1
|
Neahring L, Zallen JA. Three-dimensional rosettes in epithelial formation. Cells Dev 2025:204022. [PMID: 40120722 DOI: 10.1016/j.cdev.2025.204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Epithelia are ubiquitous tissues with essential structural, signaling, and barrier functions. How cells transition from individual to collective behaviors as they build and remodel epithelia throughout development is a fundamental question in developmental biology. Recent studies show that three-dimensional multicellular rosettes are key intermediates that provide a solution to the challenge of building tissue-scale epithelia by coordinating local interactions in small groups of cells. These radially polarized rosette structures facilitate epithelial formation by providing a protected environment for cells to acquire apical-basal polarity, establish cell adhesion, and coordinate intercellular signaling. Once formed, rosettes can dynamically expand, move, coalesce, and interact with surrounding tissues to generate a wide range of structures with specialized functions, including epithelial sheets, tubes, cavities, and branched networks. In this review, we describe the mechanisms that regulate rosette assembly and dynamics, and discuss how rosettes serve as versatile intermediates in epithelial morphogenesis. In addition, we present open questions about the molecular, cellular, and biophysical mechanisms that drive rosette behaviors, and discuss the implications of this widely used mode of epithelial formation for understanding embryonic development and human disease.
Collapse
Affiliation(s)
- Lila Neahring
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America
| | - Jennifer A Zallen
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America.
| |
Collapse
|
2
|
Yang Q, Wijaya F, Kapoor R, Chandrasekaran H, Jagtiani S, Moran I, Hime GR. Unusual modes of cell and nuclear divisions characterise Drosophila development. Biochem Soc Trans 2024; 52:2281-2295. [PMID: 39508395 PMCID: PMC11668308 DOI: 10.1042/bst20231341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
The growth and development of metazoan organisms is dependent upon a co-ordinated programme of cellular proliferation and differentiation, from the initial formation of the zygote through to maintenance of mature organs in adult organisms. Early studies of proliferation of ex vivo cultures and unicellular eukaryotes described a cyclic nature of cell division characterised by periods of DNA synthesis (S-phase) and segregation of newly synthesized chromosomes (M-phase) interspersed by seeming inactivity, the gap phases, G1 and G2. We now know that G1 and G2 play critical roles in regulating the cell cycle, including monitoring of favourable environmental conditions to facilitate cell division, and ensuring genomic integrity prior to DNA replication and nuclear division. M-phase is usually followed by the physical separation of nascent daughters, termed cytokinesis. These phases where G1 leads to S phase, followed by G2 prior to M phase and the subsequent cytokinesis to produce two daughters, both identical in genomic composition and cellular morphology are what might be termed an archetypal cell division. Studies of development of many different organs in different species have demonstrated that this stereotypical cell cycle is often subverted to produce specific developmental outcomes, and examples from over 100 years of analysis of the development of Drosophila melanogaster have uncovered many different modes of cell division within this one species.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Harshaa Chandrasekaran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Siddhant Jagtiani
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Izaac Moran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
3
|
Sugimura K, Otani T. Vertex remodeling during epithelial morphogenesis. Curr Opin Cell Biol 2024; 91:102427. [PMID: 39332144 DOI: 10.1016/j.ceb.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Epithelial cells adhere to each other via intercellular junctions that can be classified into bicellular junctions and tricellular contacts (vertices). Epithelial morphogenesis involves cell rearrangement and requires remodeling of bicellular junctions and vertices. Although our understanding of how bicellular junction mechanics drive epithelial morphogenesis has advanced, the mechanisms underlying vertex remodeling during this process have only received attention recently. In this review, we outline recent progress in our understanding of how cells reorganize cell adhesion and the cytoskeleton to trigger the displacement and resolution of cell vertices. We will also discuss how cells achieve the optimal balance between the structural flexibility and stability of their vertices. Finally, we introduce new modeling frameworks designed to analyze mechanics at cell vertices. Integration of live imaging and modeling techniques is providing new insights into the active roles of cell vertices during epithelial morphogenesis.
