1
|
Adam KCS, Klatt LI, Miller JA, Rösner M, Fukuda K, Kiyonaga A. Beyond Routine Maintenance: Current Trends in Working Memory Research. J Cogn Neurosci 2025; 37:1035-1052. [PMID: 39792640 DOI: 10.1162/jocn_a_02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Working memory (WM) is an evolving concept. Our understanding of the neural functions that support WM develops iteratively alongside the approaches used to study it, and both can be profoundly shaped by available tools and prevailing theoretical paradigms. Here, the organizers of the 2024 Working Memory Symposium-inspired by this year's meeting-highlight current trends and looming questions in WM research. This review is organized into sections describing (1) ongoing efforts to characterize WM function across sensory modalities, (2) the growing appreciation that WM representations are malleable to context and future actions, (3) the enduring problem of how multiple WM items and features are structured and integrated, and (4) new insights about whether WM shares function with other cognitive processes that have conventionally been considered distinct. This review aims to chronicle where the field is headed and calls attention to issues that are paramount for future research.
Collapse
|
2
|
Warrington O, Graedel NN, Callaghan MF, Kok P. Communication of perceptual predictions from the hippocampus to the deep layers of the parahippocampal cortex. SCIENCE ADVANCES 2025; 11:eads4970. [PMID: 40397746 DOI: 10.1126/sciadv.ads4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/17/2025] [Indexed: 05/23/2025]
Abstract
Current evidence suggests that the hippocampus is essential for exploiting predictive relationships during perception. However, it remains unclear whether the hippocampus drives the communication of predictions to sensory cortex or receives prediction signals from elsewhere. We collected 7-tesla fMRI data in the medial temporal lobe (MTL) while auditory cues predicted abstract shapes. Strikingly, neural patterns evoked by predicted shapes in CA2/3, pre/parasubiculum, and the parahippocampal cortex (PHC) were negatively correlated to patterns evoked by the same shapes when actually presented. Using layer-specific analyses, we ask: In which direction are predictions communicated between the hippocampus and neocortex? Superficial layers of the MTL cortex project to the hippocampus, while the deep layers receive feedback projections. Informational connectivity analyses revealed that communication between CA2/3 and PHC was specific to the deep layers of PHC. These findings suggest that the hippocampus generates predictions through pattern completion in CA2/3 and feeds these predictions back to the neocortex.
Collapse
Affiliation(s)
- Oliver Warrington
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Nadine N Graedel
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Martina F Callaghan
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter Kok
- Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
He T, Gong X, Wang Q, Zhu X, Liu Y, Fang F. Non-feature-specific elevated responses and feature-specific backward replay in human brain induced by visual sequence exposure. eLife 2025; 13:RP101511. [PMID: 40338213 PMCID: PMC12061478 DOI: 10.7554/elife.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
The ability of cortical circuits to adapt in response to experience is a fundamental property of the brain. After exposure to a moving dot sequence, flashing a dot as a cue at the starting point of the sequence can elicit successive elevated responses even in the absence of the sequence. These cue-triggered elevated responses have been shown to play a crucial role in predicting future events in dynamic environments. However, temporal sequences we are exposed to typically contain rich feature information. It remains unknown whether the elevated responses are feature-specific and, more crucially, how the brain organizes sequence information after exposure. To address these questions, participants were exposed to a predefined sequence of four motion directions for about 30 min, followed by the presentation of the start or end motion direction of the sequence as a cue. Surprisingly, we found that cue-triggered elevated responses were not specific to any motion direction. Interestingly, motion direction information was spontaneously reactivated, and the motion sequence was backward replayed in a time-compressed manner. These effects were observed even after brief exposure. Notably, no replay events were observed when the second or third motion direction of the sequence served as a cue. Further analyses revealed that activity in the medial temporal lobe (MTL) preceded the ripple power increase in visual cortex at the onset of replay, implying a coordinated relationship between the activities in the MTL and visual cortex. Together, these findings demonstrate that visual sequence exposure induces twofold brain plasticity that may simultaneously serve for different functional purposes. The non-feature-specific elevated responses may facilitate general processing of upcoming stimuli, whereas the feature-specific backward replay may underpin passive learning of visual sequences.
