1
|
Malhotra S, Lijnse T, Cearbhaill EO, Brayden DJ. Devices to overcome the buccal mucosal barrier to administer therapeutic peptides. Adv Drug Deliv Rev 2025; 220:115572. [PMID: 40174726 DOI: 10.1016/j.addr.2025.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Peptide therapeutics are important in healthcare owing to their high target specificity, therapeutic efficacy, and relatively low side effect profile. Injections of these agents have improved thetreatment of chronic diseases including autoimmune, metabolic disorders, and cancer. However, their administration via injections can prove a barrier to patient acceptability of treatments. While oral delivery of these molecules is preferable, oral peptide formulations are associated with limited bioavailability due to degradation in the intestine and low epithelial permeability. Buccal administration of peptides is a potential alternative to injections and oral formulations. Similar to the oral route, the buccal route can promote better patient adherence to dosing regimens, along with the added advantages of not requiring restriction on food or drink consumption before and after administration, as well as avoidance of the liver first-pass metabolism. However, like oral, effective buccal absorption of peptides is still challenging due to the high epithelial permeability barrier. We present a multidisciplinary approach to understanding the buccal physiological barrier to macromolecule permeation and discuss how engineered devices may overcome it. Selected examples of buccal devices can facilitate fast and efficient macromolecule absorption through multiple mechanisms including physical disruption of epithelia, convection-based mass transfer, and a combination of physicochemical strategies. Importantly, minimally invasive devices can be self-applied and are associated with the maintenance of the barrier after exposure. We analysed the critical attributes that are required forthe clinical translation of buccal peptide administration devices. These include performance-driven device development, manufacturing features, patient acceptability, and commercial viability.
Collapse
Affiliation(s)
- Sahil Malhotra
- UCD School of Medicine, University College Dublin (UCD), -Belfield, Dublin 4, Ireland; Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Thomas Lijnse
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Eoin O' Cearbhaill
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - David J Brayden
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD School of Veterinary Medicine, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Soliman AY, Abouelenien SS, El-Far HM, Hasaneen MH, Mamdouh MA, Makhlouf AI, Afifi NN. Introducing a passively targeted formulation of diclofenac potassium for application in endodontics to minimize renal and gastrointestinal side effects. Int J Pharm 2025; 674:125388. [PMID: 40020948 DOI: 10.1016/j.ijpharm.2025.125388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
This research aims to formulate, evaluate, and conduct a clinical investigation of mucoadhesive buccal discs of diclofenac potassium (DP) for application in endodontics to minimize side effects, mainly renal and gastrointestinal. The discs were compressed directly utilizing bioadhesive polymers like hydroxypropyl methylcellulose K4M (HPMC K4M), sodium carboxymethyl cellulose (NaCMC), Carbopol 934 (Cp934), methylcellulose (MC) and combinations of these polymers. In-vitro, release studies and ex-vivo and in-vivo determination of bioadhesion time were conducted. The selected formula was sealed on one surface with ethyl cellulose to allow unidirectional drug release. It was evaluated for permeation through the chicken pouch membrane in the absence and presence of permeation enhancers. The formula of choice (F3) containing methyl cellulose was further assessed for the swelling index, bioadhesion strength, hardness, friability, surface pH, in-vivo bioadhesion performance, and storage effect under ambient and accelerated conditions. It showed drug release of 99 % ± 1 in 2 h, permeation flux (Jss) of 3.5 ± 1.6 mg cm-2 h-1, and bioadhesion time of 4 ± 0.5 h without bitterness, irritation, or fragmentation. The introduced 25 mg DP bioadhesive disc formulation F3 was then clinically compared with the marketed 50 mg oral Cataflam® tablets regarding the effect of single-dose pretreatment in endodontic procedures of subjects with symptomatic irreversible pulpitis (SIP) through a randomized clinical trial. No significant difference was detected in all evaluated clinical criteria. This proves clinical efficiency with the advantage of half-dose administration and targeted localized effect leading to minimized renal and gastrointestinal side effects.
Collapse
Affiliation(s)
- Ahmed Y Soliman
- Endodontic Department, Faculty of Oral and Dental Medicine, Cairo University, Egypt
| | - Sarah S Abouelenien
- Endodontic Department, Faculty of Oral and Dental Medicine, Cairo University, Egypt
| | - Hebatallah M El-Far
- Endodontic Department, Faculty of Oral and Dental Medicine, Cairo University, Egypt
| | - Mohamed H Hasaneen
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, October 6 University, Egypt
| | - Mohamed A Mamdouh
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, October 6 University, Egypt
| | - Amal I Makhlouf
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Egypt; Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, October University for Modern Sciences & Arts University (MSA) , Egypt.
| | - Nagia N Afifi
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Egypt; Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, October 6 University, Egypt
| |
Collapse
|
3
|
Pantazoglou E, Tollemeto M, Ezazi NZ, Chang TJ, Hosta Rigau L, Jacobsen J, Hagner Nielsen L. Enhancing Buccal Drug Delivery: The Impact of Glycerol in Slot-Die-Coated Pectin Films. Mol Pharm 2025; 22:433-445. [PMID: 39690711 DOI: 10.1021/acs.molpharmaceut.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Buccal delivery offers a promising alternative to e.g., oral or parenteral drug administrations by leveraging the mucosal membranes of the mouth to enhance drug absorption and enhance patient compliance. Buccal films offer a promising approach for enhancing drug delivery by utilizing the mucoadhesive properties of the biopolymer pectin and glycerol's plasticizing effects. Designed to provide fast drug release, these films address the challenges of patient compliance, particularly among the elderly, children, and individuals with dysphagia. This study characterized the physicochemical properties of slot-die-coated films with pectin containing varying amounts of glycerol, including swelling behavior, disintegration rate, mechanical properties, mucoadhesion, and drug release profiles, using paracetamol as a model drug. Different methods such as quartz crystal microbalance with dissipation and open-source force analyzer were employed for the characterization. The results demonstrated that a high glycerol content in the films led to slower drug release with 95% paracetamol released for film without glycerol (GLY0) compared to only 74% released for film with 20% w/v glycerol (GLY20) after 60 min Additionally, higher glycerol levels resulted in enhanced mucoadhesive properties. Films containing 20% glycerol also showed superior permeability of paracetamol through ex vivo porcine buccal mucosa, with double the amount of paracetamol permeating in the first 120 min from GLY20 films compared to GLY0 films. These findings suggest that the pectin-glycerol buccal films, fabricated with slot-die coating as a novel technique, are user-friendly, exhibit interaction with the mucosa, and can be adjusted for specific disintegration and drug release rates, presenting a promising option for efficient, targeted drug delivery.
Collapse
Affiliation(s)
- Eleftheria Pantazoglou
- Department of Health Technology, Technical University of Denmark, Oersteds Plads 344B, 2800 Kgs. Lyngby, Denmark
| | - Matteo Tollemeto
- Department of Health Technology, Technical University of Denmark, Oersteds Plads 344B, 2800 Kgs. Lyngby, Denmark
| | - Nazanin Zanjanizadeh Ezazi
- Department of Health Technology, Technical University of Denmark, Oersteds Plads 344B, 2800 Kgs. Lyngby, Denmark
| | - Tien-Jen Chang
- Department of Health Technology, Technical University of Denmark, Oersteds Plads 344B, 2800 Kgs. Lyngby, Denmark
| | - Leticia Hosta Rigau
- Department of Health Technology, Technical University of Denmark, Oersteds Plads 344B, 2800 Kgs. Lyngby, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Oersteds Plads 344B, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Ahmady A, Anuar NK, Ariffin SA, Abu Samah NH. Mucoadhesive Enhancement of Gelatine by Tannic Acid Crosslinking for Buccal Application. Biopolymers 2025; 116:e23646. [PMID: 39720867 DOI: 10.1002/bip.23646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024]
Abstract
This study aims to evaluate the impact of formulation parameters on tannic acid-crosslinked gelatine (GelTA) films, intended as a mucoadhesive matrix for extended buccal drug delivery. GelTA films were prepared using the solvent evaporation technique and screened based on their mucoadhesive and dissolution characteristics. The formulation variables included the source of gelatine (bovine and fish), tannic acid concentration, pH of the film-forming solutions, and the type and concentration of plasticisers. Subsequently, selected films underwent further characterisation (e.g., crosslinking density, stability) to elucidate their features as a drug delivery matrix. GelTA films exhibited a significantly improved dissolution time compared to the non-crosslinked film (BG-GLY20), while maintaining a substantial water uptake capacity conducive to a matrix system with extended action. The bovine GelTA film containing 5% w/w tannic acid and 20% w/w glycerine, prepared at pH 7 (BG-GLY20-7), exhibited a 1.6-fold increase in mucoadhesivity and an extended dissolution time of up to 6 h compared to BG-GLY20 (control), along with superior antioxidant and antimicrobial properties. However, stability studies indicate the need for an oxygen-free environment for film storage. In conclusion, GelTA films show promise as a buccal film matrix, offering extended dissolution times, substantial water uptake, and enhanced adhesive strength.
