1
|
Suresh R, Jayachandiran S, Balu P, Ramasamy D. Comparative genomics reveals genetic diversity and differential metabolic potentials of the species of Arachnia and suggests reclassification of Arachnia propionica E10012 (=NBRC_14587) as novel species. Arch Microbiol 2025; 207:93. [PMID: 40100361 DOI: 10.1007/s00203-025-04302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
The genus Arachnia, including Arachnia propionica and Arachnia rubra, are part of the normal oral and respiratory microbiota but can act as opportunistic pathogens in humans. This study investigates the functional, phylogenomic and taxonomic characteristics of 10 completely sequenced Arachnia strains, to elucidate their evolutionary relationships and divergence patterns, focusing on genomic variability and functional diversity. Phylogenetic analyses revealed distinct patterns, with Arachnia propionica strains showing significant divergence compared to the conserved Arachnia rubra strains. Notably, E10012 (=NBRC 14587) emerged as a distinct lineage with unique adaptations, while NCTC11666 exhibited a unique phylogenetic position, suggesting subspecies-level classification. Functional analyses highlighted variability among Arachnia propionica strains, with E10012 (=NBRC 14587) showing genes linked to choline metabolism and metal resistance, and NCTC11666 enriched in carbohydrate-active enzymes like GH179. In contrast, Arachnia rubra demonstrated genomic conservation, indicative of evolutionary specialization. This study reveals that strains E10012 (=NBRC 14587) and NCTC11666 displayed unique genomic features and distinct phylogenetic positioning, suggesting their reclassification as potential novel species and subspecies respectively. This underscores the balance between genomic conservation and diversification in Arachnia, reflecting their ecological adaptability and functional roles in the oral microbiome.
Collapse
Affiliation(s)
- Roja Suresh
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, 607402, India
| | - Susanthika Jayachandiran
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, 607402, India
| | - Pratebha Balu
- Indira Gandhi Institute of Dental Sciences (IGIDS), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, 607402, India
| | - Dhamodharan Ramasamy
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, 607402, India.
| |
Collapse
|
2
|
Torrance EL, Diop A, Bobay LM. Homologous recombination shapes the architecture and evolution of bacterial genomes. Nucleic Acids Res 2025; 53:gkae1265. [PMID: 39718992 PMCID: PMC11879095 DOI: 10.1093/nar/gkae1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Homologous recombination is a key evolutionary force that varies considerably across bacterial species. However, how the landscape of homologous recombination varies across genes and within individual genomes has only been studied in a few species. Here, we used Approximate Bayesian Computation to estimate the recombination rate along the genomes of 145 bacterial species. Our results show that homologous recombination varies greatly along bacterial genomes and shapes many aspects of genome architecture and evolution. The genomic landscape of recombination presents several key signatures: rates are highest near the origin of replication in most species, patterns of recombination generally appear symmetrical in both replichores (i.e. replicational halves of circular chromosomes) and most species have genomic hotspots of recombination. Furthermore, many closely related species share conserved landscapes of recombination across orthologs indicating that recombination landscapes are conserved over significant evolutionary distances. We show evidence that recombination drives the evolution of GC-content through increasing the effectiveness of selection and not through biased gene conversion, thereby contributing to an ongoing debate. Finally, we demonstrate that the rate of recombination varies across gene function and that many hotspots of recombination are associated with adaptive and mobile regions often encoding genes involved in pathogenicity.
Collapse
Affiliation(s)
- Ellis L Torrance
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA 9455, USA
| | - Awa Diop
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Louis-Marie Bobay
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
González Ojeda I, Palace SG, Martinez PP, Azarian T, Grant LR, Hammitt LL, Hanage WP, Lipsitch M. Linkage-based ortholog refinement in bacterial pangenomes with CLARC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.18.629228. [PMID: 39763808 PMCID: PMC11702680 DOI: 10.1101/2024.12.18.629228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Bacterial genomes exhibit significant variation in gene content and sequence identity. Pangenome analyses explore this diversity by classifying genes into core and accessory clusters of orthologous groups (COGs). However, strict sequence identity cutoffs can misclassify divergent alleles as different genes, inflating accessory gene counts. CLARC (Connected Linkage and Alignment Redefinition of COGs) [https://github.com/IndraGonz/CLARC] improves pangenome analyses by condensing accessory COGs using functional annotation and linkage information. Through this approach, orthologous groups are consolidated into more practical units of selection. Analyzing 8,000+ Streptococcus pneumoniae genomes, CLARC reduced accessory gene estimates by more than 30% and improved evolutionary predictions based on accessory gene frequencies. By refining COG definitions, CLARC offers critical insights into bacterial evolution, aiding genetic studies across diverse populations.