Collapse
Affiliation(s)
- Tao He
- Center for the Cognitive Science of Language, Beijing Language and Culture UniversityBeijingChina
- Key Laboratory of Language Cognitive Science (Ministry of Education), Beijing Language and Culture UniversityBeijingChina
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| | - Xizi Gong
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| | - Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| | - Xinyi Zhu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| | - Yunzhe Liu
- Chinese Institute for Brain ResearchBeijingChina
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
- Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- Key Laboratory of Machine Perception (Ministry of Education), Peking UniversityBeijingChina
| |
Collapse
|
4
|
Margolis AE, Dranovsky A, Pagliaccio D, Azad G, Rauh V, Herbstman J. Annual Research Review: Exposure to environmental chemicals and psychosocial stress and the development of children's learning difficulties. J Child Psychol Psychiatry 2025; 66:547-568. [PMID: 40103271 PMCID: PMC11920607 DOI: 10.1111/jcpp.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 03/20/2025]
Abstract
Although awareness of the role of environmental exposures in children's cognitive development is increasing, learning difficulties have not yet been a major focus of environmental health science. Learning difficulties disproportionately affect children living in economic disadvantage, yielding an 'achievement gap.' Studies examining the neurobiology of reading and math have mostly included economically advantaged youth, leaving a great deal unknown about the neural underpinnings of reading and math difficulties in youth living in disadvantaged contexts. Critically, due to environmental injustice, these youth are disproportionately exposed to environmental neurotoxicants. Herein, we review literature supporting a theoretical framework of environmentally associated phenotypes of learning difficulties. We propose that prenatal exposure to neurotoxicants and early-life exposure to psychosocial stressors increases risk for learning difficulties via effects on neural circuits that support cognitive processes which, in addition to literacy and numeracy, are integral to acquiring and performing academic skills. We describe models in which (1) prenatal exposure to air pollution has a main effect on learning via brain structure and function or associated domain-general cognitive processes and (2) a joint 'two-hit' pathway in which prenatal air pollution exposure followed by early life stress-when combined and sequential-increases risk for learning difficulties also via effects on brain structure, function, and/or associated cognitive processes. We review a select literature documenting effects of exposure to pollutants and early life stress on relevant neural circuits and associated cognitive processes in animal models and parallel findings in human epidemiologic studies. We advocate for team science in which researchers, practitioners, and policymakers collaborate to increase health literacy about environmentally associated phenotypes of learning difficulties and support the development of precision-oriented instructional and environmental intervention methods for youth living in economic disadvantage.
Collapse
Affiliation(s)
- Amy E. Margolis
- Department of Psychiatry and Behavioral Health, Wexner Medical CenterThe Ohio State UniversityColumbusOHUSA
- Child Mind InstituteNew YorkNYUSA
| | - Alex Dranovsky
- Division of Systems Neuroscience, Department of Psychiatry, College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - David Pagliaccio
- Division of Systems Neuroscience, Department of Psychiatry, College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Gazi Azad
- Heilbrunn Department of Population and Family Health, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Julie Herbstman
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| |
Collapse
|
5
|
Moraresku S, Hammer J, Dimakopoulos V, Kajsova M, Janca R, Jezdik P, Kalina A, Marusic P, Vlcek K. Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG. Neurosci Bull 2025:10.1007/s12264-025-01371-x. [PMID: 40095210 DOI: 10.1007/s12264-025-01371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.
Collapse
Affiliation(s)
- Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Vasileios Dimakopoulos
- Klinik für Neurochirurgie, Universitätsspital Zürich, Universität Zürich, Zurich, Switzerland
| | - Michaela Kajsova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Kamil Vlcek
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia.
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia.