Collapse
Affiliation(s)
- Amina Ahmady
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Kabul University, Kabul, Afghanistan
| | - Nor Khaizan Anuar
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Siti Alwani Ariffin
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Nor Hayati Abu Samah
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| |
Collapse
|
5
|
Roma JR, Castro Rebollo P, Bastida C. [Sublingual and buccal drug administration in medical emergencies]. Med Clin (Barc) 2024; 163:619-625. [PMID: 39004586 DOI: 10.1016/j.medcli.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 07/16/2024]
Abstract
Drug administration is crucial to achieve effective therapeutic drug outcomes. In medical emergencies, it is particularly convenient to use drugs that could be administered as an alternative to traditional routes (as oral or intravenous routes), that are not always suitable in these situations. Thus, sublingual and buccal routes offer an alternative to traditional routes, when a rapid onset of action is required. The main objective of this narrative review is to summarize the evidence for the use of sublingual and buccal drug administration in medical emergencies. The evidence obtained has been divided into four common scenarios found in the emergency department and intensive care units: cardiovascular emergencies, acute pain, agitation, and epileptic status. Moreover, the main advantages and disadvantages of sublingual and buccal routes are presented, as the future perspectives in the drug delivery field to overcome the limitations of these routes.
Collapse
Affiliation(s)
- Joan Ramon Roma
- Servicio de Farmacia, Área del Medicamento, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España.
| | - Pedro Castro Rebollo
- Área de Vigilancia Intensiva, Servicio de Medicina Interna, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España; IDIBAPS
| | - Carla Bastida
- Servicio de Farmacia, Área del Medicamento, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España
| |
Collapse
|
6
|
Sabra R, Kirby D, Chouk V, Malgorzata K, Mohammed AR. Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights. Pharmaceutics 2024; 16:1563. [PMID: 39771541 PMCID: PMC11676059 DOI: 10.3390/pharmaceutics16121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Buccal drug delivery emerges as a promising strategy to enhance the absorption of drugs classified under the Biopharmaceutics Classification System (BCS) Class III, characterized by high solubility and low permeability. However, addressing the absorption challenges of BCS Class III drugs necessitates innovative formulation strategies. This review delves into optimizing buccal drug delivery for BCS III drugs, focusing on various formulation approaches to improve absorption. Strategies such as permeation enhancers, mucoadhesive polymers, pH modifiers, ion pairing, and prodrugs are systematically explored for their potential to overcome challenges associated with BCS Class III drugs. The mechanistic insight into how these strategies influence drug absorption is discussed, providing a detailed understanding of their applicability. Furthermore, the review advocates for integrating conventional buccal dosage forms with these formulation approaches as a potential strategy to enhance absorption. By emphasizing bioavailability enhancement, this review contributes to a holistic understanding of optimizing buccal absorption for BCS Class III drugs, presenting a unified approach to overcome inherent limitations in their delivery.
Collapse
Affiliation(s)
- Rayan Sabra
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Daniel Kirby
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
| | - Vikram Chouk
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Kleta Malgorzata
- Catalent Pharma Solutions U.K. Swindon Zydis Limited, Swindon SN5 8RU, UK
| | - Afzal R. Mohammed
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK (D.K.)
| |
Collapse
|
7
|
Atoosh IJ, Ghareeb MM. Optimizing Mucoadhesive Film-Forming Spray for Efficient Oral Delivery of Fluconazole in Candidiasis Treatment. Cureus 2024; 16:e70359. [PMID: 39469347 PMCID: PMC11513576 DOI: 10.7759/cureus.70359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Buccal candidiasis has become increasingly prevalent in recent years, with Candida albicans being the primary causative organism. While systemic fluconazole is an effective treatment, its use is associated with adverse effects such as gastric upset, hepatic failure, and potential drug interactions. Therefore, the development of local fluconazole treatment presents a promising solution to these challenges. This study aimed to formulate an efficient local mucoadhesive film-forming spray for the targeted delivery of fluconazole in the treatment of oral candidiasis. The investigation involved the use of three polymers (hyaluronic acid, polyvinyl alcohol, and xanthan gum) both individually and in combination to identify the most effective formulation. Various tests were conducted to characterize 13 formulations prepared using these polymers, including UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), content assay, drying time and film formation, viscosity determination, determination of the mucoadhesion strength by turbidimetric methods, drug release study, in-vitro anticandida activity, histological irritation analysis, and stability study. The optimum formula F11, comprised polyvinyl alcohol for its superior mechanical properties and film-forming capabilities, hyaluronic acid, and xanthan gum in combination, exhibiting synergistic mucoadhesive strength. This optimal formulation demonstrated maximum mucoadhesion, rapid film formation, an acceptable spray angle, and controlled release. Furthermore, the optimum formula underwent additional evaluations for in vitro anti-Candida activity, in vivo irritancy assessments, and stability studies, all of which yielded satisfactory results. These findings support the potential of the optimum formula as a straightforward and efficient spray formulation for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Ilaf J Atoosh
- Department of Pharmacy, Ministry of Health and Environment, Baghdad, IRQ
| | - Mowafaq M Ghareeb
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, IRQ
| |
Collapse
|
8
|
Rajabi A, Idrees M, Rahman A, Iyire A, Wyatt D, Koner J, Mohammed AR. Evaluating the role of amino acids and isothermal dry particle coating in modulating buccal permeation of large molecule drug vancomycin. Sci Rep 2024; 14:19678. [PMID: 39181891 PMCID: PMC11344821 DOI: 10.1038/s41598-024-69144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
The formulation and delivery of macromolecules through the oral route pose considerable challenges due to factors such as large molecular weight, pH sensitivity, and limited formulation approaches. This challenge is compounded if the drug is poorly permeable, necessitating innovative drug delivery strategies. Vancomycin, a widely prescribed glycopeptide antibiotic, has an oral bioavailability of less than 10%, leading to predominantly intravenous administration and potential patient discomfort. This study explores the potential of the buccal route as a non-invasive, highly vascularised alternative route of administration, offering a rapid onset of action while bypassing the first-pass metabolism. In this study, vancomycin was coated with L-glutamic acid using an isothermal dry particle coater to modulate permeation through the buccal cell line, TR146. Results confirm significant impact of both amino acid concentration and dry particle coating on the rate and extent of drug permeability. With the introduction of L-glutamic acid and utilisation of the isothermal dry particle coater, vancomycin's permeation profile increased six-fold compared to the control due to the formation of drug ion-pair complex. Imaging studies showed the presence of layered micronized glutamic acid particles on the surface of dry coated vancomycin particles which confirms the role of dry coating and amino acid concentration in modulating drug permeation. Microbiology experiments in Staphylococcus aureus, minimum inhibitory concentration and biofilm disruption studies, provided confirmatory evidence of antimicrobial activity of dry coated glutamic acid-vancomycin ion pair particulate structure. This study demonstrates, for the first-time, buccal delivery of dry coated large molecule drug, vancomycin, through controlled deposition of amino acid using innovative particle coating strategy.