Collapse
Affiliation(s)
- Indra González Ojeda
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Biophysics Graduate Program, Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, USA
| | - Samantha G Palace
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Pamela P Martinez
- Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Lindsay R Grant
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Kim J, Kim E, Yang SM, Park SH, Kim HY. Direct On-Chip Diagnostics of Streptococcus bovis/ Streptococcus equinus Complex in Bovine Mastitis Using Bioinformatics-Driven Portable qPCR. Biomolecules 2024; 14:1624. [PMID: 39766331 PMCID: PMC11726764 DOI: 10.3390/biom14121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
This study introduces an innovative on-site diagnostic method for rapidly detecting the Streptococcus bovis/Streptococcus equinus complex (SBSEC), crucial for livestock health and food safety. Through a comprehensive genomic analysis of 206 genomes, this study identified genetic markers that improved classification and addressed misclassifications, particularly in genomes labeled S. equinus and S. lutetiensis. These markers were integrated into a portable quantitative polymerase chain reaction (qPCR) that can detect SBSEC species with high sensitivity (down to 101 or 100 colony-forming units/mL). The portable system featuring a flat chip and compact equipment allows immediate diagnosis within 30 min. The diagnostic method was validated in field conditions directly from cattle udders, farm environments, and dairy products. Among the 100 samples, 51 tested positive for bacteria associated with mastitis. The performance of this portable qPCR was comparable to laboratory methods, offering a reliable alternative to whole-genome sequencing for early detection in clinical, agricultural, and environmental settings.
Collapse
Affiliation(s)
- Jaewook Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| | - Eiseul Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| | - Seung-Min Yang
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| | - Si Hong Park
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| |
Collapse
|
5
|
Trueba G, Cardenas P, Romo G, Gutierrez B. Reevaluating human-microbiota symbiosis: Strain-level insights and evolutionary perspectives across animal species. Biosystems 2024; 244:105283. [PMID: 39103138 DOI: 10.1016/j.biosystems.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The prevailing consensus in scientific literature underscores the mutualistic bond between the microbiota and the human host, suggesting a finely tuned coevolutionary partnership that enhances the fitness of both parties. This symbiotic relationship has been extensively studied, with certain bacterial attributes being construed as hallmarks of natural selection favoring the benefit of the human host. Some scholars go as far as equating the intricate interplay between humans and their intestinal microbiota to that of endosymbiotic relationships, even conceptualizing microbiota as an integral human organ. However, amidst the prevailing narrative of bacterial species being categorized as beneficial or detrimental to human health, a critical oversight often emerges - the inherent functional diversity within bacterial strains. Such reductionist perspectives risk oversimplifying the complex dynamics at play within the microbiome. Recent genomic analysis at the strain level is highly limited, which is surprising given that strain information provides critical data about selective pressures in the intestine. These pressures appear to focus more on the well-being of bacteria rather than human health. Connected to this is the extent to which animals depend on metabolic activity from intestinal bacteria, which varies widely across species. While omnivores like humans exhibit lower dependency, certain herbivores rely entirely on bacterial activity and have developed specialized compartments to house these bacteria.