| |
Collapse
|
6
|
Li J, Cao D, Li W, Sarnthein J, Jiang T. Re-evaluating human MTL in working memory: insights from intracranial recordings. Trends Cogn Sci 2024; 28:1132-1144. [PMID: 39174398 DOI: 10.1016/j.tics.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The study of human working memory (WM) holds significant importance in neuroscience; yet, exploring the role of the medial temporal lobe (MTL) in WM has been limited by the technological constraints of noninvasive methods. Recent advancements in human intracranial neural recordings have indicated the involvement of the MTL in WM processes. These recordings show that different regions of the MTL are involved in distinct aspects of WM processing and also dynamically interact with each other and the broader brain network. These findings support incorporating the MTL into models of the neural basis of WM. This integration can better reflect the complex neural mechanisms underlying WM and enhance our understanding of WM's flexibility, adaptability, and precision.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- School of Psychology, Capital Normal University, Beijing, 100048, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Zurich Neuroscience Center, ETH Zurich, 8057 Zurich, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
7
|
Manippa V, Nitsche MA, Filardi M, Vilella D, Scianatico G, Logroscino G, Rivolta D. Temporal gamma tACS and auditory stimulation affect verbal memory in healthy adults. Psychophysiology 2024; 61:e14653. [PMID: 39014532 DOI: 10.1111/psyp.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Research suggests a potential of gamma oscillation entrainment for enhancing memory in Alzheimer's disease and healthy subjects. Gamma entrainment can be accomplished with oscillatory electrical, but also sensory stimulation. However, comparative studies between sensory stimulation and transcranial alternating current stimulation (tACS) effects on memory processes are lacking. This study examined the effects of rhythmic gamma auditory stimulation (rAS) and temporal gamma-tACS on verbal long-term memory (LTM) and working memory (WM) in 74 healthy individuals. Participants were assigned to two groups according to the stimulation techniques (rAS or tACS). Memory was assessed in three experimental blocks, in which each participant was administered with control, 40, and 60 Hz stimulation in counterbalanced order. All interventions were well-tolerated, and participants reported mostly comparable side effects between real stimulation (40 and 60 Hz) and the control condition. LTM immediate and delayed recall remained unaffected by stimulations, while immediate recall intrusions decreased during 60 Hz stimulation. Notably, 40 Hz interventions improved WM compared to control stimulations. These results highlight the potential of 60 and 40 Hz temporal cortex stimulation for reducing immediate LTM recall intrusions and improving WM performance, respectively, probably due to the entrainment of specific gamma oscillations in the auditory cortex. The results also shed light on the comparative effects of these neuromodulation tools on memory functions, and their potential applications for cognitive enhancement and in clinical trials.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
| | - Gaetano Scianatico
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Nozari N, Martin RC. Is working memory domain-general or domain-specific? Trends Cogn Sci 2024; 28:1023-1036. [PMID: 39019705 PMCID: PMC11540753 DOI: 10.1016/j.tics.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
Given the fundamental role of working memory (WM) in all domains of cognition, a central question has been whether WM is domain-general. However, the term 'domain-general' has been used in different, and sometimes misleading, ways. By reviewing recent evidence and biologically plausible models of WM, we show that the level of domain-generality varies substantially between three facets of WM: in terms of computations, WM is largely domain-general. In terms of neural correlates, it contains both domain-general and domain-specific elements. Finally, in terms of application, it is mostly domain-specific. This variance encourages a shift of focus towards uncovering domain-general computational principles and away from domain-general approaches to the analysis of individual differences and WM training, favoring newer perspectives, such as training-as-skill-learning.
Collapse
Affiliation(s)
- Nazbanou Nozari
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| |
Collapse
|
9
|
Ashjazadeh N, Namjoo-Moghadam A, Mani A, Doostmohammadi N, Bayat M, Salehi MS, Rafiei E, Rostamihosseinkhani M, Khani-Robati A, Hooshmandi E. Comparison of executive function in idiopathic generalized epilepsy versus temporal lobe epilepsy. Neurocase 2024; 30:167-173. [PMID: 39611753 DOI: 10.1080/13554794.2024.2436160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Executive function (EF) deficits are common in epilepsy and impact quality of life. This study compares EF in idiopathic generalized epilepsy (IGE) and temporal lobe epilepsy (TLE) patients to healthy controls. Fifty-six IGE patients, 56 TLE patients, and 60 controls (matched by age) completed cognitive tests assessing attention, memory, learning, and verbal fluency. Both epilepsy groups performed worse than controls, with TLE patients showing significantly poorer verbal learning and memory compared to IGE patients. These findings suggest that TLE patients have more severe EF impairments, likely due to focal temporal lobe dysfunction and disruptions in EF networks.
Collapse
Affiliation(s)
- Nahid Ashjazadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Namjoo-Moghadam
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Mani
- Research Center for Psychiatry and Behavior Science, Hafez Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Doostmohammadi
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Rafiei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Pahlenkemper M, Bernhard H, Reithler J, Roberts MJ. Behavioural interference at event boundaries reduces long-term memory performance in the virtual water maze task without affecting working memory performance. Cognition 2024; 250:105859. [PMID: 38896998 DOI: 10.1016/j.cognition.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Narrative episodic memory of movie clips can be retroactively impaired by presenting unrelated stimuli coinciding with event boundaries. This effect has been linked with rapid hippocampal processes triggered by the offset of the event, that are alternatively related either to memory consolidation or with working memory processes. Here we tested whether this effect extended to spatial memory, the temporal specificity and extent of the interference, and its effect on working- vs long-term memory. In three computerized adaptations of the Morris Water Maze, participants learned the location of an invisible target over three trials each. A second spatial navigation task was presented either immediately after finding the target, after a 10-s delay, or no second task was presented (control condition). A recall session, in which participants indicated the learned target location with 10 'pin-drop' trials for each condition, was performed after a 1-h or a 24-h break. Spatial memory was measured by the mean distance between pins and the true location. Results indicated that the immediate presentation of the second task led to worse memory performance, for both break durations, compared to the delayed condition. There was no difference in performance between the delayed presentation and the control condition. Despite this long-term memory effect, we found no difference in the rate of performance improvement during the learning session, indicating no effect of the second task on working memory. Our findings are in line with a rapid process, linked to the offset of an event, that is involved in the early stages of memory consolidation.