Collapse
Affiliation(s)
- Anthony Rajabi
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Muhammed Idrees
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Ayesha Rahman
- School of Healthcare, University of Leicester, Leicester, UK
- Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Affiong Iyire
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - David Wyatt
- Aston Particle Technologies Ltd, Birmingham, UK
| | | | - Afzal R Mohammed
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
9
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
10
|
Conte J, Saatkamp RH, Sanches MP, Argenta DF, da Rosa Monte Machado G, Kretzer IF, Parize AL, Caon T. Development of biopolymer films loaded with fluconazole and thymol for resistant vaginal candidiasis. Int J Biol Macromol 2024; 275:133356. [PMID: 38945715 DOI: 10.1016/j.ijbiomac.2024.133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Vulvovaginal candidiasis (VVC) is an opportunistic infection caused by a fungus of the Candida genus, affecting approximately 75 % of women during their lifetime. Fungal resistance cases and adverse effects have been the main challenges of oral therapies. In this study, the topical application of thin films containing fluconazole (FLU) and thymol (THY) was proposed to overcome these problems. Vaginal films based only on chitosan (CH) or combining this biopolymer with pectin (PEC) or hydroxypropylmethylcellulose acetate succinate (HPMCAS) were developed by the solvent casting method. In addition to a higher swelling index, CH/HPMCAS films showed to be more plastic and flexible than systems prepared with CH/PEC or only chitosan. Biopolymers and FLU were found in an amorphous state, contributing to explaining the rapid gel formation after contact with vaginal fluid. High permeability rates of FLU were also found after its immobilization into thin films. The presence of THY in polymer films increased the distribution of FLU in vaginal tissues and resulted in improved anti-Candida activity. A significant activity against the resistant C. glabrata was achieved, reducing the required FLU dose by 50 %. These results suggest that the developed polymer films represent a promising alternative for the treatment of resistant vulvovaginal candidiasis, encouraging further studies in this context.
Collapse
Affiliation(s)
- Júlia Conte
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Rodrigo Henrique Saatkamp
- Postgraduate Program in Chemistry, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Mariele Paludetto Sanches
- Postgraduate Program in Chemistry, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Débora Fretes Argenta
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Gabriella da Rosa Monte Machado
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Iara Fabrícia Kretzer
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Alexandre Luis Parize
- Postgraduate Program in Chemistry, Chemistry Department, Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | - Thiago Caon
- Postgraduate Program in Pharmacy (PGFAR), Federal University of Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil.
| |
Collapse
|
11
|
Bahrami K, Lee E, Morse B, Lanier OL, Peppas NA. Design of nanoparticle-based systems for the systemic delivery of chemotherapeutics: Alternative potential routes via sublingual and buccal administration for systemic drug delivery. Drug Deliv Transl Res 2024; 14:1173-1188. [PMID: 38151650 DOI: 10.1007/s13346-023-01493-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Conventional therapeutic approaches for cancer generally involve chemo- and radiation therapies that often exhibit low efficacy and induce toxic side effects. Recent years have seen significant advancements in the use of protein biologics as a promising alternative treatment option. Nanotechnology-based systems have shown great potential in providing more specific and targeted cancer treatments, thus improving upon many of the limitations associated with current treatments. The unique properties of biomaterial carriers at the nanoscale have been proven to enhance both the performance of the incorporated therapeutic agent and tumor targeting; however, many of these systems are delivered intravenously, which can cause hazardous side effects. Buccal and sublingual delivery systems offer an alternative route for more efficient delivery of nanotechnologies and drug absorption into systemic circulation. This review concentrates on emerging buccal and sublingual nanoparticle delivery systems for chemo- and protein therapeutics, their development, efficacy, and potential areas of improvement in the field. Several factors contribute to the development of effective buccal or sublingual nanoparticle delivery systems, including targeting efficiency of the nanoparticulate carriers, drug release, and carrier biocompatibility. Furthermore, the potential utilization of buccal and sublingual multilayer films combined with nanoparticle chemotherapeutic systems is outlined as a future avenue for in vitro and in vivo research.
Collapse
Affiliation(s)
- Kiana Bahrami
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY, USA
| | - Elaine Lee
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Brinkley Morse
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, University of Texas, Austin, USA
| | - Olivia L Lanier
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Rai VK, Kumar A, Pradhan D, Halder J, Rajwar TK, Sarangi MK, Dash P, Das C, Manoharadas S, Kar B, Ghosh G, Rath G. Spray-Dried Mucoadhesive Re-dispersible Gargle of Chlorhexidine for Improved Response Against Throat Infection: Formulation Development, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2024; 25:31. [PMID: 38326518 DOI: 10.1208/s12249-024-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Drug delivery to the buccal mucosa is one of the most convenient ways to treat common mouth problems. Here, we propose a spray-dried re-dispersible mucoadhesive controlled release gargle formulation to improve the efficacy of chlorhexidine. The present investigation portrays an approach to get stable and free-flowing spray-dried porous aggregates of chlorhexidine-loaded sodium alginate nanoparticles. The ionic gelation technique aided with the chlorhexidine's positive surface charge-based crosslinking, followed by spray drying of the nanoparticle's dispersion in the presence of lactose- and leucine-yielded nano-aggregates with good flow properties and with a size range of about 120-350 nm. Provided with the high entrapment efficiency (87%), the particles showed sustained drug release behaviors over a duration of 10 h, where 87% of the released drug got permeated within 12 h. The antimicrobial activity of the prepared formulation was tested on S. aureus, provided with a higher zone of growth inhibition than the marketed formulation. Aided with an appropriate mucoadhesive strength, this product exhibited extended retention of nanoparticles in the throat region, as shown by in vivo imaging results. In conclusion, the technology, provided with high drug retention and extended effect, could be a potential candidate for treating several types of throat infections.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Amresh Kumar
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Deepak Pradhan
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India
| | - Priyanka Dash
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Biswakanth Kar
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
13
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
14
|
Almurisi SH, Mohammed A, Qassem F, Jehad H, Jassim A, Al-Japairai K, Sammour RMF. Development and In Vitro Evaluation of Aceclofenac Buccal Film. Curr Drug Discov Technol 2024; 21:46-55. [PMID: 37807409 DOI: 10.2174/0115701638262447230920061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 10/10/2023]
Abstract
AIM This study aimed to formulate and characterize aceclofenac buccal film formulations made of different polymers and evaluate the effects of polymer type on buccal film properties. MATERIALS AND METHODS Five polymer types, namely hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (SCMC), polyvinyl alcohol (PVA), Eudragit S100, and Eudragit SR100, were used to prepare aceclofenac buccal film formulation either separately or combined by solvent-casting method. These formulations were evaluated in terms of physical appearance, folding test, film weight and thickness, drug content, percentage of elongation, moisture uptake, water vapor permeability, and in vitro drug release. RESULTS The addition of Eudragit polymer in most of the produced buccal films was unacceptable with low folding endurance. However, the dissolution profile of buccal films made from PVA and Eudragit SR100 provided a controlled drug release profile. CONCLUSION Buccal films can be formulated using different polymers either individually or in combination to obtain the drug release profile required to achieve a desired treatment goal. Furthermore, the property of the buccal films depends on the type and concentration of the polymer used.
Collapse
Affiliation(s)
- Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Ayah Mohammed
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Farah Qassem
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Heba Jehad
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Asma Jassim
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Malaysia
| | - Rana M F Sammour
- Department of Pharmaceutics, Dubai Pharmacy College for Girls, Dubai, UAE
| |
Collapse
|
15
|
Deenadayalan S, Shenoy A, Kamath A, Rathnanand M, Ullal S, Shenoy N. Efficacy and Safety of Fluconazole Mucoadhesive Patches in Human Immunodeficiency Virus-Related Oral Candidiasis. J Int Assoc Provid AIDS Care 2024; 23:23259582241299014. [PMID: 39632750 PMCID: PMC11618892 DOI: 10.1177/23259582241299014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Opportunistic fungal infections like oral candidiasis account for a significant amount of morbidity in HIV disease and an indicator of immune suppression. Fluconazole is a broad-spectrum antifungal agent that has been extensively used in the management of oral, candidiasis. Highly efficacious fluconazole is also known to have systemic toxicity due to high drug interaction and hence the present study focuses on the formulation of bioadhesive film as a controlled release carrier for fluconazole. MATERIALS AND METHODS Patients were randomised, using a computer-generated list of random numbers, into one of the three groups: patients in group A received fluconazole mucoadhesive film 20 mg (sustained release) that was to be applied at bedtime and film 10 mg (intermediate release) to be applied during the day after lunch. RESULTS There was a significant decrease in oral discomfort, pain and clinical improvement in group A compared to group B (Fluconazole oral tablets 100 mg/day) (P = 0.005) and group C (Fluconazole Mouth rinse) (P = 0.002). The patients who received the mucoadhesive patches had a more tolerable safety profile as expected compared to the other groups. CONCLUSION The bioadhesive films of fluconazole were used in HIV positive patients with oral candidiasis to overcome the problems of high dose requirement of the drug and reduce associated adverse reactions in an already immunocompromised patients and improve the quality of life.
