1
|
Alhnaity HM, Shraim AS, Abumsimir B, Hattab D, Ghazzy AM, Abdelhalim M, Abdel Majeed BA, Daoud E, Jarrar Y. Genetic variants in QRICH2 gene among Jordanians with sperm motility disorders. Libyan J Med 2025; 20:2481741. [PMID: 40107860 PMCID: PMC11924270 DOI: 10.1080/19932820.2025.2481741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/15/2025] [Indexed: 03/22/2025] Open
Abstract
Sperm motility, a key determinant of male fertility, is often impaired by genetic variations affecting flagellar formation. The glutamine-rich protein 2 (QRICH2) gene encodes a protein essential for sperm flagella biogenesis and structural integrity. This study investigates genetic variations within exon 3 of the QRICH2 gene, identifying novel heterozygous variants associated with sperm tail-specific abnormalities and motility impairments. Among 34 individuals diagnosed with asthenozoospermia (ASZ) and 26 individuals with normal sperm parameters (NZ) from Jordan, eight unique heterozygous variants (c.123 G>T, c.133 G>C, c.138A>G, c.170A>C, c.189C>G, c.190T>C, c.195A>T, and c.204A>T) were exclusive to the ASZ group, while four variants (c.136 G>A, c.145A>C, c.179T>G, and c.180T>G) were found only in NZ. These variants were absent from major genetic databases, suggesting their potential novelty, while two variants (c.206C>T and c.189C>T) were linked to known SNP cluster IDs rs73996306 and rs1567790525, respectively. Four non-synonymous SNPs (c.136 G>A, c.145A>C, c.170A>C, and c.204A>T) were predicted to be functionally and structurally damaging, underscoring their significance. Additionally, five variants overlapped with previously reported mutation sites, indicating potential mutation hotspots. Statistical analysis revealed a significant association between QRICH2 mutations and tail defects (p < 0.021). These findings highlight the critical role of heterozygous QRICH2 mutations in mild-to-moderate ASZ, even in NZ individuals. Despite some carriers meeting WHO criteria for NZ, notable morphological abnormalities suggest the need for refined diagnostic benchmarks. Screening for QRICH2 mutations is essential for accurate molecular diagnosis and should be integrated into genetic counseling, particularly in regions like Jordan. Further research into the cumulative effects of heterozygous mutations and their environmental interactions is needed to expand our understanding of idiopathic male infertility and to enhance diagnostic and therapeutic strategies for male infertility.
Collapse
Affiliation(s)
- Haneen M. Alhnaity
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ala’a S. Shraim
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Berjas Abumsimir
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Dima Hattab
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Asma M. Ghazzy
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - May Abdelhalim
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Bayan A. Abdel Majeed
- Medical Laboratory Sciences Department, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Enas Daoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
2
|
Gao T, Liu Y, Li J, Zhang Y, Wu B. Function of manchette and intra-manchette transport in spermatogenesis and male fertility. Cell Commun Signal 2025; 23:250. [PMID: 40442757 PMCID: PMC12123824 DOI: 10.1186/s12964-025-02213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
The manchette is a transient skirt-like structure consisting of microtubules (MTs) and filamentous actin (F-actin) surrounding the elongating sperm head during spermiogenesis. It is pivotal in sperm head shaping controlled by the acrosome-acroplaxome-manchette complex, acrosome formation, and flagellar assembly by microtubular-based protein delivery. Defects in the manchette frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying manchette function and its role in male infertility remain poorly understood. In this review, we systematically described the assembly and disassembly of the manchette, intra-manchette transport (IMT) and its regulatory model, the function and mechanism of manchette and IMT in regulating sperm head shaping and flagellar assembly during spermatogenesis; summarized the research progress of manchette-related genes related to male infertility; and listed the manchette-related proteins in knockout mouse models and clinical cases, which provide the theoretical basis for an in-depth understanding of the molecular mechanism of manchette involved in spermatogenesis and male fertility for understanding the potentially developing treatments for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Li
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yvxia Zhang
- The First People's Hospital of Kunshan, Suzhou, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Liu H, Zhang H, Qin G, Song T, Liu X, Wen Z, Liu M, Wang X, Fu X, Gao J. Loss of Cep135 causes oligoasthenoteratozoospermia and male infertility in mice. Cell Mol Life Sci 2025; 82:117. [PMID: 40095067 PMCID: PMC11914644 DOI: 10.1007/s00018-025-05616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Centrosomal proteins (Cep), as crucial scaffolding molecules, play a pivotal role in the biogenesis of centrioles and the regulation of the cell cycle. To date, mutation in Cep135 has been reported to be closely associated with multiple morphological abnormalities of the flagella (MMAF) in humans. However, the specific mechanism of Cep135 in spermatogenesis and its detailed role in male infertility remains largely unexplored. In this study, we present compelling evidence that Cep135 functions as a pathogenic gene responsible for oligoasthenoteratozoospermia (OAT) and male infertility in mice. By selectively deleting Cep135 in premeiotic germ cells using Stra8-Cre mice crossed with Cep135flox/flox mice, we observed that Cep135 knockdown produced abnormal sperm morphology, germ cell apoptosis and consequentlybecame complete infertility, but did not impact premeiosis. Scanning and transmission electron microscopy revealed defects in acrosome, flagellum, and head-to-tail connections during spermatogenesis. Proteomic analysis further indicated that CEP135 deletion led to a significant reduction in proteins mainly associated with acrosome formation, sperm heads, sperm flagellum and microtubule assembly. Additionally, CEP135 interacts with spermatogenic proteins SPATA6 and AKAP3, regulating their expression and stability. Deficiency in CEP135 or its interacting proteins resulted in ciliary shortening. In conclusion, our study profoundly unveils the central role of Cep135 in spermatogenesis and male fertility. This discovery not only deepens our comprehension of spermatogenesis but also furnishes a solid theoretical foundation and experimental evidence that can guide the formulation of therapeutic and preventive strategies for male infertility.