Collapse
Affiliation(s)
- Marie Pahlenkemper
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Hannah Bernhard
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Centre for Integrative Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Joel Reithler
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Iammarino E, Marcantoni I, Sbrollini A, Mortada MHDJ, Morettini M, Burattini L. Scalp Electroencephalogram-Derived Involvement Indexes during a Working Memory Task Performed by Patients with Epilepsy. SENSORS (BASEL, SWITZERLAND) 2024; 24:4679. [PMID: 39066076 PMCID: PMC11280559 DOI: 10.3390/s24144679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Electroencephalography (EEG) wearable devices are particularly suitable for monitoring a subject's engagement while performing daily cognitive tasks. EEG information provided by wearable devices varies with the location of the electrodes, the suitable location of which can be obtained using standard multi-channel EEG recorders. Cognitive engagement can be assessed during working memory (WM) tasks, testing the mental ability to process information over a short period of time. WM could be impaired in patients with epilepsy. This study aims to evaluate the cognitive engagement of nine patients with epilepsy, coming from a public dataset by Boran et al., during a verbal WM task and to identify the most suitable location of the electrodes for this purpose. Cognitive engagement was evaluated by computing 37 engagement indexes based on the ratio of two or more EEG rhythms assessed by their spectral power. Results show that involvement index trends follow changes in cognitive engagement elicited by the WM task, and, overall, most changes appear most pronounced in the frontal regions, as observed in healthy subjects. Therefore, involvement indexes can reflect cognitive status changes, and frontal regions seem to be the ones to focus on when designing a wearable mental involvement monitoring EEG system, both in physiological and epileptic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura Burattini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.I.); (I.M.); (A.S.); (M.J.M.); (M.M.)
| |
Collapse
|
12
|
Banta Lavenex P, Blandin ML, Gaborieau C, Lavenex P. Well-designed manufacturing work improves some cognitive abilities in individuals with cognitive impairments. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1377133. [PMID: 38813372 PMCID: PMC11135131 DOI: 10.3389/fresc.2024.1377133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Introduction Employment is recognized as a fundamental human right, which correlates with better physical and mental health. Importantly, well-designed work, which considers the physical, social, and psychological impacts of work, can serve to enhance the cognitive abilities of workers. Although often overlooked, work for individuals with disabilities, including cognitive impairments, is equally important for their physical and mental well-being. What has not been established, however, is whether well-designed work can also enhance the cognitive abilities of individuals with cognitive impairments. Methods Using a longitudinal study design, we investigated the impact of well-designed work on the cognitive abilities of 60 participants (operators) at the AMIPI Foundation factories, which employ individuals with cognitive impairments to produce electrical cables and harnesses for the automobile industry. The same operators were assessed at three different time points: upon hiring (n = 60), and after working in the factory for 1 year (n = 41, since 19 left the factory) and 2 years (n = 28, since 13 more left the factory). We used five cognitive tests evaluating: (1) finger and manual dexterity, bimanual dexterity, and procedural memory using the Purdue Pegboard; (2) sustained and selective attention using the Symbol Cancellation Task; (3) short- and long-term declarative verbal memory and long-term verbal recognition memory using Rey's Audio-Verbal Learning Test; (4) short- and long-term visual recognition memory using the Continuous Visual Memory Test; and (5) abstract reasoning using Raven's Standard Progressive Matrices. Results We observed improvements in procedural memory, sustained and selective attention, and short- and long-term visual recognition memory after working in the factory for 1 or 2 years. We did not observe improvements in finger or manual dexterity or bimanual dexterity, nor short- or long-term declarative verbal memory or verbal recognition memory, nor abstract reasoning. Discussion We conclude that, in addition to improving physical and mental well-being, well-designed manufacturing work can serve as a training intervention improving some types of cognitive functioning in individuals with cognitive impairments.