Collapse
Affiliation(s)
- Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Paul Cardenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - German Romo
- Escuela de Medicina Veterinaria, Universidad San Francisco de Quito, Quito, Ecuador
| | - Bernardo Gutierrez
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador; Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
6
|
Du Y, Qian C, Li X, Zheng X, Huang S, Yin Z, Chen T, Pan L. Unveiling intraspecific diversity and evolutionary dynamics of the foodborne pathogen Bacillus paranthracis through high-quality pan-genome analysis. Curr Res Food Sci 2024; 9:100867. [PMID: 39376581 PMCID: PMC11456886 DOI: 10.1016/j.crfs.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Understanding the evolutionary dynamics of foodborne pathogens throughout host-associated habitats is of utmost importance. Bacterial pan-genomes, as dynamic entities, are strongly influenced by ecological lifestyles. As a phenotypically diverse species in the Bacillus cereus group, Bacillus paranthracis is recognized as an emerging foodborne pathogen and a probiotic simultaneously. This poorly understood species is a suitable study model for adaptive pan-genome evolution. In this study, we determined the biogeographic distribution, abundance, genetic diversity, and genotypic profiles of key genetic elements of B. paranthracis. Metagenomic read recruitment analyses demonstrated that B. paranthracis members are globally distributed and abundant in host-associated habitats. A high-quality pan-genome of B. paranthracis was subsequently constructed to analyze the evolutionary dynamics involved in ecological adaptation comprehensively. The open pan-genome indicated a flexible gene repertoire with extensive genetic diversity. Significant divergences in the phylogenetic relationships, functional enrichment, and degree of selective pressure between the different components demonstrated different evolutionary dynamics between the core and accessory genomes driven by ecological forces. Purifying selection and gene loss are the main signatures of evolutionary dynamics in B. paranthracis pan-genome. The plasticity of the accessory genome is characterized by horizontal gene transfer (HGT), massive gene losses, and weak purifying or positive selection, which might contribute to niche-specific adaptation. In contrast, although the core genome dominantly undergoes purifying selection, its association with HGT and positively selected mutations indicates its potential role in ecological diversification. Furthermore, host fitness-related dynamics are characterized by the loss of secondary metabolite biosynthesis gene clusters (BGCs) and CAZyme-encoding genes and the acquisition of antimicrobial resistance (AMR) and virulence genes via HGT. This study offers a case study of pan-genome evolution to investigate the ecological adaptations reflected by biogeographical characteristics, thereby advancing the understanding of intraspecific diversity and evolutionary dynamics of foodborne pathogens.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Chengqian Qian
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xianxin Li
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xinqian Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Shoucong Huang
- Foshan Haitian (Gaoming) Flavouring Food Co., Ltd, Foshan, 52a8000, Guangdong, PR China
| | - Zhiqiu Yin
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, Guangdong, PR China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
7
|
Molteni C, Forni D, Cagliani R, Sironi M. Comparative genomics reveal a novel phylotaxonomic order in the genus Fusobacterium. Commun Biol 2024; 7:1102. [PMID: 39244637 PMCID: PMC11380691 DOI: 10.1038/s42003-024-06825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Fusobacteria have been associated to different diseases, including colorectal cancer (CRC), but knowledge of which taxonomic groups contribute to specific conditions is incomplete. We analyzed the genetic diversity and relationships within the Fusobacterium genus. We report recent and ancestral recombination in core genes, indicating that fusobacteria have mosaic genomes and emphasizing that taxonomic demarcation should not rely on single genes/gene regions. Across databases, we found ample evidence of species miss-classification and of undescribed species, which are both expected to complicate disease association. By focusing on a lineage that includes F. periodonticum/pseudoperiodonticum and F. nucleatum, we show that genomes belong to four modern populations, but most known species/subspecies emerged from individual ancestral populations. Of these, the F. periodonticum/pseudoperiodonticum population experienced the lowest drift and displays the highest genetic diversity, in line with the less specialized distribution of these bacteria in oral sites. A highly drifted ancestral population instead contributed genetic ancestry to a new species, which includes genomes classified within the F. nucleatum animalis diversity in a recent CRC study. Thus, evidence herein calls for a re-analysis of F. nucleatum animalis features associated to CRC. More generally, our data inform future molecular profiling approaches to investigate the epidemiology of Fusobacterium-associated diseases.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