Collapse
Affiliation(s)
| | - Ashok Shenoy
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sheetal Ullal
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nandita Shenoy
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
16
|
Chamsai B, Opanasopit P, Samprasit W. Fast disintegrating dosage forms of mucoadhesive-based nanoparticles for oral insulin delivery: Optimization to in vivo evaluation. Int J Pharm 2023; 647:123513. [PMID: 37839494 DOI: 10.1016/j.ijpharm.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
The aim of this work was to develop fast disintegrating dosage forms, including fast disintegrating tablets (FDTs) and films (FDFs), for oral insulin delivery incorporating mucoadhesive thiolated chitosan (TCS)-based nanoparticles (NPs). Cyclodextrin (CD)-insulin complexes were formed to prevent insulin from degradation and further optimally prepared NPs in order to improve the mucoadhesive properties. After that, these NPs were incorporated into the dosage forms and then evaluated for their morphology as well as physical and mechanical properties. The disintegration time, insulin content, mucoadhesive properties, insulin release, cytotoxicity, in vivo hypoglycemic effect, and stability of dosage forms were studied. Results showed that the CD-insulin complexes were successfully encapsulated into the mucoadhesive NPs. The 15 %w/w CD-insulin complex-loaded NPs, which were probably dispersed and/or fused into the dosage forms, showed promising characteristics, including rapid disintegration as well as good physical and mechanical properties to withstand erosion during handling and storage. The porous structure of the FDTs promoted liquid flow and induced rapid disintegration. The dosage forms provided buccal mucoadhesion before, during, and/or after the disintegration. The FDFs containing hydroxypropyl β-cyclodextrin (HPβCD)-insulin complex-loaded NPs increased mucoadhesion, increasing insulin release. Furthermore, these dosage forms provided excellent in vivo hypoglycemic response with a prolonged effect in diabetic mice and had no cytotoxicity toward the gingival fibroblast cells. In addition, they were stable at temperatures between 2 and 8 °C for three months. The results indicate that these formulations could be applied as promising dosage forms for use in oral insulin delivery.
Collapse
Affiliation(s)
- Benchawan Chamsai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Praneet Opanasopit
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wipada Samprasit
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| |
Collapse
|
17
|
Szymańska E, Potaś J, Maciejczyk M, Sulewska ME, Pietruska M, Zalewska A, Pietruska A, Winnicka K. Preliminary Assessment of Polysaccharide-Based Emulgels Containing Delta-Aminolevulinic Acid for Oral Lichen planus Treatment. Pharmaceuticals (Basel) 2023; 16:1534. [PMID: 38004400 PMCID: PMC10674658 DOI: 10.3390/ph16111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy using delta-aminolevulinic acid is considered a promising option in the treatment of oral lichen planus. In the present work, three emulgel compositions prepared from natural polysaccharide gums, tragacanth, xanthan and gellan, were preliminarily tested for oromucosal delivery of delta-aminolevulinic acid. Apart from cytotoxicity studies in two gingival cell lines, the precise goal was to investigate whether the presence of the drug altered the rheological and mucoadhesive behavior of applied gelling agents and to examine how dilution with saliva fluid influenced the retention of the designed emulgels by oromucosal tissue. Ex vivo mucoadhesive studies revealed that a combination of xanthan and gellan gum enhanced carrier retention by buccal tissue even upon dilution with the saliva. In turn, the incorporation of delta-aminolevulinic acid favored interactions with mucosal tissue, particularly formulations comprised of tragacanth. The designed preparations had no significant impact on the cell viability after a 24 h incubation in the tested concentration range. Cytotoxicity studies demonstrated that tragacanth-based and gellan/xanthan-based emulgels might exert a protective effect on the metabolic activity of human gingival fibroblasts and keratinocytes. Overall, the presented data show the potential of designed emulgels as oromucosal platforms for delta-aminolevulinic acid delivery.
Collapse
Affiliation(s)
- Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| | - Joanna Potaś
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| | - Mateusz Maciejczyk
- Department of Hygiene and Epidemiology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland;
| | - Magdalena Ewa Sulewska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland; (M.E.S.); (M.P.)
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland; (M.E.S.); (M.P.)
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Restorative Dentistry Department, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Aleksandra Pietruska
- Student’s Research Group, Department of Periodontal and Oral Mucosa Diseases, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (J.P.); (K.W.)
| |
Collapse
|
18
|
Samiraninezhad N, Rezaee M, Gholami A, Amanati A, Mardani M. A novel chitosan-based doxepin nano-formulation for chemotherapy-induced oral mucositis: a randomized, double-blinded, placebo-controlled clinical trial. Inflammopharmacology 2023; 31:2411-2420. [PMID: 37668810 DOI: 10.1007/s10787-023-01325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES Considering the prevalence of oral mucositis, we aimed to use the analgesic effects of doxepin with chitosan's antimicrobial and bio-adhesive nature to fabricate a nano-formulation for treating chemotherapy-induced oral mucositis. MATERIALS AND METHODS Nanogel was fabricated via ionic gelation and characterized. Sixty patients were randomly divided and received four different treatments for 14 days: diphenhydramine + aluminum-magnesium mouthwash (control), doxepin mouthwash (DOX MW), chitosan nanogel (CN), and doxepin/chitosan nanogel (CN + DOX). Lesions were assessed with four indices, National Cancer Institute (NCI), World Health Organization (WHO), World Conference on Clinical and Research in Nursing (WCCNR) and visual analog scale (VAS) before and 3, 7, and 14 days after interventions. Kruskal-Wallis test was used for pairwise comparison. RESULTS CN had semisolid consistency, uniform spherical shape, an average size of 47.93 ± 21.69 nm, and a zeta potential of + 1.02 ± 0.16 mV. CN + DOX reduced WHO, WCCNR, and VAS scores significantly more than the control three days after the intervention. Seven days after the intervention, CN + DOX reduced NCI and WCCNR considerably more than the control; it reduced WCCNR significantly more than CN. Fourteen days after the intervention, CN + DOX decreased NCI markedly more than the control. CONCLUSION Chitosan-based doxepin nano-formulation might be a promising alternative for routine treatments of oral mucositis.
Collapse
Affiliation(s)
| | - Mostafa Rezaee
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Amanati
- Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mardani
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Das S, Bhattacharya K, Blaker JJ, Singha NK, Mandal M. Beyond traditional therapy: Mucoadhesive polymers as a new frontier in oral cancer management. Biopolymers 2023; 114:e23556. [PMID: 37341448 DOI: 10.1002/bip.23556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.
Collapse
Affiliation(s)
- Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jonny J Blaker
- Bio-Active Materials Group, Department of Materials and Henry Royce Institute, The University of Manchester, Manchester, UK
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
20
|
Mady O, Hussien S, Abdelkader DH, El-Dahaby E. Metoclopramide loaded buccal films for potential treatment of migraine symptoms: in vitro and in vivo study. Pharm Dev Technol 2023; 28:650-659. [PMID: 37395006 DOI: 10.1080/10837450.2023.2231076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Developing mucoadhesive buccal films loaded with metoclopramide for the treatment of migraine-associated vomiting. METHODS Buccal films were prepared using the solvent casting method. Several tests were conducted, including measurement of film weight, thickness, drug content, moisture uptake, swelling index, and DSC analysis. The bioadhesion properties were also assessed. Furthermore, in vitro release profiles and in human bioavailability were studied. RESULTS The developed films were transparent, homogeneous, and easy to remove. Film weight and thickness increased with higher drug content. The drug entrapment exceeded 90%. Film weight increased with moisture uptake, and DSC analysis indicated the absence of drug crystallinity. Bioadhesion properties and swelling index decreased with increasing drug content. In vitro release demonstrated that drug release depended on the drug-polymer ratio. The in vivo study showed significant improvements in Tmax (from 1.21 ± 0.33 to 0.50 ± 0.0) and Cmax (from 45.29 ± 14.66 to 63.27 ± 24.85) compared to conventional tablets. CONCLUSION The prepared mucoadhesive buccal films exhibited the desired characteristics and demonstrated enhanced drug absorption, evidenced by the significantly reduced Tmax and increased Cmax compared to conventional tablets. The results indicate the successful achievement of the study objectives in selecting and designing an effective pharmaceutical dosage form. as cm2.
