1
|
Brudner S, Zhou B, Jayaram V, Santana GM, Clark DA, Emonet T. Fly navigational responses to odor motion and gradient cues are tuned to plume statistics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646361. [PMID: 40235995 PMCID: PMC11996313 DOI: 10.1101/2025.03.31.646361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Odor cues guide animals to food and mates. Different environmental conditions can create differently patterned odor plumes, making navigation more challenging. Prior work has shown that animals turn upwind when they detect odor and cast crosswind when they lose it. Animals with bilateral olfactory sensors can also detect directional odor cues, such as odor gradient and odor motion. It remains unknown how animals use these two directional odor cues to guide crosswind navigation in odor plumes with distinct statistics. Here, we investigate this problem theoretically and experimentally. We show that these directional odor cues provide complementary information for navigation in different plume environments. We numerically analyzed real plumes to show that odor gradient cues are more informative about crosswind directions in relatively smooth odor plumes, while odor motion cues are more informative in turbulent or complex plumes. Neural networks trained to optimize crosswind turning converge to distinctive network structures that are tuned to odor gradient cues in smooth plumes and to odor motion cues in complex plumes. These trained networks improve the performance of artificial agents navigating plume environments that match the training environment. By recording Drosophila fruit flies as they navigated different odor plume environments, we verified that flies show the same correspondence between informative cues and plume types. Fly turning in the crosswind direction is correlated with odor gradients in smooth plumes and with odor motion in complex plumes. Overall, these results demonstrate that these directional odor cues are complementary across environments, and that animals exploit this relationship. Significance Many animals use smell to find food and mates, often navigating complex odor plumes shaped by environmental conditions. While upwind movement upon odor detection is well established, less is known about how animals steer crosswind to stay in the plume. We show that directional odor cues-gradients and motion-guide crosswind navigation differently depending on plume structure. Gradients carry more information in smooth plumes, while motion dominates in turbulent ones. Neural network trained to optimize crosswind navigation reflect this distinction, developing gradient sensitivity in smooth environments and motion sensitivity in complex ones. Experimentally, fruit flies adjust their turning behavior to prioritize the most informative cue in each context. These findings likely generalize to other animals navigating similarly structured odor plumes.
Collapse
|
2
|
Rando M, James M, Verri A, Rosasco L, Seminara A. Q-learning with temporal memory to navigate turbulence. ARXIV 2025:arXiv:2404.17495v2. [PMID: 38711433 PMCID: PMC11071615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We consider the problem of olfactory searches in a turbulent environment. We focus on agents that respond solely to odor stimuli, with no access to spatial perception nor prior information about the odor. We ask whether navigation to a target can be learned robustly within a sequential decision making framework. We develop a reinforcement learning algorithm using a small set of interpretable olfactory states and train it with realistic turbulent odor cues. By introducing a temporal memory, we demonstrate that two salient features of odor traces, discretized in few olfactory states, are sufficient to learn navigation in a realistic odor plume. Performance is dictated by the sparse nature of turbulent odors. An optimal memory exists which ignores blanks within the plume and activates a recovery strategy outside the plume. We obtain the best performance by letting agents learn their recovery strategy and show that it is mostly casting cross wind, similar to behavior observed in flying insects. The optimal strategy is robust to substantial changes in the odor plumes, suggesting minor parameter tuning may be sufficient to adapt to different environments.
Collapse
Affiliation(s)
- Marco Rando
- MaLGa, Department of computer science, bioengineering, robotics and systems engineering, University of Genova, Genova, Italy
| | - Martin James
- MalGa, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Alessandro Verri
- MaLGa, Department of computer science, bioengineering, robotics and systems engineering, University of Genova, Genova, Italy
| | - Lorenzo Rosasco
- MaLGa, Department of computer science, bioengineering, robotics and systems engineering, University of Genova, Genova, Italy
| | - Agnese Seminara
- MalGa, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Ouyang B, True AC, Crimaldi JP, Ermentrout B. Simple olfactory navigation in air and water. J Theor Biol 2024; 595:111941. [PMID: 39260736 DOI: 10.1016/j.jtbi.2024.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Two simple algorithms based on combining odor concentration differences across time and space along with information on the flow direction are tested for their ability to locate an odor source in four different odor landscapes. Image data taken from air plumes in three different regimes and a water plume are used as test environments for a bilateral ("stereo sampling") algorithm using concentration differences across two sensors and a "casting" algorithm that uses successive samples to decide orientation. Agents are started at random locations and orientations in the landscape and allowed to move until they reach the source of the odor (success) or leave the imaged area (failure). Parameters for the algorithm are chosen to optimize success and to minimize path length to the source. Success rates over 90% are consistently obtained with path lengths that can be as low as twice the starting distance from the source in air and four times the distance in the highly turbulent water plumes. We find that parameters that optimize success often lead to more exploratory pathways to the source. Information about the direction from which the odor is coming is necessary for successful navigation in the water plume and reduces the path length in the three tested air plumes.