8
|
Andrews KR, Besser TE, Stalder T, Top EM, Baker KN, Fagnan MW, New DD, Schneider GM, Gal A, Andrews-Dickert R, Hunter SS, Beckmen KB, Christensen L, Justice-Allen A, Konetchy D, Lehman CP, Manlove K, Miyasaki H, Nordeen T, Roug A, Cassirer EF. Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae. Microb Genom 2024; 10:001279. [PMID: 39213169 PMCID: PMC11364169 DOI: 10.1099/mgen.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Katherine N. Baker
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Matthew W. Fagnan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - G. Maria Schneider
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Alexandra Gal
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Andrews-Dickert
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Samuel S. Hunter
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Lauren Christensen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Todd Nordeen
- Nebraska Game and Parks Commission, Alliance, NE, USA
| | - Annette Roug
- Utah Division of Wildlife Resources, Salt Lake City, UT, USA
| | | |
Collapse
|
9
|
Krisna MA, Jolley KA, Monteith W, Boubour A, Hamers RL, Brueggemann AB, Harrison OB, Maiden MCJ. Development and implementation of a core genome multilocus sequence typing scheme for Haemophilus influenzae. Microb Genom 2024; 10:001281. [PMID: 39120932 PMCID: PMC11315579 DOI: 10.1099/mgen.0.001281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Haemophilus influenzae is part of the human nasopharyngeal microbiota and a pathogen causing invasive disease. The extensive genetic diversity observed in H. influenzae necessitates discriminatory analytical approaches to evaluate its population structure. This study developed a core genome multilocus sequence typing (cgMLST) scheme for H. influenzae using pangenome analysis tools and validated the cgMLST scheme using datasets consisting of complete reference genomes (N = 14) and high-quality draft H. influenzae genomes (N = 2297). The draft genome dataset was divided into a development dataset (N = 921) and a validation dataset (N = 1376). The development dataset was used to identify potential core genes, and the validation dataset was used to refine the final core gene list to ensure the reliability of the proposed cgMLST scheme. Functional classifications were made for all the resulting core genes. Phylogenetic analyses were performed using both allelic profiles and nucleotide sequence alignments of the core genome to test congruence, as assessed by Spearman's correlation and ordinary least square linear regression tests. Preliminary analyses using the development dataset identified 1067 core genes, which were refined to 1037 with the validation dataset. More than 70% of core genes were predicted to encode proteins essential for metabolism or genetic information processing. Phylogenetic and statistical analyses indicated that the core genome allelic profile accurately represented phylogenetic relatedness among the isolates (R 2 = 0.945). We used this cgMLST scheme to define a high-resolution population structure for H. influenzae, which enhances the genomic analysis of this clinically relevant human pathogen.
Collapse
Affiliation(s)
- Made Ananda Krisna
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Biology, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Alexandra Boubour
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Raph L. Hamers
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Odile B. Harrison
- Department of Biology, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
Torrance EL, Diop A, Bobay LM. Homologous Recombination Shapes the Architecture and Evolution of Bacterial Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596828. [PMID: 38895235 PMCID: PMC11185547 DOI: 10.1101/2024.05.31.596828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Homologous recombination is a key evolutionary force that varies considerably across bacterial species. However, how the landscape of homologous recombination varies across genes and within individual genomes has only been studied in a few species. Here, we used Approximate Bayesian Computation to estimate the recombination rate along the genomes of 145 bacterial species. Our results show that homologous recombination varies greatly along bacterial genomes and shapes many aspects of genome architecture and evolution. The genomic landscape of recombination presents several key signatures: rates are highest near the origin of replication in most species, patterns of recombination generally appear symmetrical in both replichores (i.e. replicational halves of circular chromosomes) and most species have genomic hotpots of recombination. Furthermore, many closely related species share conserved landscapes of recombination across orthologs indicating that recombination landscapes are conserved over significant evolutionary distances. We show evidence that recombination drives the evolution of GC-content through increasing the effectiveness of selection and not through biased gene conversion, thereby contributing to an ongoing debate. Finally, we demonstrate that the rate of recombination varies across gene function and that many hotspots of recombination are associated with adaptive and mobile regions often encoding genes involved in pathogenicity.