Collapse
Affiliation(s)
- Omar Mady
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sara Hussien
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Enas El-Dahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Belkas, Egypt
| |
Collapse
|
21
|
Davut Arpa M, Üstündağ Okur N, Koray Gök M, Özgümüş S, Cevher E. Chitosan-based buccal mucoadhesive patches to enhance the systemic bioavailability of tizanidine. Int J Pharm 2023:123168. [PMID: 37356512 DOI: 10.1016/j.ijpharm.2023.123168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Tizanidine hydrochloride (TZN) is a muscle relaxant used to treat a variety of disorders such as painful muscle spasms and chronic spasticity. TZN has low oral bioavailability due to extensive first-pass metabolism and is used orally at a dose of 6-24 mg per day. In the present study, buccal patches were prepared by solvent casting method using chitosan glutamate (Chi-Glu) and novel chitosan azelate (Chi-Aze) which was synthesised in-house for the first time, to enhance the bioavailability of TZN by bypassing first-pass metabolism. The characterisation, mucoadhesion and drug release studies were performed. Chi-Aze patches retained their integrity longer in the buccal medium and showed higher ex vivo drug permeability compared to that prepared with Chi-Glu. In vivo studies revealed that buccal formulation fabricated with Chi-Aze (3%) showed approx 3 times more bioavailability than the orally administered commercial product. Results of the studies indicate that Chi-Aze, prepared by conjugation of chitosan and a fatty acid, the patch formulation is a promising buccal mucoadhesive system due to the physical stability in buccal medium, the good mucoadhesiveness and the high TZN bioavailability. Moreover, Chi-Aze patch might be an alternative to oral formulations of TZN to reduce the dose and frequency of drug administration.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Türkiye
| | - Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34668, Istanbul, Türkiye
| | - Mehmet Koray Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, 34320, Istanbul, Türkiye
| | - Saadet Özgümüş
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, 34320, Istanbul, Türkiye
| | - Erdal Cevher
- Istanbul University, Department of Pharmaceutical Technology, Faculty of Pharmacy, 34116, Istanbul, Türkiye.
| |
Collapse
|
22
|
Gaber DA, Alburaykan AI, Alruthea LM, Aldohan NS, Alharbi RF, Aljohani AR, Albilaihi HM, Adogim SS. Development, in vitro Evaluation, and in vivo Study of Adhesive Buccal Films for the Treatment of Diabetic Pediatrics via Trans Mucosal Delivery of Gliclazide. Drug Des Devel Ther 2022; 16:4235-4250. [PMID: 36536629 PMCID: PMC9759005 DOI: 10.2147/dddt.s394523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE Development and evaluation of bucco-adhesive films of Gliclazide for pediatric use. METHODS Sixteen films were formulated using a different combination of Gelatin, Hydroxy propyl methyl cellulose (HPMC), polyvinyl alcohol, Hydroxy propyl cellulose (HPC), chitosan, polyethylene glycol, sodium alginate, and carbopol. Compatibility study for drug and polymers was conducted using differential scanning calorimetry method and Fourier transform infrared spectroscopy. All films were examined for drug content, weight variation, thickness, swelling index, muco-adhesion and folding endurance. In vitro drug release has been completed for two hours. Stability studies were conducted at 4°C, 25°C, and 40°C for selected films. The optimized formulation based on in vitro data was selected for a bioavailability study in rabbits. RESULTS The selected film formula (carbopol 2%, HPMC 2%) did not demonstrate interactions between the drug and polymers, while it showed accepted content, muco-adhesion, and mechanical properties. The in vitro release study showed rapid and complete release of drug from films. Stability studies confirmed accepted stability of the selected film at 4°C and 25°C, but the film get hard with few particles at 40°C. The bioavailability studies conducted showed that there was 2.1 fold increase in the AUC0-24 of selected film compared with oral tablets. CONCLUSION Bucco adhesive films of Gliclazide is a promising dosage form for the treatment of diabetes in children.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Quality Control & Quality Assurance, Holding Company for Biological Products and Vaccines, Cairo, Egypt
- Department of Pharmaceutics, College of Pharmacy, AL-Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Abeer I Alburaykan
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Lama M Alruthea
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Njoud S Aldohan
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Raneem F Alharbi
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Alhanoof R Aljohani
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Helah M Albilaihi
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| | - Somaiah S Adogim
- College of Pharmacy, Al- Qassim University, Al-Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Mendes D, Peixoto F, Oliveira MM, Andrade PB, Videira RA. Brain Effects of SC-Nanophytosomes on a Rotenone-Induced Rat Model of Parkinson's Disease-A Proof of Concept for a Mitochondria-Targeted Therapy. Int J Mol Sci 2022; 23:ijms232012699. [PMID: 36293562 PMCID: PMC9604491 DOI: 10.3390/ijms232012699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Mitochondria are an attractive target to fight neurodegenerative diseases due to their important functions for cells and the particularly close relationship between the functional connectivity among brain regions and mitochondrial performance. This work presents a mitochondria-targeted therapy designed to modulate the functionality of the mitochondrial respiratory chain and lipidome, parameters that are affected in neurodegeneration, including in Parkinson's disease (PD). This therapy is supported by SC-Nanophytosomes constructed with membrane polar lipids, from Codium tomentosum, and elderberry anthocyanin-enriched extract, from Sambucus nigra L. SC-Nanophytosomes are nanosized vesicles with a high negative surface charge that preserve their properties, including anthocyanins in the flavylium cation form, under conditions that mimic the gastrointestinal tract pH changes. SC-Nanophytosomes, 3 µM in phospholipid, and 2.5 mg/L of EAE-extract, delivered by drinking water to a rotenone-induced PD rat model, showed significant positive outcomes on disabling motor symptoms associated with the disease. Ex vivo assays were performed with two brain portions, one comprising the basal ganglia and cerebellum (BG-Cereb) and the other with the cerebral cortex (C-Cortex) regions. Results showed that rotenone-induced neurodegeneration increases the α-synuclein levels in the BG-Cereb portion and compromises mitochondrial respiratory chain functionality in both brain portions, well-evidenced by a 50% decrease in the respiratory control rate and up to 40% in complex I activity. Rotenone-induced PD phenotype is also associated with changes in superoxide dismutase and catalase activities that are dependent on the brain portion. Treatment with SC-Nanophytosomes reverted the α-synuclein levels and antioxidant enzymes activity to the values detected in control animals. Moreover, it mitigated mitochondrial dysfunction, with positive outcomes on the respiratory control rate, the activity of individual respiratory complexes, and the fatty acid profile of the membrane phospholipids. Therefore, SC-Nanophytosomes are a promising tool to support mitochondria-targeted therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Francisco Peixoto
- Chemistry Center-Vila Real (CQ-VR), Biological and Environment Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Maria Manuel Oliveira
- Chemistry Center-Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Paula Branquinho Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Romeu António Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
24
|
Molecular Mapping of Antifungal Mechanisms Accessing Biomaterials and New Agents to Target Oral Candidiasis. Int J Mol Sci 2022; 23:ijms23147520. [PMID: 35886869 PMCID: PMC9320712 DOI: 10.3390/ijms23147520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.
