1
|
Elliot SJ, Anderson-Terhune D, Roos B, Rubio GA, Xia X, Pereira-Simon S, Catanuto P, Civettini G, Hagen ES, Arvanitis C, Shahzeidi S, Glassberg MK. Ratio of miRNA-29 to miRNA-199 expression coordinates mesenchymal stem cell repair of bleomycin-induced pulmonary injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102461. [PMID: 40124162 PMCID: PMC11930095 DOI: 10.1016/j.omtn.2025.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/17/2025] [Indexed: 03/25/2025]
Abstract
Our previous work demonstrated the anti-fibrotic effects of infusion of adipose-derived mesenchymal stem cells (ASCs) to prevent or repair bleomycin (BLM)-induced lung injury. The present study investigates mechanisms driving these anti-fibrotic effects. Pulmonary fibrosis developed at day 12 in 22-month-old C57BL/6 male mice after intratracheal BLM instillation. There was a decrease in indices of pulmonary fibrosis, including collagen content, AKT activation, collagen types I and III, αV-integrin, tumor necrosis factor alpha, and transforming growth factor β mRNA after infusion of ASCs 12 days post-BLM treatment compared to BLM alone. Infusion of ASCs increased the population of alveolar types I and II epithelial cells that had been reduced after BLM treatment. miRNAscope technology and reverse-transcription polymerase chain reaction revealed that ASC-treated mice demonstrated increased miR-29a, decreased miR-199, and increased telomere length, telomerase RNA component, and telomerase reverse transcriptase compared to BLM alone. In vitro and ex vivo experiments using double-transfected mouse or human myofibroblasts (miR-29 mimic, and miR-199 inhibitor) confirmed that alterations of these miRNAs regulate downstream effectors of fibrosis. These data suggest that alteration of the ratio of anti-fibrotic to fibrotic miRNAs and increase in telomere length are critical mechanisms of ASC-mediated repair of BLM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Sharon J. Elliot
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Dustin Anderson-Terhune
- Department of Pulmonary and Critical Care, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Roos
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gustavo A. Rubio
- Associate Medical Director, Jackson Health System, 1611 NW 12 Avenue, Miami, FL 33136, USA
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Arizona College of Medicine-Phoenix University Medical Center-Phoenix, Phoenix, AZ 85004, USA
| | - Simone Pereira-Simon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Paola Catanuto
- Department of Ophthalmology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Gina Civettini
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Emily S. Hagen
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Constadina Arvanitis
- Director of Center for Advanced Microscopy & Nikon Imaging Center, Northwestern University, Chicago, IL 60611, USA
| | - Shahriar Shahzeidi
- Grand Health Institute, 1717 N. Bayshore Drive, Suite R244, Miami, FL 33132, USA
| | - Marilyn K. Glassberg
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
2
|
Torres-Machorro AL, García-Vicente Á, Espina-Ordoñez M, Luis-García E, Negreros M, Herrera I, Becerril C, Toscano F, Cisneros J, Maldonado M. Update of Aging Hallmarks in Idiopathic Pulmonary Fibrosis. Cells 2025; 14:222. [PMID: 39937013 PMCID: PMC11817138 DOI: 10.3390/cells14030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is an epithelial-driven interstitial lung disease of unknown etiology characterized by the excessive proliferation of fibroblast populations that synthesize large amounts of extracellular matrix. In this devastating disorder, all aging hallmarks appear prematurely or are altered. This review highlights key findings about IPF characteristics recently recognized as hallmarks of aging, including mechanical alterations, inflammaging, dysbiosis, alternative splicing, and disabled macroautophagy. It also revisits the classic hallmarks of aging, which encompass stem cell exhaustion, cellular senescence, and altered intercellular communication. Enhancing our understanding of the fundamental processes that underlie the altered hallmarks of aging in IPF may facilitate the development of innovative experimental strategies to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ana Lilia Torres-Machorro
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (A.L.T.-M.)
| | - Ángeles García-Vicente
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Posgrado en Ciencias Biomédicas, Unidad de Posgrado, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Marco Espina-Ordoñez
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (M.E.-O.); (J.C.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Erika Luis-García
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (A.L.T.-M.)
| | - Miguel Negreros
- Clínica de Vasculitis Sistémicas Primarias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico;
| | - Iliana Herrera
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - Carina Becerril
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (A.L.T.-M.)