Collapse
Affiliation(s)
- Ellis L Torrance
- Dept. of Biology, University of North Carolina Greensboro, Greensboro, NC 27412
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA 94551
| | - Awa Diop
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Louis-Marie Bobay
- Dept. of Biology, University of North Carolina Greensboro, Greensboro, NC 27412
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
11
|
van der Gulik PTS, Hoff WD, Speijer D. The contours of evolution: In defence of Darwin's tree of life paradigm. Bioessays 2024; 46:e2400012. [PMID: 38436469 DOI: 10.1002/bies.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Both the concept of a Darwinian tree of life (TOL) and the possibility of its accurate reconstruction have been much criticized. Criticisms mostly revolve around the extensive occurrence of lateral gene transfer (LGT), instances of uptake of complete organisms to become organelles (with the associated subsequent gene transfer to the nucleus), as well as the implications of more subtle aspects of the biological species concept. Here we argue that none of these criticisms are sufficient to abandon the valuable TOL concept and the biological realities it captures. Especially important is the need to conceptually distinguish between organismal trees and gene trees, which necessitates incorporating insights of widely occurring LGT into modern evolutionary theory. We demonstrate that all criticisms, while based on important new findings, do not invalidate the TOL. After considering the implications of these new insights, we find that the contours of evolution are best represented by a TOL.
Collapse
Affiliation(s)
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dave Speijer
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Liu Z, Good BH. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol 2024; 22:e3002472. [PMID: 38329938 PMCID: PMC10852326 DOI: 10.1371/journal.pbio.3002472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Horizontal gene transfer (HGT) is a ubiquitous force in microbial evolution. Previous work has shown that the human gut is a hotspot for gene transfer between species, but the more subtle exchange of variation within species-also known as recombination-remains poorly characterized in this ecosystem. Here, we show that the genetic structure of the human gut microbiome provides an opportunity to measure recent recombination events from sequenced fecal samples, enabling quantitative comparisons across diverse commensal species that inhabit a common environment. By analyzing recent recombination events in the core genomes of 29 human gut bacteria, we observed widespread heterogeneities in the rates and lengths of transferred fragments, which are difficult to explain by existing models of ecological isolation or homology-dependent recombination rates. We also show that natural selection helps facilitate the spread of genetic variants across strain backgrounds, both within individual hosts and across the broader population. These results shed light on the dynamics of in situ recombination, which can strongly constrain the adaptability of gut microbial communities.
Collapse
Affiliation(s)
- Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
13
|
Finks SS, Moudgalya P, Weihe C, Martiny JBH. The contribution of plasmids to trait diversity in a soil bacterium. ISME COMMUNICATIONS 2024; 4:ycae025. [PMID: 38584646 PMCID: PMC10999282 DOI: 10.1093/ismeco/ycae025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024]
Abstract
Plasmids are so closely associated with pathogens and antibiotic resistance that their potential for conferring other traits is often overlooked. Few studies consider how the full suite of traits encoded by plasmids is related to a host's environmental adaptation, particularly for Gram-positive bacteria. To investigate the role that plasmid traits might play in microbial communities from natural ecosystems, we identified plasmids carried by isolates of Curtobacterium (phylum Actinomycetota) from a variety of soil environments. We found that plasmids were common, but not ubiquitous, in the genus and varied greatly in their size and genetic diversity. There was little evidence of phylogenetic conservation among Curtobacterium plasmids even for closely related bacterial strains within the same ecotype, indicating that horizontal transmission of plasmids is common. The plasmids carried a wide diversity of traits that were not a random subset of the host chromosome. Furthermore, the composition of these plasmid traits was associated with the environmental context of the host bacterium. Together, the results indicate that plasmids contribute substantially to the microdiversity of a soil bacterium and that this diversity may play a role in niche differentiation and a bacterium's adaptation to its local environment.
Collapse
Affiliation(s)
- Sarai S Finks
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| | - Pranav Moudgalya
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, United States
| |
Collapse
|
14
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Sánchez-Calderón JD, Arnold J, Joye SB. Species-specific responses of marine bacteria to environmental perturbation. ISME COMMUNICATIONS 2023; 3:99. [PMID: 37736763 PMCID: PMC10516948 DOI: 10.1038/s43705-023-00310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.