Collapse
Affiliation(s)
| | | | | | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553008. [PMID: 38645006 PMCID: PMC11030252 DOI: 10.1101/2023.08.11.553008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that, for declarative memories, medial temporal lobe structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that, for sensorimotor memories, the cerebellum may play an analogous role. Here we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15-20sec and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 sec or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically increases with memory window duration over shorter memory windows (<12 sec) and near-complete impairment of memory maintenance over longer memory windows (>25 sec). This dissociation uncovers a new role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the medial temporal lobe for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both newly-identified trial-to-trial differences and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability. Significance Statement A key discovery about the neural underpinnings of memory, made more than half a century ago, is that long-term, but not short-term, memory formation depends on neural structures in the brain's medial temporal lobe (MTL). However, this dichotomy holds only for declarative memories - memories for explicit facts such as names and dates - as long-term procedural memories - memories for implicit knowledge such as sensorimotor skills - are largely unaffected even with substantial MTL damage. Here we demonstrate that the formation of long-term, but not short-term, sensorimotor memory depends on a neural structure known as the cerebellum, and we show that this finding explains the variability previously reported in the extent to which cerebellar damage affects sensorimotor learning.
Collapse
|
14
|
Bai W, Liu Y, Liu A, Xu X, Zheng X, Tian X, Liu T. Hippocampal-prefrontal high-gamma flow during performance of a spatial working memory. Brain Res Bull 2024; 207:110887. [PMID: 38280642 DOI: 10.1016/j.brainresbull.2024.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Working memory refers to a system that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. The prefrontal cortex (PFC) and hippocampus (HPC) are major structures contributing to working memory. Accumulating evidence suggests that the HPC-PFC interactions are critical for the successful execution of working memory tasks. Nevertheless, the directional information transmission within the HPC-PFC pathway remains unclear. Using simultaneous multi-electrode recordings, we recorded local field potentials (LFPs) from the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC) while the rats performed a spatial working memory task in a Y-maze. The directionality of functional interactions between mPFC and vHPC was assessed using the phase-slope index (PSI). Our findings revealed a frequency-specific oscillatory synchrony in the two regions during the spatial working memory task. Furthermore, an increased high-gamma flow from vHPC to mPFC manifested exclusively during correctly performed trials, not observed during incorrect ones. This suggests that the enhanced high-gamma flow reflects behavioral performance in working memory. Consequently, our results indicate an major role of directional frequency-specific communication in the hippocampal-frontal circuit during spatial working memory, providing a potential mechanism for working memory.
Collapse
Affiliation(s)
- Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yinglong Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Aili Liu
- School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Xinyu Xu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
15
|
Tzovara A, Fedele T, Sarnthein J, Ledergerber D, Lin JJ, Knight RT. Predictable and unpredictable deviance detection in the human hippocampus and amygdala. Cereb Cortex 2024; 34:bhad532. [PMID: 38216528 PMCID: PMC10839835 DOI: 10.1093/cercor/bhad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
Our brains extract structure from the environment and form predictions given past experience. Predictive circuits have been identified in wide-spread cortical regions. However, the contribution of medial temporal structures in predictions remains under-explored. The hippocampus underlies sequence detection and is sensitive to novel stimuli, sufficient to gain access to memory, while the amygdala to novelty. Yet, their electrophysiological profiles in detecting predictable and unpredictable deviant auditory events remain unknown. Here, we hypothesized that the hippocampus would be sensitive to predictability, while the amygdala to unexpected deviance. We presented epileptic patients undergoing presurgical monitoring with standard and deviant sounds, in predictable or unpredictable contexts. Onsets of auditory responses and unpredictable deviance effects were detected earlier in the temporal cortex compared with the amygdala and hippocampus. Deviance effects in 1-20 Hz local field potentials were detected in the lateral temporal cortex, irrespective of predictability. The amygdala showed stronger deviance in the unpredictable context. Low-frequency deviance responses in the hippocampus (1-8 Hz) were observed in the predictable but not in the unpredictable context. Our results reveal a distributed network underlying the generation of auditory predictions and suggest that the neural basis of sensory predictions and prediction error signals needs to be extended.