Collapse
Affiliation(s)
- Bowei Ouyang
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| | - Aaron C True
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - John P Crimaldi
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
4
|
Stupski SD, van Breugel F. Wind gates olfaction-driven search states in free flight. Curr Biol 2024; 34:4397-4411.e6. [PMID: 39067453 PMCID: PMC11461137 DOI: 10.1016/j.cub.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
For organisms tracking a chemical cue to its source, the motion of their surrounding fluid provides crucial information for success. Swimming and flying animals engaged in olfaction-driven search often start by turning into the direction of an oncoming wind or water current. However, it is unclear how organisms adjust their strategies when directional cues are absent or unreliable, as is often the case in nature. Here, we use the genetic toolkit of Drosophila melanogaster to develop an optogenetic paradigm to deliver temporally precise "virtual" olfactory experiences for free-flying animals in either laminar wind or still air. We first confirm that in laminar wind flies turn upwind. Furthermore, we show that they achieve this using a rapid (∼100 ms) turn, implying that flies estimate the ambient wind direction prior to "surging" upwind. In still air, flies adopt a remarkably stereotyped "sink and circle" search state characterized by ∼60° turns at 3-4 Hz, biased in a consistent direction. Together, our results show that Drosophila melanogaster assesses the presence and direction of ambient wind prior to deploying a distinct search strategy. In both laminar wind and still air, immediately after odor onset, flies decelerate and often perform a rapid turn. Both maneuvers are consistent with predictions from recent control theoretic analyses for how insects may estimate properties of wind while in flight. We suggest that flies may use their deceleration and "anemometric" turn as active sensing maneuvers to rapidly gauge properties of their wind environment before initiating a proximal or upwind search routine.
Collapse
Affiliation(s)
- S David Stupski
- Integrative Neuroscience Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Ecology Evolution and Conservation Biology Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Department of Mechanical Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Floris van Breugel
- Integrative Neuroscience Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Ecology Evolution and Conservation Biology Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Department of Mechanical Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
5
|
Tariq MF, Sterrett SC, Moore S, Lane, Perkel DJ, Gire DH. Dynamics of odor-source localization: Insights from real-time odor plume recordings and head-motion tracking in freely moving mice. PLoS One 2024; 19:e0310254. [PMID: 39325742 PMCID: PMC11426488 DOI: 10.1371/journal.pone.0310254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Animals navigating turbulent odor plumes exhibit a rich variety of behaviors, and employ efficient strategies to locate odor sources. A growing body of literature has started to probe this complex task of localizing airborne odor sources in walking mammals to further our understanding of neural encoding and decoding of naturalistic sensory stimuli. However, correlating the intermittent olfactory information with behavior has remained a long-standing challenge due to the stochastic nature of the odor stimulus. We recently reported a method to record real-time olfactory information available to freely moving mice during odor-guided navigation, hence overcoming that challenge. Here we combine our odor-recording method with head-motion tracking to establish correlations between plume encounters and head movements. We show that mice exhibit robust head-pitch motions in the 5-14Hz range during an odor-guided navigation task, and that these head motions are modulated by plume encounters. Furthermore, mice reduce their angles with respect to the source upon plume contact. Head motions may thus be an important part of the sensorimotor behavioral repertoire during naturalistic odor-source localization.
Collapse
Affiliation(s)
- Mohammad F. Tariq
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Scott C. Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, United States of America
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Sidney Moore
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Lane
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
- Department of Psychology, Seattle University, Seattle, Washington, United States of America
| | - David J. Perkel
- Departments of Biology & Otolaryngology, University of Washington, Seattle, Washington, United States of America
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Stupski SD, van Breugel F. Wind Gates Olfaction Driven Search States in Free Flight. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569086. [PMID: 38076971 PMCID: PMC10705368 DOI: 10.1101/2023.11.30.569086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
For organisms tracking a chemical cue to its source, the motion of their surrounding fluid provides crucial information for success. Swimming and flying animals engaged in olfaction driven search often start by turning into the direction of an oncoming wind or water current. However, it is unclear how organisms adjust their strategies when directional cues are absent or unreliable, as is often the case in nature. Here, we use the genetic toolkit of Drosophila melanogaster to develop an optogenetic paradigm to deliver temporally precise "virtual" olfactory experiences for free-flying animals in either laminar wind or still air. We first confirm that in laminar wind flies turn upwind. Furthermore, we show that they achieve this using a rapid (∼100 ms) turn, implying that flies estimate the ambient wind direction prior to "surging" upwind. In still air, flies adopt remarkably stereotyped "sink and circle" search state characterized by ∼60°turns at 3-4 Hz, biased in a consistent direction. Together, our results show that Drosophila melanogaster assess the presence and direction of ambient wind prior to deploying a distinct search strategy. In both laminar wind and still air, immediately after odor onset, flies decelerate and often perform a rapid turn. Both maneuvers are consistent with predictions from recent control theoretic analyses for how insects may estimate properties of wind while in flight. We suggest that flies may use their deceleration and "anemometric" turn as active sensing maneuvers to rapidly gauge properties of their wind environment before initiating a proximal or upwind search routine.