Collapse
Affiliation(s)
- Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Universal Biology Institute, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Tetsuhisa Otani
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan.
| |
Collapse
|
4
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
5
|
Naturale VF, Pickett MA, Feldman JL. Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. Dev Cell 2023; 58:1830-1846.e12. [PMID: 37552986 PMCID: PMC10592304 DOI: 10.1016/j.devcel.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tissue-wide patterning is essential to multicellular development, requiring cells to individually generate polarity axes and coordinate them in space and time with neighbors. Using the C. elegans intestinal epithelium, we identified a patterning mechanism that is informed by cell contact lifetime asymmetry and executed via the scaffolding protein PAR-3 and the transmembrane protein E-cadherin/HMR-1. Intestinal cells break symmetry as PAR-3 and HMR-1 recruit apical determinants into punctate "local polarity complexes" (LPCs) at homotypic contacts. LPCs undergo an HMR-1-based migration to a common midline, thereby establishing tissue-wide polarity. Thus, symmetry breaking results from PAR-3-dependent intracellular polarization coupled to HMR-1-based tissue-level communication, which occurs through a non-adhesive signaling role for HMR-1. Differential lifetimes between homotypic and heterotypic cell contacts are created by neighbor exchanges and oriented divisions, patterning where LPCs perdure and thereby breaking symmetry. These cues offer a logical and likely conserved framework for how epithelia without obvious molecular asymmetries can polarize.
Collapse
Affiliation(s)
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Hodge RA, Ghannam M, Edmond E, de la Torre F, D’Alterio C, Kaya NH, Resnik-Docampo M, Reiff T, Jones DL. The septate junction component bark beetle is required for Drosophila intestinal barrier function and homeostasis. iScience 2023; 26:106901. [PMID: 37332603 PMCID: PMC10276166 DOI: 10.1016/j.isci.2023.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Age-related loss of intestinal barrier function has been documented across species, but the causes remain unknown. The intestinal barrier is maintained by tight junctions (TJs) in mammals and septate junctions (SJs) in insects. Specialized TJs/SJs, called tricellular junctions (TCJs), are located at the nexus of three adjacent cells, and we have shown that aging results in changes to TCJs in intestines of adult Drosophila melanogaster. We now demonstrate that localization of the TCJ protein bark beetle (Bark) decreases in aged flies. Depletion of bark from enterocytes in young flies led to hallmarks of intestinal aging and shortened lifespan, whereas depletion of bark in progenitor cells reduced Notch activity, biasing differentiation toward the secretory lineage. Our data implicate Bark in EC maturation and maintenance of intestinal barrier integrity. Understanding the assembly and maintenance of TCJs to ensure barrier integrity may lead to strategies to improve tissue integrity when function is compromised.
Collapse
Affiliation(s)
- Rachel A. Hodge
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mirna Ghannam
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emma Edmond
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando de la Torre
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cecilia D’Alterio
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nida Hatice Kaya
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Resnik-Docampo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tobias Reiff
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
9
|
Naturale VF, Pickett MA, Feldman JL. Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Curr Top Dev Biol 2023; 154:37-71. [PMID: 37100523 DOI: 10.1016/bs.ctdb.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epithelia are tissues with diverse morphologies and functions across metazoans, ranging from vast cell sheets encasing internal organs to internal tubes facilitating nutrient uptake, all of which require establishment of apical-basolateral polarity axes. While all epithelia tend to polarize the same components, how these components are deployed to drive polarization is largely context-dependent and likely shaped by tissue-specific differences in development and ultimate functions of polarizing primordia. The nematode Caenorhabditis elegans (C. elegans) offers exceptional imaging and genetic tools and possesses unique epithelia with well-described origins and roles, making it an excellent model to investigate polarity mechanisms. In this review, we highlight the interplay between epithelial polarization, development, and function by describing symmetry breaking and polarity establishment in a particularly well-characterized epithelium, the C. elegans intestine. We compare intestinal polarization to polarity programs in two other C. elegans epithelia, the pharynx and epidermis, correlating divergent mechanisms with tissue-specific differences in geometry, embryonic environment, and function. Together, we emphasize the importance of investigating polarization mechanisms against the backdrop of tissue-specific contexts, while also underscoring the benefits of cross-tissue comparisons of polarity.
Collapse
Affiliation(s)
- Victor F Naturale
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA, United States; Department of Biological Sciences, San José State University, San José, CA, United States
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|