Collapse
Affiliation(s)
- Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, 450 Li Ka Shing Biomedical Center, Berkeley, CA 94720-3370, United States
- Institute of Computer Science, University of Bern, Bern, Neubrückstrasse 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Freiburgstrasse 3010, Switzerland
| | - Tommaso Fedele
- Neurosurgery Department, University Hospital Zürich, Zürich, Frauenklinikstrasse 8091, Switzerland
| | - Johannes Sarnthein
- Neurosurgery Department, University Hospital Zürich, Zürich, Frauenklinikstrasse 8091, Switzerland
| | - Debora Ledergerber
- Swiss Epilepsy Center, Klinik Lengg, Zürich, Bleulerstrasse 8008, Switzerland
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Folsom Boulevard, Davis, CA 95816, USA
- The Center of Mind and Brain, University of California, Davis, Cousteau Pl, Davis, CA 95618, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, 450 Li Ka Shing Biomedical Center, Berkeley, CA 94720-3370, United States
- Department of Psychology, University of California, Berkeley, CA 94720-1650, USA
| |
Collapse
|
16
|
Li J, Cao D, Yu S, Wang H, Imbach L, Stieglitz L, Sarnthein J, Jiang T. Theta-Alpha Connectivity in the Hippocampal-Entorhinal Circuit Predicts Working Memory Load. J Neurosci 2024; 44:e0398232023. [PMID: 38050110 PMCID: PMC10860618 DOI: 10.1523/jneurosci.0398-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Working memory (WM) maintenance relies on multiple brain regions and inter-regional communications. The hippocampus and entorhinal cortex (EC) are thought to support this operation. Besides, EC is the main gateway for information between the hippocampus and neocortex. However, the circuit-level mechanism of this interaction during WM maintenance remains unclear in humans. To address these questions, we recorded the intracranial electroencephalography from the hippocampus and EC while patients (N = 13, six females) performed WM tasks. We found that WM maintenance was accompanied by enhanced theta/alpha band (2-12 Hz) phase synchronization between the hippocampus to the EC. The Granger causality and phase slope index analyses consistently showed that WM maintenance was associated with theta/alpha band-coordinated unidirectional influence from the hippocampus to the EC. Besides, this unidirectional inter-regional communication increased with WM load and predicted WM load during memory maintenance. These findings demonstrate that WM maintenance in humans engages the hippocampal-entorhinal circuit, with the hippocampus influencing the EC in a load-dependent manner.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Shan Yu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
- Zurich Neuroscience Center, ETH and University of Zurich, Zurich 8057, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Johannes Sarnthein
- Zurich Neuroscience Center, ETH and University of Zurich, Zurich 8057, Switzerland
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
17
|
Liang S, Huang L, Zhan S, Zeng Y, Zhang Q, Zhang Y, Wang X, Peng L, Lin B, Xu H. Altered morphological characteristics and structural covariance connectivity associated with verbal working memory performance in ADHD children. Br J Radiol 2023; 96:20230409. [PMID: 37750842 PMCID: PMC10607391 DOI: 10.1259/bjr.20230409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES Deficits in verbal working memory (VWM) observed in attention deficit hyperactivity disorder (ADHD) children can persist into adulthood. Although previous studies have identified brain regions that are activated during VWM tasks, the neural mechanisms underlying the relationship between VWM deficits remain unclear. The objective of this study was to investigate the structural covariance network connectivity and brain morphology changes that are associated with VWM performance in ADHD children. METHODS For this study, we selected 26 ADHD children and 26 healthy control (HC) participants. Participants were instructed to perform an n-back VWM task and their accuracy and response times were subsequently recorded. This research utilised voxel-based morphometry to measure the grey matter (GM) volume and conducted structural covariance connectivity network analysis to explore the changes of brain in ADHD. RESULTS Voxel-based morphometry analysis showed that lower GM volume in the right cerebellum lobule VI and the left parahippocampal gryus in ADHD children. Moreover, a positive correlation was found between the GM volume in the right cerebellum lobule VI and the accuracy of 2-back VWM task with verbal, small reward, and delayed feedback (VSD). Structural covariance network analysis found decreased structural connectivity between right cerebellum lobule VI and right precentral gyrus, right postcentral gyrus, left paracentral lobule, right superior parietal gyrus, and left hippocampus in ADHD children. CONCLUSIONS The low GM volume and altered structural covariance connectivity in the right cerebellum lobule VI might potentially affect VWM performance in ADHD children. ADVANCES IN KNOWLEDGE The innovation of this study lies in its more focused discussion on the morphological characteristics and structural covariance connectivity of VWM deficits in ADHD children, and the innovative finding of a positive correlation between grey matter volume in the right cerebellum lobule VI and accuracy in completing the 2-back VWM task with verbal instructions, small reward, and delayed feedback (VSD). This expands upon previous research by elucidating the specific brain structures involved in VWM deficits in ADHD children and highlights the potential importance of the cerebellum in this cognitive process. Overall, these innovative findings advance our understanding of the neural basis of ADHD and may have important implications for the development of targeted interventions for VWM deficits.