| | - Fernanda Toscano
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| | - Jose Cisneros
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico; (M.E.-O.); (J.C.)
| | - Mariel Maldonado
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México 14080, Mexico
| |
Collapse
|
3
|
Martelo-Vidal L, Vázquez-Mera S, Miguéns-Suárez P, Bravo-López SB, Makrinioti H, Domínguez-Arca V, de-Miguel-Díez J, Gómez-Carballa A, Salas A, González-Barcala FJ, Salgado FJ, Nieto-Fontarigo JJ. Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers. Biomolecules 2025; 15:60. [PMID: 39858454 PMCID: PMC11762655 DOI: 10.3390/biom15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs). To achieve this, urine was DTT treated to decrease uromodulin, then concentrated and ultracentrifuged. Proteomic analyses of exosome-free urine were performed using LC-MS/MS. Simultaneously, miRNA expression from urine exosomes was measured using either RTqPCR (pre-amplification) or nCounter Nanostring (non-amplication) analyses. We detected 548 different proteins in exosome-free urine samples (N = 5) with high confidence (FDR < 1%), many of them being expressed in different non-renal tissues. Specifically, lung-related proteins were overrepresented (Fold enrichment = 1.31; FDR = 0.0335) compared to whole human proteome, and 10-15% were already described as protein biomarkers for several pulmonary diseases. Urine proteins identified belong to several functional categories important in respiratory pathology. We could confirm the expression of miRNAs previously connected to respiratory diseases (i.e., miR-16-5p, miR-21-5p, miR-146a-5p, and miR-215-5p) in urine exosomes by RTqPCR. Finally, we detected 333 miRNAs using Nanostring, 15 of them up-regulated in T2high asthma (N = 4) compared to T2low asthma (N = 4) and healthy subjects (N = 4). Therefore, this protocol combining the urinary proteome (exosome free) with the study of urinary exosome components (i.e., miRNAs) holds great potential for molecular biomarker discovery of non-renal and particularly respiratory pathologies.
Collapse
Affiliation(s)
- Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo-López
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Vicente Domínguez-Arca
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Bioprocess Engineering Group, Instituto de Investigacións Mariñas (IIM-CSIC), 36208 Vigo, Spain
| | - Javier de-Miguel-Díez
- Respiratory Department, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
- Health Research Institute Gregorio Marañón (IISGM), 28009 Madrid, Spain
- Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Francisco Javier González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Colin Waldo MD, Quintero-Millán X, Negrete-García MC, Ruiz V, Sommer B, Romero-Rodríguez DP, Montes-Martínez E. Circulating MicroRNAs in Idiopathic Pulmonary Fibrosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:13746-13766. [PMID: 39727949 DOI: 10.3390/cimb46120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, deathly disease with no recognized effective cure as yet. Furthermore, its diagnosis and differentiation from other diffuse interstitial diseases remain a challenge. Circulating miRNAs have been measured in IPF and have proven to be an adequate option as biomarkers for this disease. These miRNAs, released into the circulation outside the cell through exosomes and proteins, play a crucial role in the pathogenic pathways and mechanisms involved in IPF development. This review focuses on the serum/plasma miRNAs reported in IPF that have been validated by real-time PCR and the published evidence regarding the fibrotic process. First, we describe the mechanisms by which miRNAs travel through the circulation (contained in exosomes and bound to proteins), as well as the mechanism by which miRNAs perform their function within the cell. Subsequently, we summarize the evidence concerning miRNAs reported in serum/plasma, where we find contradictory functions in some miRNAs (dual functions in IPF) when comparing the findings in vitro vs. in vivo. The most relevant finding, for instance, the levels of miRNAs let-7d and miR-21 reported in the serum/plasma in IPF, correspond to those found in studies in lung fibroblasts and the murine bleomycin model, reinforcing the usefulness of these miRNAs as future biomarkers in IPF.
