PMC10514269 DOI: 10.1038/s42003-023-05339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Human ATP-binding cassette transporter subfamily B6 (ABCB6) is a mitochondrial ATP-driven pump that translocates porphyrins from the cytoplasm into mitochondria for heme biosynthesis. Within the transport pathway, a conserved aromatic residue W546 located in each monomer plays a pivotal role in stabilizing the occluded conformation via π-stacking interactions. Herein, we employed cryo-electron microscopy to investigate the structural consequences of a single W546A mutation in ABCB6, both in detergent micelles and nanodiscs. The results demonstrate that the W546A mutation alters the conformational dynamics of detergent-purified ABCB6, leading to entrapment of the transporter in an outward-facing transient state. However, in the nanodisc system, we observed a direct interaction between the transporter and a phospholipid molecule that compensates for the absence of the W546 residue, thereby facilitating the normal conformational transition of the transporter toward the occluded state following ATP hydrolysis. The findings also reveal that adoption of the outward-facing conformation causes charge repulsion between ABCB6 and the bound substrate, and rearrangement of key interacting residues at the substrate-binding site. Consequently, the affinity for the substrate is significantly reduced, facilitating its release from the transporter.
Collapse
Affiliation(s)
- Sang Soo Lee
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jun Gyou Park
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Eunhong Jang
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seung Hun Choi
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
14
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
15
|
Andersen CG, Bavnhøj L, Pedersen BP. May the proton motive force be with you: A plant transporter review. Curr Opin Struct Biol 2023; 79:102535. [PMID: 36796226 DOI: 10.1016/j.sbi.2023.102535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
As our ecosystems experience challenges associated with climate change, an improved understanding of the fundamental biochemical processes governing plant physiology is needed. Strikingly, current structural information on plant membrane transporters is severely limited compared to other kingdoms of life, with only 18 unique structures in total. To advance future breakthroughs and insight in plant cell molecular biology, structural knowledge of membrane transporters is indispensable. This review summarizes the current status of structural knowledge in the plant membrane transporter field. Plants utilize the proton motive force (PMF) to drive secondary active transport. We discuss the PMF, how it relates to secondary active transport and provide a classification of PMF driven secondary active transport, discussing recently published structures of symporters, antiporters, and uniporters from plants.
Collapse
Affiliation(s)
| | - Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark. https://twitter.com/laustbavnhoej
| | | |
Collapse
|
16
|
Li P, Hendricks AL, Wang Y, Villones RLE, Lindkvist-Petersson K, Meloni G, Cowan JA, Wang K, Gourdon P. Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria. Nat Commun 2022; 13:4339. [PMID: 35896548 PMCID: PMC9329353 DOI: 10.1038/s41467-022-32006-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/11/2022] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes, iron-sulfur clusters are essential cofactors for numerous physiological processes, but these clusters are primarily biosynthesized in mitochondria. Previous studies suggest mitochondrial ABCB7-type exporters are involved in maturation of cytosolic iron-sulfur proteins. However, the molecular mechanism for how the ABCB7-type exporters participate in this process remains elusive. Here, we report a series of cryo-electron microscopy structures of a eukaryotic homolog of human ABCB7, CtAtm1, determined at average resolutions ranging from 2.8 to 3.2 Å, complemented by functional characterization and molecular docking in silico. We propose that CtAtm1 accepts delivery from glutathione-complexed iron-sulfur clusters. A partially occluded state links cargo-binding to residues at the mitochondrial matrix interface that line a positively charged cavity, while the binding region becomes internalized and is partially divided in an early occluded state. Collectively, our findings substantially increase the understanding of the transport mechanism of eukaryotic ABCB7-type proteins.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden
| | - Amber L Hendricks
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Yong Wang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Kaituo Wang
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|