Collapse
|
7
|
Simoes de Souza FM, Williamson R, McCullough C, Teel A, Futia G, Ma M, True A, Crimaldi JP, Gibson E, Restrepo D. Miniscope Recording Calcium Signals at Hippocampus of Mice Navigating an Odor Plume. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598681. [PMID: 38915584 PMCID: PMC11195275 DOI: 10.1101/2024.06.12.598681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mice navigate an odor plume with a complex spatiotemporal structure in the dark to find the source of odorants. This article describes a protocol to monitor behavior and record Ca 2+ transients in dorsal CA1 stratum pyramidale neurons in hippocampus (dCA1) in mice navigating an odor plume in a 50 cm x 50 cm x 25 cm odor arena. An epifluorescence miniscope focused through a GRIN lens imaged Ca 2+ transients in dCA1 neurons expressing the calcium sensor GCaMP6f in Thy1-GCaMP6f mice. The paper describes the behavioral protocol to train the mice to perform this odor plume navigation task in an automated odor arena. The methods include a step-by-step procedure for the surgery for GRIN lens implantation and baseplate placement for imaging GCaMP6f in CA1. The article provides information on real-time tracking of the mouse position to automate the start of the trials and delivery of a sugar water reward. In addition, the protocol includes information on using of an interface board to synchronize metadata describing the automation of the odor navigation task and frame times for the miniscope and a digital camera tracking mouse position. Moreover, the methods delineate the pipeline used to process GCaMP6f fluorescence movies by motion correction using NorMCorre followed by identification of regions of interest with EXTRACT. Finally, the paper describes an artificial neural network approach to decode spatial paths from CA1 neural ensemble activity to predict mouse navigation of the odor plume. SUMMARY This protocol describes how to investigate the brain-behavior relationship in hippocampal CA1 in mice navigating an odor plume. This article provides a step-by-step protocol, including the surgery to access imaging of the hippocampus, behavioral training, miniscope GCaMP6f recording and processing of the brain and behavioral data to decode the mouse position from ROI neural activity.
Collapse
|
8
|
Tariq MF, Sterrett SC, Moore S, Lane L, Perkel DJ, Gire DH. Dynamics of odor-source localization: Insights from real-time odor plume recordings and head-motion tracking in freely moving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566539. [PMID: 38014041 PMCID: PMC10680624 DOI: 10.1101/2023.11.10.566539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Animals navigating turbulent odor plumes exhibit a rich variety of behaviors, and employ efficient strategies to locate odor sources. A growing body of literature has started to probe this complex task of localizing airborne odor sources in walking mammals to further our understanding of neural encoding and decoding of naturalistic sensory stimuli. However, correlating the intermittent olfactory information with behavior has remained a long-standing challenge due to the stochastic nature of the odor stimulus. We recently reported a method to record real-time olfactory information available to freely moving mice during odor-guided navigation, hence overcoming that challenge. Here we combine our odor-recording method with head-motion tracking to establish correlations between plume encounters and head movements. We show that mice exhibit robust head-pitch motions in the 5-14Hz range during an odor-guided navigation task, and that these head motions are modulated by plume encounters. Furthermore, mice reduce their angles with respect to the source upon plume contact. Head motions may thus be an important part of the sensorimotor behavioral repertoire during naturalistic odor-source localization.