Collapse
Affiliation(s)
| | - Li Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shiqi Zhan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiuxiu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bohong Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Rossi C, Vidaurre D, Costers L, Akbarian F, Woolrich M, Nagels G, Van Schependom J. A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes. Commun Biol 2023; 6:1079. [PMID: 37872313 PMCID: PMC10593846 DOI: 10.1038/s42003-023-05448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The brain dynamics underlying working memory (WM) unroll via transient frequency-specific large-scale brain networks. This multidimensionality (time, space, and frequency) challenges traditional analyses. Through an unsupervised technique, the time delay embedded-hidden Markov model (TDE-HMM), we pursue a functional network analysis of magnetoencephalographic data from 38 healthy subjects acquired during an n-back task. Here we show that this model inferred task-specific networks with unique temporal (activation), spectral (phase-coupling connections), and spatial (power spectral density distribution) profiles. A theta frontoparietal network exerts attentional control and encodes the stimulus, an alpha temporo-occipital network rehearses the verbal information, and a broad-band frontoparietal network with a P300-like temporal profile leads the retrieval process and motor response. Therefore, this work provides a unified and integrated description of the multidimensional working memory dynamics that can be interpreted within the neuropsychological multi-component model of WM, improving the overall neurophysiological and neuropsychological comprehension of WM functioning.
Collapse
Affiliation(s)
- Chiara Rossi
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Diego Vidaurre
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus university, Aarhus, Denmark
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lars Costers
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- icometrix, Leuven, Belgium
| | - Fahimeh Akbarian
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark Woolrich
- Department of Psychiatry, Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Guy Nagels
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Jeroen Van Schependom
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
19
|
Pomper U, Curetti LZ, Chait M. Neural dynamics underlying successful auditory short-term memory performance. Eur J Neurosci 2023; 58:3859-3878. [PMID: 37691137 PMCID: PMC10946728 DOI: 10.1111/ejn.16140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023]
Abstract
Listeners often operate in complex acoustic environments, consisting of many concurrent sounds. Accurately encoding and maintaining such auditory objects in short-term memory is crucial for communication and scene analysis. Yet, the neural underpinnings of successful auditory short-term memory (ASTM) performance are currently not well understood. To elucidate this issue, we presented a novel, challenging auditory delayed match-to-sample task while recording MEG. Human participants listened to 'scenes' comprising three concurrent tone pip streams. The task was to indicate, after a delay, whether a probe stream was present in the just-heard scene. We present three key findings: First, behavioural performance revealed faster responses in correct versus incorrect trials as well as in 'probe present' versus 'probe absent' trials, consistent with ASTM search. Second, successful compared with unsuccessful ASTM performance was associated with a significant enhancement of event-related fields and oscillatory activity in the theta, alpha and beta frequency ranges. This extends previous findings of an overall increase of persistent activity during short-term memory performance. Third, using distributed source modelling, we found these effects to be confined mostly to sensory areas during encoding, presumably related to ASTM contents per se. Parietal and frontal sources then became relevant during the maintenance stage, indicating that effective STM operation also relies on ongoing inhibitory processes suppressing task-irrelevant information. In summary, our results deliver a detailed account of the neural patterns that differentiate successful from unsuccessful ASTM performance in the context of a complex, multi-object auditory scene.
Collapse
Affiliation(s)
- Ulrich Pomper
- Ear InstituteUniversity College LondonLondonUK
- Faculty of PsychologyUniversity of ViennaViennaAustria
| | | | - Maria Chait
- Ear InstituteUniversity College LondonLondonUK
| |
Collapse
|
20
|
Akella S, Bastos AM, Miller EK, Principe JC. Measurable fields-to-spike causality and its dependence on cortical layer and area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524451. [PMID: 37577637 PMCID: PMC10418085 DOI: 10.1101/2023.01.17.524451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Distinct dynamics in different cortical layers are apparent in neuronal and local field potential (LFP) patterns, yet their associations in the context of laminar processing have been sparingly analyzed. Here, we study the laminar organization of spike-field causal flow within and across visual (V4) and frontal areas (PFC) of monkeys performing a visual task. Using an event-based quantification of LFPs and a directed information estimator, we found area and frequency specificity in the laminar organization of spike-field causal connectivity. Gamma bursts (40-80 Hz) in the superficial layers of V4 largely drove intralaminar spiking. These gamma influences also fed forward up the cortical hierarchy to modulate laminar spiking in PFC. In PFC, the direction of intralaminar information flow was from spikes → fields where these influences dually controlled top-down and bottom-up processing. Our results, enabled by innovative methodologies, emphasize the complexities of spike-field causal interactions amongst multiple brain areas and behavior.