Collapse
|
25
|
Rodrigues DA, Miguel SP, Loureiro J, Ribeiro M, Roque F, Coutinho P. Oromucosal Alginate Films with Zein Nanoparticles as a Novel Delivery System for Digoxin. Pharmaceutics 2021; 13:pharmaceutics13122030. [PMID: 34959312 PMCID: PMC8706652 DOI: 10.3390/pharmaceutics13122030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Digoxin is a hydrophobic drug used for the treatment of heart failure that possesses a narrow therapeutic index, which raises safety concerns for toxicity. This is of utmost relevance in specific populations, such as the elderly. This study aimed to demonstrate the potential of the sodium alginate films as buccal drug delivery system containing zein nanoparticles incorporated with digoxin to reduce the number of doses, facilitating the administration with a quick onset of action. The film was prepared using the solvent casting method, whereas nanoparticles by the nanoprecipitation method. The nanoparticles incorporated with digoxin (0.25 mg/mL) exhibited a mean size of 87.20 ± 0.88 nm, a polydispersity index of 0.23 ± 0.00, and a zeta potential of 21.23 ± 0.07 mV. Digoxin was successfully encapsulated into zein nanoparticles with an encapsulation efficiency of 91% (±0.00). Films with/without glycerol and with different concentrations of ethanol were produced. The sodium alginate (SA) films with 10% ethanol demonstrated good performance for swelling (maximum of 1474%) and mechanical properties, with a mean tensile strength of 0.40 ± 0.04 MPa and an elongation at break of 27.85% (±0.58), compatible with drug delivery application into the buccal mucosa. The current study suggests that SA films with digoxin-loaded zein nanoparticles can be an effective alternative to the dosage forms available on the market for digoxin administration.
Collapse
Affiliation(s)
- Daniela A. Rodrigues
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
| | - Sónia P. Miguel
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jorge Loureiro
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
| | - Maximiano Ribeiro
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fátima Roque
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-965544187
| |
Collapse
|
26
|
Majid H, Puzik A, Maier T, Merk R, Bartel A, Mueller HC, Burckhardt BB. Formulation Development of Sublingual Cyclobenzaprine Tablets Empowered by Standardized and Physiologically Relevant Ex Vivo Permeation Studies. Pharmaceutics 2021; 13:pharmaceutics13091409. [PMID: 34575485 PMCID: PMC8472530 DOI: 10.3390/pharmaceutics13091409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Suitable ex vivo models are required as predictive tools of oromucosal permeability between in vitro characterizations and in vivo studies in order to support the development of novel intraoral formulations. To counter a lack of clinical relevance and observed method heterogenicity, a standardized, controlled and physiologically relevant ex vivo permeation model was established. This model combined the Kerski diffusion cell, process automation, novel assays for tissue integrity and viability, and sensitive LC-MS/MS analysis. The study aimed to assess the effectiveness of the permeation model in the sublingual formulation development of cyclobenzaprine, a promising agent for the treatment of psychological disorders. A 4.68-fold enhancement was achieved through permeation model-led focused formulation development. Here, findings from the preformulation with regard to pH and microenvironment-modulating excipients proved supportive. Moreover, monitoring of drug metabolism during transmucosal permeation was incorporated into the model. In addition, it was feasible to assess the impact of dosage form alterations under stress conditions, with the detection of a 33.85% lower permeation due to salt disproportionation. Integrating the coherent processes of disintegration, dissolution, permeation, and metabolization within a physiological study design, the model enabled successful formulation development for cyclobenzaprine sublingual tablets and targeted development of patient-oriented drugs for the oral cavity.
Collapse
Affiliation(s)
- Haidara Majid
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225 Dusseldorf, Germany; (H.M.); (A.B.)
| | - Andreas Puzik
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Tanja Maier
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Raphaela Merk
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Anke Bartel
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225 Dusseldorf, Germany; (H.M.); (A.B.)
| | - Hans-Christian Mueller
- Hexal AG, Analytical Development, 83607 Holzkirchen, Germany; (A.P.); (T.M.); (R.M.); (H.-C.M.)
| | - Bjoern B. Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, 40225 Dusseldorf, Germany; (H.M.); (A.B.)
- Correspondence:
| |
Collapse
|
27
|
Lim LM, Hadinoto K. High-Payload Buccal Delivery System of Amorphous Curcumin-Chitosan Nanoparticle Complex in Hydroxypropyl Methylcellulose and Starch Films. Int J Mol Sci 2021; 22:ijms22179399. [PMID: 34502305 PMCID: PMC8430606 DOI: 10.3390/ijms22179399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Oral delivery of curcumin (CUR) has limited effectiveness due to CUR’s poor systemic bioavailability caused by its first-pass metabolism and low solubility. Buccal delivery of CUR nanoparticles can address the poor bioavailability issue by virtue of avoidance of first-pass metabolism and solubility enhancement afforded by CUR nanoparticles. Buccal film delivery of drug nanoparticles, nevertheless, has been limited to low drug payload. Herein, we evaluated the feasibilities of three mucoadhesive polysaccharides, i.e., hydroxypropyl methylcellulose (HPMC), starch, and hydroxypropyl starch as buccal films of amorphous CUR–chitosan nanoplex at high CUR payload. Both HPMC and starch films could accommodate high CUR payload without adverse effects on the films’ characteristics. Starch films exhibited far superior CUR release profiles at high CUR payload as the faster disintegration time of starch films lowered the precipitation propensity of the highly supersaturated CUR concentration generated by the nanoplex. Compared to unmodified starch, hydroxypropyl starch films exhibited superior CUR release, with sustained release of nearly 100% of the CUR payload in 4 h. Hydroxypropyl starch films also exhibited good payload uniformity, minimal weight/thickness variations, high folding endurance, and good long-term storage stability. The present results established hydroxypropyl starch as the suitable mucoadhesive polysaccharide for high-payload buccal film applications.
Collapse
|
28
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
29
|
Okur NÜ, Bülbül EÖ, Yağcılar AP, Siafaka PI. Current Status of Mucoadhesive Gel Systems for Buccal Drug Delivery. Curr Pharm Des 2021; 27:2015-2025. [PMID: 33726644 DOI: 10.2174/1381612824666210316101528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Buccal drug delivery is a fascinating research field. Gel-based formulations present potent characteristics as buccal systems since they have great physicochemical properties. METHODS Among the various gels, in situ gels are viscous colloidal systems consisting of polymers; when physiological conditions change (pH, temperature, ion activation), they are transformed into the gel phase. These systems can improve bioavailability. Other systems, such as nanogels or emulgels can also be applied for buccal delivery with promising results. Polymeric gel-based systems can be produced by natural, semisynthetic, and synthetic polymers. Their main advantage is that the active molecules can be released in a sustained and controllable manner. Several gels based on chitosan are produced for the entrapment of drugs demonstrating efficient retention time and bioavailability due to chitosan mucoadhesion. Besides polysaccharides, poloxamers and carbopol are also used in buccal gels due to their high swelling ability and reversed thermal gelation behavior. RESULTS Herein, the authors focused on the current development of mucoadhesive gel systems used in buccal drug delivery. After explaining buccal drug delivery and mucoadhesion, various studies with hydrogels, in situ gels, and nanogels were analyzed as buccal gel systems. Various mucoadhesive gel studies with mucoadhesive polymers have been studied and summarized. This review is presented as valuable guidance to scientists in formulating buccal mucoadhesive drug delivery systems. CONCLUSION This review aimed to assist researchers working on buccal drug delivery by summarizing buccal drug delivery, mucoadhesion, and buccal mucoadhesive gel systems recently found in the literature.
Collapse
Affiliation(s)
- Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ece Ö Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Ayşe P Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
30
|
Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021; 10:foods10061362. [PMID: 34208328 PMCID: PMC8231213 DOI: 10.3390/foods10061362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The conventional oral administration of many nutraceuticals exhibits poor oral bioavailability due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can adhere to the mucosal membrane through various interaction mechanisms and enhance the retention and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers, thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are still looking for different ways to improve the bioavailability of many bioactive compounds. This article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories, and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds are presented.