Collapse
Affiliation(s)
- Marisa Denisse Colin Waldo
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Xochipilzihuitl Quintero-Millán
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Maria Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Dámaris P Romero-Rodríguez
- Conahcyt National Laboratory for Research and Diagnosis by Immunocytofluorometry (LANCIDI), National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
5
|
Yang Y, Lv M, Xu Q, Wang X, Fang Z. Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Pathogenesis, Biomarkers and Innovative Therapeutic Strategies. Int J Nanomedicine 2024; 19:12593-12614. [PMID: 39619058 PMCID: PMC11606342 DOI: 10.2147/ijn.s491335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease caused by aberrant deposition of extracellular matrix in the lungs with significant morbidity and mortality. The therapeutic choices for IPF remain limited. Extracellular vesicles (EVs), as messengers for intercellular communication, are cell-secreted lipid bilayer nanoscale particles found in body fluids, and regulate the epithelial phenotype and profibrotic signaling pathways by transporting bioactive cargo to recipients in the pathogenesis of IPF. Furthermore, an increasing number of studies suggests that EVs derived from stem cells can be employed as a cell-free therapeutic approach for IPF, given their intrinsic tissue-homing capabilities and regeneration characteristics. This review highlights new sights of EVs in the pathogenesis of IPF, their potential as diagnostic and prognostic biomarkers, and prospects as novel drug delivery systems and next-generation therapeutics against IPF. Notably, bringing engineering strategies to EVs holds great promise for enhancing the therapeutic effect of anti-pulmonary fibrosis and promoting clinical transformation.
Collapse
Affiliation(s)
- Yibao Yang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Mengen Lv
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Qing Xu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
6
|
Li FXZ, Liu JJ, Lei LM, Li YH, Xu F, Lin X, Cui RR, Zheng MH, Guo B, Shan SK, Tang KX, Li CC, Wu YY, Duan JY, Cao YC, Wu YL, He SY, Chen X, Wu F, Yuan LQ. Mechanism of cold exposure delaying wound healing in mice. J Nanobiotechnology 2024; 22:723. [PMID: 39568002 PMCID: PMC11577949 DOI: 10.1186/s12951-024-03009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Cold temperatures have been shown to slow skin wound healing. However, the specific mechanisms underlying cold-induced impairment of wound healing remain unclear. Here, we demonstrate that small extracellular vesicles derived from cold-exposed mouse plasma (CT-sEVs) decelerate re-epithelialization, increase scar width, and weaken angiogenesis. CT-sEVs are enriched with miRNAs involved in the regulation of wound healing-related biological processes. Functional assays revealed that miR-423-3p, enriched in CT-sEVs, acts as a critical mediator in cold-induced impairment of angiogenic responses and poor wound healing by inhibiting phosphatase and poly(A) binding protein cytoplasmic 1 (PABPC1). These findings indicate that cold delays wound healing via miR-423-3p in plasma-derived sEVs through the inhibition of the ERK or AKT phosphorylation pathways. Our results enhance understanding of the molecular mechanisms by which cold exposure delays soft tissue wound healing.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Jie Liu
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, Hunan, 410008, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Hui Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rong-Rong Cui
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan-Lin Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Si-Yang He
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xi Chen
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
7
|
Burgy O, Mayr CH, Schenesse D, Fousekis Papakonstantinou E, Ballester B, Sengupta A, She Y, Hu Q, Melo-Narvaéz MC, Jain E, Pestoni JC, Mozurak M, Estrada-Bernal A, Onwuka U, Coughlan C, Parimon T, Chen P, Heimerl T, Bange G, Schmeck BT, Lindner M, Hilgendorff A, Ruppert C, Güenther A, Mann M, Yildirim AÖ, Eickelberg O, Jung AL, Schiller HB, Lehmann M, Burgstaller G, Königshoff M. Fibroblast-derived extracellular vesicles contain SFRP1 and mediate pulmonary fibrosis. JCI Insight 2024; 9:e168889. [PMID: 39315549 PMCID: PMC11457858 DOI: 10.1172/jci.insight.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis. EVs accumulated 14 days after bleomycin challenge, correlating with decreased lung function and initiated fibrogenesis in healthy precision-cut lung slices. Label-free proteomics of bronchoalveolar lavage fluid EVs (BALF-EVs) collected from mice challenged with bleomycin or control identified 107 proteins enriched in fibrotic vesicles. Multiomic analysis revealed fibroblasts as a major cellular source of BALF-EV cargo, which was enriched in secreted frizzled related protein 1 (SFRP1). Sfrp1 deficiency inhibited the activity of fibroblast-derived EVs to potentiate lung fibrosis in vivo. SFRP1 led to increased transitional cell markers, such as keratin 8, and WNT/β-catenin signaling in primary alveolar type 2 cells. SFRP1 was expressed within the IPF lung and localized at the surface of EVs from patient-derived fibroblasts and BALF. Our work reveals altered EV protein cargo in fibrotic EVs promoting fibrogenesis and identifies fibroblast-derived vesicular SFRP1 as a fibrotic mediator and potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivier Burgy
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
| | - Christoph H. Mayr
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Déborah Schenesse
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
| | | | - Beatriz Ballester
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Arunima Sengupta