Collapse
Affiliation(s)
- Hui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Haozheng Zhang
- Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Guanghao Qin
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tingting Song
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xin Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zongzhuang Wen
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China.
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - Xianmei Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Xiaolong Fu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Jiangang Gao
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Muroňová J, Lambert E, Thamwan C, Wehbe Z, Court M, Chevalier G, Escoffier J, Kherraf ZE, Coutton C, Nef S, Ray PF, Loeuillet C, Martinez G, Arnoult C. A comprehensive study of the sperm head defects in MMAF condition and their impact on embryo development in mice. Mol Hum Reprod 2025; 31:gaaf006. [PMID: 40070084 DOI: 10.1093/molehr/gaaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/30/2024] [Indexed: 03/30/2025] Open
Abstract
Among rare cases of teratozoospermia, MMAF (multiple morphological abnormalities of the flagellum) syndrome is a complex genetic disorder involving at least 70 different genes. As the name suggests, patients with MMAF syndrome produce spermatozoa with multiple flagellar defects, rendering them immobile and non-fertilizing, leading to complete infertility in affected men. The only viable treatment option is ICSI. What is less understood is the presence of the various types of head defects in the spermatozoa, which are consistently present. Due to the involvement of numerous genes and the limited number of patients with MMAF syndrome, research on head defects and their impact on embryonic development remains insufficiently explored. To address these questions, a comparative study was conducted under controlled experimental conditions using four knockout (KO) mouse lines targeting Cfap43, Cfap44, Armc2, and Ccdc146 genes, all associated with MMAF syndrome in humans and mice. Each KO line underwent a detailed examination of nuclear defects, including morphology, DNA compaction, chromosomal architecture, and ploidy. The study revealed significant heterogeneity among the four lineages, with the extent of defects varying depending on the lineage, ranked as Ccdc146-/- > Cfap43-/- > Armc2-/- ≈ Cfap44-/-. The developmental potential of sperm from males in each lineage was assessed by injecting them into wild-type oocytes, and embryo development was monitored up to the blastocyst stage. Sperm from all KO lines exhibited a marked decrease in supporting embryo development compared to the wild-type, with developmental failure rates ranked as follows: Ccdc146 > Cfap43 > Armc2 > Cfap44-deficient sperm. The degree of developmental failure thus correlated with the severity of nuclear defects, and zygotes produced with sperm from Ccdc146-/- and Cfap43-/- mice showed the highest rates of developmental impairment. These findings from preclinical models highlight the heterogeneous nature of MMAF syndrome, both in terms of sperm nuclear defects and developmental potentials. Genetic characterization in humans is therefore crucial for improving therapeutic counselling in affected individuals.
Collapse
Affiliation(s)
- Jana Muroňová
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Emeline Lambert
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Chanyuth Thamwan
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Zeina Wehbe
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Magali Court
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Zine-Eddine Kherraf
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, France
| | - Charles Coutton
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, France
| | - Corinne Loeuillet
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| | - Guillaume Martinez
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences (IAB), INSERM 1209, La Tronche, France
- Institute for Advanced Biosciences (IAB), CNRS UMR 5309, La Tronche, France
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, La Tronche, France
| |
Collapse
|
5
|
Stojanovic N, Hernández RO, Ramírez NT, Martínez OME, Hernández AH, Shibuya H. CCDC28A deficiency causes head-tail coupling defects and immotility in murine spermatozoa. Sci Rep 2024; 14:26808. [PMID: 39500989 PMCID: PMC11538371 DOI: 10.1038/s41598-024-78453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Male infertility presents a substantial challenge in reproductive medicine, often attributed to impaired sperm motility. The present study investigates the role of CCDC28A, a protein expressed specifically in male germ cells, whose paralog CCDC28B has been implicated in ciliogenesis. We identify unique expression patterns for CCDC28A and CCDC28B within the mouse testes, where CCDC28A is expressed in germ cells, whereas CCDC28B is expressed in supporting somatic cells. Through knockout mouse models and histological analyses, we reveal that CCDC28A deficiency results in diminished sperm motility and structural aberrations in sperm tails, notably affecting the head-tail coupling apparatus (HTCA), thereby causing male infertility. Fine structural analyses by transmission electron microscopy reveal disruptions at the capitulum-basal plate junction of the HTCA in the CCDC28A mutants. This results in the bending of the head within the neck region, often accompanied by thickening of the tail midpiece. Our discovery demonstrates that CCDC28A plays an essential role in male fertility and sperm tail morphogenesis through the formation of HTCA.
Collapse
Affiliation(s)
- Nena Stojanovic
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Rosario Ortiz Hernández
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Nayeli Torres Ramírez
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Olga Margarita Echeverría Martínez
- Laboratorio de Microscopía Electronica Gerardo Hebert Vázquez Nin, Depto de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Abrahan Hernández Hernández
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, 06720, México
- Science for Life Laboratory, Department of Cell and Molecular Biology, National Genomics Infrastructure, Karolinska Institute, Stockholm, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Osaka, Japan.
| |
Collapse
|