Collapse
Affiliation(s)
- Mohammad F. Tariq
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Scott C. Sterrett
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Sidney Moore
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Lane Lane
- Department of Psychology, University of Washington, Seattle, Washington, USA
- Department of Psychology, Seattle University, Seattle, Washington, USA
| | - David J. Perkel
- Departments of Biology & Otolaryngology, University of Washington, Seattle, Washington, USA
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Lewis SM, Suarez LM, Rigolli N, Franks KM, Steinmetz NA, Gire DH. The spiking output of the mouse olfactory bulb encodes large-scale temporal features of natural odor environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582978. [PMID: 38496526 PMCID: PMC10942328 DOI: 10.1101/2024.03.01.582978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In natural odor environments, odor travels in plumes. Odor concentration dynamics change in characteristic ways across the width and length of a plume. Thus, spatiotemporal dynamics of plumes have informative features for animals navigating to an odor source. Population activity in the olfactory bulb (OB) has been shown to follow odor concentration across plumes to a moderate degree (Lewis et al., 2021). However, it is unknown whether the ability to follow plume dynamics is driven by individual cells or whether it emerges at the population level. Previous research has explored the responses of individual OB cells to isolated features of plumes, but it is difficult to adequately sample the full feature space of plumes as it is still undetermined which features navigating mice employ during olfactory guided search. Here we released odor from an upwind odor source and simultaneously recorded both odor concentration dynamics and cellular response dynamics in awake, head-fixed mice. We found that longer timescale features of odor concentration dynamics were encoded at both the cellular and population level. At the cellular level, responses were elicited at the beginning of the plume for each trial, signaling plume onset. Plumes with high odor concentration elicited responses at the end of the plume, signaling plume offset. Although cellular level tracking of plume dynamics was observed to be weak, we found that at the population level, OB activity distinguished whiffs and blanks (accurately detected odor presence versus absence) throughout the duration of a plume. Even ~20 OB cells were enough to accurately discern odor presence throughout a plume. Our findings indicate that the full range of odor concentration dynamics and high frequency fluctuations are not encoded by OB spiking activity. Instead, relatively lower-frequency temporal features of plumes, such as plume onset, plume offset, whiffs, and blanks, are represented in the OB.
Collapse
Affiliation(s)
- Suzanne M. Lewis
- Department of Psychology, University of Washington, Seattle, WA, United States
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Lucas M. Suarez
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), Paris, France
| | - Kevin M. Franks
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Nicholas A. Steinmetz
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Szyszka P, Emonet T, Edwards TL. Extracting spatial information from temporal odor patterns: insights from insects. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101082. [PMID: 37419251 PMCID: PMC10878403 DOI: 10.1016/j.cois.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Extracting spatial information from temporal stimulus patterns is essential for sensory perception (e.g. visual motion direction detection or concurrent sound segregation), but this process remains understudied in olfaction. Animals rely on olfaction to locate resources and dangers. In open environments, where odors are dispersed by turbulent wind, detection of wind direction seems crucial for odor source localization. However, recent studies showed that insects can extract spatial information from the odor stimulus itself, independently from sensing wind direction. This remarkable ability is achieved by detecting the fine-scale temporal pattern of odor encounters, which contains information about the location and size of an odor source, and the distance between different odor sources.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | | |
Collapse
|
11
|
Verano KVB, Panizon E, Celani A. Olfactory search with finite-state controllers. Proc Natl Acad Sci U S A 2023; 120:e2304230120. [PMID: 37579168 PMCID: PMC10450675 DOI: 10.1073/pnas.2304230120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 08/16/2023] Open
Abstract
Long-range olfactory search is an extremely difficult task in view of the sparsity of odor signals that are available to the searcher and the complex encoding of the information about the source location. Current algorithmic approaches typically require a continuous memory space, sometimes of large dimensionality, which may hamper their optimization and often obscure their interpretation. Here, we show how finite-state controllers with a small set of discrete memory states are expressive enough to display rich, time-extended behavioral modules that resemble the ones observed in living organisms. Finite-state controllers optimized for olfactory search have an immediate interpretation in terms of approximate clocks and coarse-grained spatial maps, suggesting connections with neural models of search behavior.
Collapse
Affiliation(s)
- Kyrell Vann B. Verano
- Quantitative Life Sciences, The Abdus Salam International Center for Theoretical Physics, 34151Trieste, Italy
- Department of Physics, Università Degli Studi di Trieste, 34127Trieste, Italy
| | - Emanuele Panizon
- Quantitative Life Sciences, The Abdus Salam International Center for Theoretical Physics, 34151Trieste, Italy
| | - Antonio Celani
- Quantitative Life Sciences, The Abdus Salam International Center for Theoretical Physics, 34151Trieste, Italy
| |
Collapse
|
12
|
Abstract
Computational model reveals why pausing to sniff the air helps animals track a scent when they are far away from the source.
Collapse
Affiliation(s)
- Samuel Brudner
- Department of Molecular, Cellular and Developmental Biology, and the Quantitative Biology Institute, Yale University, New Haven, United States
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, the Quantitative Biology Institute, and the Department of Physics, Yale University, New Haven, United States
| |
Collapse
|