Collapse
|
31
|
Formulation and evaluation of mucoadhesive buccal tablets of aceclofenac. Heliyon 2021; 7:e06439. [PMID: 33786387 PMCID: PMC7988282 DOI: 10.1016/j.heliyon.2021.e06439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
This project was aimed to formulate and characterize mucoadhesive buccal tablets of aceclofenac, utilizing different proportions of three polymers carbopol 934, hydroxypropyl methylcellulose, and sodium carboxymethylcellulose. Twelve batches of buccoadhesive aceclofenac were prepared by the direct compression method. The compressed tablets were then evaluated for physicochemical parameters such as hardness, thickness, weight variation, drug content, friability, swelling index, surface pH, and ex vivo mucoadhesion. In vitro dissolution test was conducted for 12 h according to Indian Pharmacopeia 2018, using the rotating paddle method in phosphate buffer of pH 7.4. Physiochemical parameters like weight variation (231.25–268.75 mg), hardness (8.32–11.56 kg), friability (0.04–0.2%), diameter (9.00 mm), thickness (3.8–4.05 mm), and drug content ((97.67–102.25%) were within the acceptable limit as per Indian Pharmacopeia 2018. The swelling index was reported to be in the range of 112.93–450.19%, at 8 h. The surface pHs of all the batches were in between 6.72 to 6.96. The mucoadhesive strengths (40.5–50 g) varied with the change in polymer concentrations especially of carbopol 934. The dissolution profile of all the batches varied greatly, with a maximum release of 109.41% (in batch 12 at 6 h) to a minimum release of 44.82% (in batch 3 at 12 h). Among them, only batch 1 ensured sustained and effective drug release (88.34% at 12 h) with appropriate swelling index (112.93%) and mucoadhesive strength (40 g). Fourier Transform Infrared Spectroscopy analysis showed no evidence of drug excipients interaction. Hence, the results concluded that buccal mucoadhesive aceclofenac tablets can be formulated. Furthermore, the property of the tablet not only depends on the concentration but also the behavior of the polymers used.
Collapse
|
32
|
An Update on Pharmaceutical Strategies for Oral Delivery of Therapeutic Peptides and Proteins in Adults and Pediatrics. CHILDREN-BASEL 2020; 7:children7120307. [PMID: 33352795 PMCID: PMC7766037 DOI: 10.3390/children7120307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
While each route of therapeutic drug delivery has its own advantages and limitations, oral delivery is often favored because it offers convenient painless administration, sustained delivery, prolonged shelf life, and often lower manufacturing cost. Its limitations include mucus and epithelial cell barriers in the gastrointestinal (GI) tract that can block access of larger molecules including Therapeutic protein or peptide-based drugs (TPPs), resulting in reduced bioavailability. This review describes these barriers and discusses different strategies used to modify TPPs to enhance their oral bioavailability and/or to increase their absorption. Some seek to stabilize the TTPs to prevent their degradation by proteolytic enzymes in the GI tract by administering them together with protease inhibitors, while others modify TPPs with mucoadhesive polymers like polyethylene glycol (PEG) to allow them to interact with the mucus layer, thereby delaying their clearance. The further barrier provided by the epithelial cell membrane can be overcome by the addition of a cell-penetrating peptide (CPP) and the use of a carrier molecule such as a liposome, microsphere, or nanosphere to transport the TPP-CPP chimera. Enteric coatings have also been used to help TPPs reach the small intestine. Key efficacious TPP formulations that have been approved for clinical use will be discussed.
Collapse
|
33
|
Adrover A, di Muzio L, Trilli J, Brandelli C, Paolicelli P, Petralito S, Casadei MA. Enhanced Loading Efficiency and Mucoadhesion Properties of Gellan Gum Thin Films by Complexation with Hydroxypropyl- β-Cyclodextrin. Pharmaceutics 2020; 12:pharmaceutics12090819. [PMID: 32872207 PMCID: PMC7558953 DOI: 10.3390/pharmaceutics12090819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Polymeric oral thin films (OTFs) were prepared by the casting method, combining gellan gum (GG), a water-soluble polysaccharide, and glycerol (Gly) as a plasticizing agent. GG-Gly films were investigated as potential systems for buccal drug delivery using fluconazole (Class I of the Biopharmaceutical Classification System) as a model drug. At a low concentration of Gly drug precipitation occurred while, for higher concentrations of Gly, a significant deterioration of mucoadhesive and mechanical properties was observed. One possible way to overcome all these problems could be the addition of hydroxypropyl-β-cyclodextrin (HP-β-CD) to the GG-Gly formulation as a drug-precipitation inhibitor. In this work the effect of cyclodextrin addition on the mechanical, mucoadhesive, swelling and release properties of GG-Gly films was investigated. In-vitro drug release studies were carried out using the paddle type dissolution apparatus (USP II) and the millifluidic flow-through device (MFTD). A moving-boundary model for swelling dynamics and release in USP II is proposed to estimate the effective diffusivity of the solvent, HP-β-CD, fluconazole and complex fluconazole/HP-β-CD in the swelling film. Experimental results, supported by theoretical modeling, confirmed that gellan gum-low glycerol thin films including HP-β-CD represent a suitable formulation for fluconazole drug delivery. A sustained release was observed when GG-Gly film is loaded with a preformed complex fluconazole/HP-β-CD.
Collapse
Affiliation(s)
- Alessandra Adrover
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Universitá di Roma, Via Eudossiana 18, 00184 Rome, Italy
- Correspondence: (A.A.); (P.P.)
| | - Laura di Muzio
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Jordan Trilli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Chiara Brandelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Patrizia Paolicelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
- Correspondence: (A.A.); (P.P.)
| | - Stefania Petralito
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Maria Antonietta Casadei
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| |
Collapse
|
34
|
Development and Characterization of Inkjet Printed Edible Films for Buccal Delivery of B-Complex Vitamins. Pharmaceuticals (Basel) 2020; 13:ph13090203. [PMID: 32825421 PMCID: PMC7558443 DOI: 10.3390/ph13090203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Buccal films containing two vitamins, i.e., thiamine hydrochloride (THCl) and nicotinic acid (NA), were fabricated via two-dimensional (2D) inkjet printing. For the preparation of buccal films, solubility studies and rheological evaluations were conducted in distilled water and propylene-glycol (PG) as main solvent and viscosity/surface tension modifier, respectively. The increased solubility in the solvents' mixture indicated that manufacturing of several doses of the THCl and NA is achievable. Various doses were deposited onto sugar-sheet substrates, by increasing the number of printing passes. The physiochemical characterization (SEM, DSC, FTIR) revealed that inkjet printing does not affect the solid state of the matrix. Water uptake studies were conducted, to compare the different vitamin-loaded formulations. The in vitro release studies indicated the burst release of both vitamins within 10 min, a preferable feature for buccal administration. The in vitro permeation studies indicated that higher concentrations of the vitamins onto the sugar sheet improved the in vitro permeation performance of printed formulations.
Collapse
|
35
|
Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res 2020; 11:1009-1036. [PMID: 32607938 DOI: 10.1007/s13346-020-00814-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this investigation was to encapsulate carvedilol, a model beta-blocker antihypertensive into nano-spanlastics, followed by incorporation into 1% CMC wafer to afford a mucoadhesive buccal drug delivery system, targeting to sidestep the first-pass metabolism, improving the drug absorption and pharmacological effect, achieving non-invasive buccal delivery for treating hypertension. Carvedilol-loaded nano-spanlastics were rendered by ethanol injection technique, using 23 factorial design. The effect of formulation variables was investigated on nano-spanlastic characteristics. The optimal nano-spanlastic formulation (S2; containing 20% Brij 97) exhibited particle size (239.8 ± 5 nm), entrapment efficiency (98. 16 ± 1.44%), deformability index (8.74 ± 0.42 g), and the flux after 24 h (Jmax) (22.5 ± 0.25 (μg/cm2/h) with enhancement ratio 2.87 as well as excellent stability after storage. Permeation study verified the preeminence of the S2 formula. A confocal laser scanning microscope showed deep penetration of S2 through sheep buccal mucosa formula compared to rhodamine B solution. S2-based wafer showed acceptable characters (pH, swelling, drug content, residence time, and release rate). In vivo studies (pharmacodynamic study and biochemical evaluation) showed considerable improvement in blood pressure, the profile of the lipid, oxidant stress biomarkers, and cardiac markers. Histopathological studies revealed the superiority of S2 wafer in the protection of heart tissues over Carvid®. The results achieved indicate that nano-spanlastic-based wafer offers a promising improving trans-buccal carvedilol delivery system. Graphical abstract.