Collapse
Affiliation(s)
- Shailaja Akella
- Allen Institute, Seattle, WA, United States
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, United States
| | - André M. Bastos
- Department of Psychology and Vanderbilt Brain Institute,Vanderbilt University, Nashville, TN, United States
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Jose C. Principe
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, United States
| |
Collapse
|
21
|
Li J, Cao D, Yu S, Xiao X, Imbach L, Stieglitz L, Sarnthein J, Jiang T. Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing. Nat Commun 2023; 14:2921. [PMID: 37217494 PMCID: PMC10203226 DOI: 10.1038/s41467-023-38571-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Both the hippocampus and amygdala are involved in working memory (WM) processing. However, their specific role in WM is still an open question. Here, we simultaneously recorded intracranial EEG from the amygdala and hippocampus of epilepsy patients while performing a WM task, and compared their representation patterns during the encoding and maintenance periods. By combining multivariate representational analysis and connectivity analyses with machine learning methods, our results revealed a functional specialization of the amygdala-hippocampal circuit: The mnemonic representations in the amygdala were highly distinct and decreased from encoding to maintenance. The hippocampal representations, however, were more similar across different items but remained stable in the absence of the stimulus. WM encoding and maintenance were associated with bidirectional information flow between the amygdala and the hippocampus in low-frequency bands (1-40 Hz). Furthermore, the decoding accuracy on WM load was higher by using representational features in the amygdala during encoding and in the hippocampus during maintenance, and by using information flow from the amygdala during encoding and that from the hippocampus during maintenance, respectively. Taken together, our study reveals that WM processing is associated with functional specialization and interaction within the amygdala-hippocampus circuit.
Collapse
Affiliation(s)
- Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shan Yu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinyu Xiao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
- Zurich Neuroscience Center, ETH and University of Zurich, 8057, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland.
- Zurich Neuroscience Center, ETH Zurich, 8057, Zurich, Switzerland.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Research Center for Augmented Intelligence, Zhejiang Lab, 311100, Hangzhou, China.
| |
Collapse
|
22
|
Cheng J, Li J, Wang A, Zhang M. Semantic Bimodal Presentation Differentially Slows Working Memory Retrieval. Brain Sci 2023; 13:brainsci13050811. [PMID: 37239283 DOI: 10.3390/brainsci13050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Although evidence has shown that working memory (WM) can be differentially affected by the multisensory congruency of different visual and auditory stimuli, it remains unclear whether different multisensory congruency about concrete and abstract words could impact further WM retrieval. By manipulating the attention focus toward different matching conditions of visual and auditory word characteristics in a 2-back paradigm, the present study revealed that for the characteristically incongruent condition under the auditory retrieval condition, the response to abstract words was faster than that to concrete words, indicating that auditory abstract words are not affected by visual representation, while auditory concrete words are. Alternatively, for concrete words under the visual retrieval condition, WM retrieval was faster in the characteristically incongruent condition than in the characteristically congruent condition, indicating that visual representation formed by auditory concrete words may interfere with WM retrieval of visual concrete words. The present findings demonstrated that concrete words in multisensory conditions may be too aggressively encoded with other visual representations, which would inadvertently slow WM retrieval. However, abstract words seem to suppress interference better, showing better WM performance than concrete words in the multisensory condition.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
| | - Jingjing Li
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
| | - Ming Zhang
- Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-0082, Japan
| |
Collapse
|
23
|
Xie W, Chapeton JI, Bhasin S, Zawora C, Wittig JH, Inati SK, Zhang W, Zaghloul KA. The medial temporal lobe supports the quality of visual short-term memory representation. Nat Hum Behav 2023; 7:627-641. [PMID: 36864132 PMCID: PMC11393809 DOI: 10.1038/s41562-023-01529-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 03/04/2023]
Abstract
The quality of short-term memory (STM) underlies our ability to recall the exact details of a recent event, yet how the human brain enables this core cognitive function remains poorly understood. Here we use multiple experimental approaches to test the hypothesis that the quality of STM, such as its precision or fidelity, relies on the medial temporal lobe (MTL), a region commonly associated with the ability to distinguish similar information remembered in long-term memory. First, with intracranial recordings, we find that delay-period MTL activity retains item-specific STM content that is predictive of subsequent recall precision. Second, STM recall precision is associated with an increase in the strength of intrinsic MTL-to-neocortical functional connections during a brief retention interval. Finally, perturbing the MTL through electrical stimulation or surgical removal can selectively reduce STM precision. Collectively, these findings provide converging evidence that the MTL is critically involved in the quality of STM representation.
Collapse
Affiliation(s)
- Weizhen Xie
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Julio I Chapeton
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Srijan Bhasin
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Zawora
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John H Wittig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Weiwei Zhang
- Department of Psychology, University of California, Riverside, CA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|