Collapse
Affiliation(s)
- Tito D Peña-Montenegro
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, University of Oldenburg, Oldenburg, 26129, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Juan D Sánchez-Calderón
- Grupo de Investigación en Gestión Ecológica y Agroindustrial (GEA), Programa de Microbiología, Facultad de Ciencias Exactas y Naturales, Universidad Libre, Seccional Barranquilla, Barranquilla, Colombia
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Department of Genetics, University of Georgia, 120 Green St., Athens, GA, 30602-7223, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA.
| |
Collapse
|
15
|
Weisberg AJ, Chang JH. Mobile Genetic Element Flexibility as an Underlying Principle to Bacterial Evolution. Annu Rev Microbiol 2023; 77:603-624. [PMID: 37437216 DOI: 10.1146/annurev-micro-032521-022006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
16
|
Abondio P, Cilli E, Luiselli D. Human Pangenomics: Promises and Challenges of a Distributed Genomic Reference. Life (Basel) 2023; 13:1360. [PMID: 37374141 DOI: 10.3390/life13061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A pangenome is a collection of the common and unique genomes that are present in a given species. It combines the genetic information of all the genomes sampled, resulting in a large and diverse range of genetic material. Pangenomic analysis offers several advantages compared to traditional genomic research. For example, a pangenome is not bound by the physical constraints of a single genome, so it can capture more genetic variability. Thanks to the introduction of the concept of pangenome, it is possible to use exceedingly detailed sequence data to study the evolutionary history of two different species, or how populations within a species differ genetically. In the wake of the Human Pangenome Project, this review aims at discussing the advantages of the pangenome around human genetic variation, which are then framed around how pangenomic data can inform population genetics, phylogenetics, and public health policy by providing insights into the genetic basis of diseases or determining personalized treatments, targeting the specific genetic profile of an individual. Moreover, technical limitations, ethical concerns, and legal considerations are discussed.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
17
|
Correlated substitutions reveal SARS-like coronaviruses recombine frequently with a diverse set of structured gene pools. Proc Natl Acad Sci U S A 2023; 120:e2206945119. [PMID: 36693089 PMCID: PMC9945976 DOI: 10.1073/pnas.2206945119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Quantifying SARS-like coronavirus (SL-CoV) evolution is critical to understanding the origins of SARS-CoV-2 and the molecular processes that could underlie future epidemic viruses. While genomic analyses suggest recombination was a factor in the emergence of SARS-CoV-2, few studies have quantified recombination rates among SL-CoVs. Here, we infer recombination rates of SL-CoVs from correlated substitutions in sequencing data using a coalescent model with recombination. Our computationally-efficient, non-phylogenetic method infers recombination parameters of both sampled sequences and the unsampled gene pools with which they recombine. We apply this approach to infer recombination parameters for a range of positive-sense RNA viruses. We then analyze a set of 191 SL-CoV sequences (including SARS-CoV-2) and find that ORF1ab and S genes frequently undergo recombination. We identify which SL-CoV sequence clusters have recombined with shared gene pools, and show that these pools have distinct structures and high recombination rates, with multiple recombination events occurring per synonymous substitution. We find that individual genes have recombined with different viral reservoirs. By decoupling contributions from mutation and recombination, we recover the phylogeny of non-recombined portions for many of these SL-CoVs, including the position of SARS-CoV-2 in this clonal phylogeny. Lastly, by analyzing >400,000 SARS-CoV-2 whole genome sequences, we show current diversity levels are insufficient to infer the within-population recombination rate of the virus since the pandemic began. Our work offers new methods for inferring recombination rates in RNA viruses with implications for understanding recombination in SARS-CoV-2 evolution and the structure of clonal relationships and gene pools shaping its origins.
Collapse
|
18
|
It takes a village to build a virus. Proc Natl Acad Sci U S A 2023; 120:e2219052120. [PMID: 36701364 PMCID: PMC9945952 DOI: 10.1073/pnas.2219052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|