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Yixin She
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria Camila Melo-Narvaéz
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Eshita Jain
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Jeanine C. Pestoni
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Molly Mozurak
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Estrada-Bernal
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ugochi Onwuka
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Coughlan
- Division of Neurology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and
| | - Bernd T. Schmeck
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
- Center for Synthetic Microbiology (SYNMIKRO) and
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Michael Lindner
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Paracelsus Medical Private University, Salzburg, Austria
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Andreas Güenther
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
- European IPF Registry (eurIPFreg), Center for Interstitial and Rare Lung Diseases, UGMLC, Justus-Liebig University Giessen, DZL, Giessen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Oliver Eickelberg
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Lena Jung
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Herbert B. Schiller
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
- Research Unit for Precision Regenerative Medicine, Helmholtz Munich, Munich, Germany
| | - Mareike Lehmann
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Yang M, Guo J, Fang L, Chen Z, Liu Y, Sun Z, Pang X, Peng Y. Quality and efficiency assessment of five extracellular vesicle isolation methods using the resistive pulse sensing strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5536-5544. [PMID: 39046449 DOI: 10.1039/d4ay01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EVs) have attracted great interest due to their great potential in disease diagnosis and therapy. The separation of EVs from complex biofluids with high purity is essential for the accurate analysis of EVs. Despite various methods, there is still no consensus on the best method for high-quality EV isolation and reliable mass production. Therefore, it is important to offer a standardized method for characterizing the properties (size distribution, particle concentration and purity) of EV preparations from different isolation methods. Herein, we employed a NanoCoulter Counter based on the resistive pulse sensing (RPS) strategy that enabled multi-parameter analysis of single EVs to compare the quality and efficiency of different EV isolation techniques including traditional differential ultracentrifugation, ultrafiltration, size exclusion chromatography, membrane affinity binding and polymer precipitation. The data revealed that the NanoCoulter Counter based on the RPS strategy was reliable and effective for the characterization of EVs. The results suggested that although higher particle concentrations were observed in three commercial isolation kits and ultrafiltration, traditional differential ultracentrifugation showed the highest purity. In conclusion, our results from the NanoCoulter Counter provided reliable evidence for the assessment of different EV isolation methods, which contributed to the development of EV-based disease biomarkers and treatments.
Collapse
Affiliation(s)
- Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Le Fang
- Department of Neurolog, China Japan Union Hospital, Jilin University, Changchun, 130022, China
| | - Ze Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Ying Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Xin Pang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
9
|
Dinić M, Burgess JL, Lukić J, Catanuto P, Radojević D, Marjanović J, Verpile R, Thaller SR, Gonzalez T, Golić N, Strahinić I, Tomic-Canic M, Pastar I. Postbiotic lactobacilli induce cutaneous antimicrobial response and restore the barrier to inhibit the intracellular invasion of Staphylococcus aureus in vitro and ex vivo. FASEB J 2024; 38:e23801. [PMID: 39018106 PMCID: PMC11258854 DOI: 10.1096/fj.202400054rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Intracellular pathogens including Staphylococcus aureus contribute to the non-healing phenotype of chronic wounds. Lactobacilli, well known as beneficial bacteria, are also reported to modulate the immune system, yet their role in cutaneous immunity remains largely unknown. We explored the therapeutic potential of bacteria-free postbiotics, bioactive lysates of lactobacilli, to reduce intracellular S. aureus colonization and promote healing. Fourteen postbiotics derived from various lactobacilli species were screened, and Latilactobacillus curvatus BGMK2-41 was selected for further analysis based on the most efficient ability to reduce intracellular infection by S. aureus diabetic foot ulcer clinical isolate and S. aureus USA300. Treatment of both infected keratinocytes in vitro and infected human skin ex vivo with BGMK2-41 postbiotic cleared S. aureus. Keratinocytes treated in vitro with BGMK2-41 upregulated expression of antimicrobial response genes, of which DEFB4, ANG, and RNASE7 were also found upregulated in treated ex vivo human skin together with CAMP exclusively upregulated ex vivo. Furthermore, BGMK2-41 postbiotic treatment has a multifaceted impact on the wound healing process. Treatment of keratinocytes stimulated cell migration and the expression of tight junction proteins, while in ex vivo human skin BGMK2-41 increased expression of anti-inflammatory cytokine IL-10, promoted re-epithelialization, and restored the epidermal barrier via upregulation of tight junction proteins. Together, this provides a potential therapeutic approach for persistent intracellular S. aureus infections.
Collapse
Affiliation(s)
- Miroslav Dinić
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Jovanka Lukić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paola Catanuto
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dušan Radojević
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Marjanović
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Verpile
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seth R. Thaller
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tammy Gonzalez
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Strahinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Escarrer-Garau G, Martín-Medina A, Truyols-Vives J, Gómez-Bellvert C, Elowsson L, Westergren-Thorsson G, Molina-Molina M, Mercader-Barceló J, Sala-Llinàs E. In Vivo and In Vitro Pro-Fibrotic Response of Lung-Resident Mesenchymal Stem Cells from Patients with Idiopathic Pulmonary Fibrosis. Cells 2024; 13:160. [PMID: 38247851 PMCID: PMC10814068 DOI: 10.3390/cells13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Lung-resident mesenchymal stem cells (LR-MSC) are thought to participate in idiopathic pulmonary fibrosis (IPF) by differentiating into myofibroblasts. On the other hand, LR-MSC in IPF patients present senescence-related features. It is unclear how they respond to a profibrotic environment. Here, we investigated the profibrotic response of LR-MSC isolated from IPF and control (CON) patients. LR-MSC were inoculated in mice 48 h after bleomycin (BLM) instillation to analyze their contribution to lung damage. In vitro, LR-MSC were exposed to TGFβ. Mice inoculated with IPF LR-MSC exhibited worse maintenance of their body weight. The instillation of either IPF or CON LR-MSC sustained BLM-induced histological lung damage, bronchoalveolar lavage fluid cell count, and the expression of the myofibroblast marker, extracellular matrix (ECM) proteins, and proinflammatory cytokines in the lungs. In vitro, IPF LR-MSC displayed higher basal protein levels of aSMA and fibronectin than CON LR-MSC. However, the TGFβ response in the expression of TGFβ, aSMA, and ECM genes was attenuated in IPF LR-MSC. In conclusion, IPF LR-MSC have acquired myofibroblastic features, but their capacity to further respond to profibrotic stimuli seems to be attenuated. In an advanced stage of the disease, LR-MSC may participate in disease progression owing to their limited ability to repair epithelial damage.
Collapse
Affiliation(s)
| | - Aina Martín-Medina
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joan Truyols-Vives
- MolONE Research Group, University of the Balearic Islands (UIB), 07122 Palma, Spain
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | | | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Josep Mercader-Barceló
- MolONE Research Group, University of the Balearic Islands (UIB), 07122 Palma, Spain
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Ernest Sala-Llinàs
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
11
|
Zhu J, Wang S, Yang D, Xu W, Qian H. Extracellular vesicles: emerging roles, biomarkers and therapeutic strategies in fibrotic diseases. J Nanobiotechnology 2023; 21:164. [PMID: 37221595 DOI: 10.1186/s12951-023-01921-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Extracellular vesicles (EVs), a cluster of cell-secreted lipid bilayer nanoscale particles, universally exist in body fluids, as well as cell and tissue culture supernatants. Over the past years, increasing attention have been paid to the important role of EVs as effective intercellular communicators in fibrotic diseases. Notably, EV cargos, including proteins, lipids, nucleic acids, and metabolites, are reported to be disease-specific and can even contribute to fibrosis pathology. Thus, EVs are considered as effective biomarkers for disease diagnosis and prognosis. Emerging evidence shows that EVs derived from stem/progenitor cells have great prospects for cell-free therapy in various preclinical models of fibrotic diseases and engineered EVs can improve the targeting and effectiveness of their treatment. In this review, we will focus on the biological functions and mechanisms of EVs in the fibrotic diseases, as well as their potential as novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Junyan Zhu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Sicong Wang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dakai Yang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Qian
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|