Collapse
|
36
|
Al-Taie A, Al-Shohani AD, Albasry Z, Altaee A. Current topical trends and novel therapeutic approaches and delivery systems for oral mucositis management. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:94-101. [PMID: 32742107 PMCID: PMC7373116 DOI: 10.4103/jpbs.jpbs_198_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 11/12/2022] Open
Abstract
Oral mucositis (OM) is an extremely serious and challenging complication of chemoradiotherapy, which may limit the efficacy of cancer treatment. Complications related to OM include potential nutrition impairment, high economic burden, and negative impacts on patients' quality of life. Current therapeutic options with local traditional pharmaceutical formulations are largely focused on controlling symptoms, and only few agents are available for treatment. Several local supportive and palliative agents are used for the prevention of OM; however, a standard treatment for the disease has not been confirmed yet. The efficacy of treatment could be improved through the introduction of new medical agents with updated dosage forms that can enhance and optimize local drug delivery and create greater therapeutic effects with fewer side effects. The focus of this review was to provide clear and direct information about the currently available topical therapeutic agents in clinical practice used to cure and/or reduce the incidence of ulcerative symptoms of OM, excluding the associated pain and other coexisting complications such as bacterial and fungal infections. The review also provides recent evidences regarding agents that could be used as promising novel therapies in updated local delivering systems. This will support further encouraging options and approaches for the management of OM and will improve compliance that could be translated in better disease control and survival.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Pharmacy Department, Faculty of Pharmacy, Girne American University, North Cyprus, Turkey
| | - Athmar D Al-Shohani
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Zahraa Albasry
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ataa Altaee
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
37
|
Almeida L, Oshiro Júnior JA, Silva M, Nóbrega F, Andrade J, Santos W, Ribeiro A, Conceição M, Veras G, Medeiros AC. Tablet of Ximenia Americana L. Developed from Mucoadhesive Polymers for Future Use in Oral Treatment of Fungal Infections. Polymers (Basel) 2019; 11:E379. [PMID: 30960363 PMCID: PMC6419192 DOI: 10.3390/polym11020379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022] Open
Abstract
The use of biocompatible polymers such as Hydroxypropylmethylcellulose (HPMC), Hydroxyethylcellulose (HEC), Carboxymethylcellulose (CMC), and Carbopol in solid formulations results in mucoadhesive systems capable of promoting the prolonged and localized release of Active Pharmaceutical Ingredients (APIs). This strategy represents a technological innovation that can be applied to improving the treatment of oral infections, such as oral candidiasis. Therefore, the aim of this study was to develop a tablet of Ximenia americana L. from mucoadhesive polymers for use in the treatment of oral candidiasis. An X. americana extract (MIC of 125 μg·mL-1) was obtained by turbolysis at 50% of ethanol, a level that demonstrated activity against Candida albicans. Differential Thermal Analysis and Fourier Transform Infrared Spectroscopy techniques allowed the choice of HPMC as a mucoadhesive agent, besides polyvinylpyrrolidone, magnesium stearate, and mannitol to integrate the formulation of X. americana. These excipients were granulated with an ethanolic solution 70% v/v at PVP 5%, and a mucoadhesive tablet was obtained by compression. Finally, mucoadhesive strength was evaluated, and the results demonstrated good mucoadhesive forces in mucin disk and pig buccal mucosa. Therefore, the study allowed a new alternative to be developed for the treatment of buccal candidiasis, one which overcomes the inconveniences of common treatments, costs little, and facilitates patients' adhesion.
Collapse
Affiliation(s)
- Lucas Almeida
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - João Augusto Oshiro Júnior
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Milena Silva
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Fernanda Nóbrega
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Jéssica Andrade
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Widson Santos
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Angélica Ribeiro
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Marta Conceição
- Centro de Tecnologia e Desenvolvimento Regional, Universidade Federal da Paraíba, Av. dos Escoteiros, s/n, Mangabeira VII, 58055-000, João Pessoa, Paraíba, Brasil.
| | - Germano Veras
- Laboratório de Química Analítica e Quimiometria, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| | - Ana Cláudia Medeiros
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, R. Baraúnas, 351, Cidade Universitária, 58429-500, Campina Grande, Paraíba, Brasil.
| |
Collapse
|
38
|
SAMIE M, BASHIR S, ABBAS J, KHAN S, AMAN N, JAN H, MUHAMMAD N. Design, Formulation and In Vitro Evaluation of Sustained-release Tablet Formulations of Levosulpiride. Turk J Pharm Sci 2018; 15:309-318. [PMID: 32454675 PMCID: PMC7227831 DOI: 10.4274/tjps.29200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/02/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Levosulpiride is a widely used gastroprokinetic agent in the treatment of various gastric disorders; however, its short half-life and increased dosage frequency leads to non-compliance and possible adverse effects. The prime objective of the current study was to develop a sustained-release formulation of Levosulpiride incorporating bioresorbable cellulose derivatives. MATERIALS AND METHODS Sustained-release formulations of Levosulpiride were prepared through direct compression using various cellulose derivatives such as CMC sodium, HPC, and HPMC in different polymer-to-drug weight ratios as release-modifying polymers. The powder blends and compressed tablets were then subjected to pre-compressional and post-compressional evaluation, as well as FTIR analysis. In vitro release studies were performed for all formulations of the model drug in buffer solution of pH 6.8 at a wave length of 214 nm by a UV-visible light spectrophotometer. RESULTS The FTIR results confirmed that the interaction between components was physical, and from the different kinetic models data, the release profile was best expressed by the Higuchi model because the results showed high linearity. The results also showed formulation F9 to be the ideal one among the developed formulations, exhibiting sustained- release behavior. CONCLUSION Levosulpiride sustained-release matrices were prepared successfully using CMC sodium, HPC, and HPMC as the release-retarding polymer/carrier.
Collapse
Affiliation(s)
- Muhammad SAMIE
- COMSATS Institute of Information Technology, Department of Pharmacy, Abbottabad, Pakistan
| | - Sajid BASHIR
- Sargodha University, Faculty of Pharmacy, Sargodha, Pakistan
| | - Jabbar ABBAS
- People’s University of Medical and Health Sciences for Women, Institute of Pharmaceutical Sciences, Shaheed Benazir Abad, Pakistan
| | - Samiullah KHAN
- COMSATS Institute of Information Technology, Department of Pharmacy, Abbottabad, Pakistan
| | - Nargis AMAN
- COMSATS Institute of Information Technology, Department of Pharmacy, Abbottabad, Pakistan
| | - Habibullah JAN
- Abdul Wali Khan University Mardan, Department of Pharmacy, Mardan, Pakistan
| | - Naveed MUHAMMAD
- Abdul Wali Khan University Mardan, Department of Pharmacy, Mardan, Pakistan
| |
Collapse
|
39
|
|
40
|
Abstract
The aim of this study was to design and optimize risperidone (RIS) mucoadhesive buccal tablets for systemic delivery as an alternative route. Direct compression method was used for the preparation of buccal tablets, and screening studies were conducted with different polymers to determine their effects on tablet characteristics. Carbopol® (CP) and sodium alginate (SA) were selected as two polymer types for further optimization studies by applying response surface methodology. Tablet hardness (TH), ex vivo residence time (RT), and peak detachment force (DF) from buccal mucosa were selected as three important responses. Physicochemical compatibility of formulation excipients and RIS was evaluated by using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analysis. In vitro drug release profiles and release kinetics were investigated; swelling index and matrix erosion studies were conducted. Optimum formulation consisted of 16.4% CP and 20.3% SA, which provided 7.67±0.29 hour ex vivo RT, 45.52±4.85 N TH, and 2.12±0.17 N DF. FT-IR spectroscopy and DSC analysis revealed that there was no chemical interaction present between tablet ingredients. Cumulative RIS release of >90% was achieved after 8 hours of in vitro dissolution studies, which was supported by swelling and matrix erosion analysis. Mechanism of RIS release was fitted best to zero-order model, while release exponent (n) value of 0.77 demonstrated an anomalous (non-Fickian) release, indicating combined erosion and swelling mechanism. The results suggested that optimized buccal tablets of RIS would be a promising and alternative delivery system for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Burak Çelik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| |
Collapse
|
41
|
Reda RI, Wen MM, El-Kamel AH. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine 2017; 12:2335-2351. [PMID: 28392691 PMCID: PMC5376182 DOI: 10.2147/ijn.s131253] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose The purpose of this study was to formulate ketoprofen (KET)-loaded Eudragit L and Eudragit S nanofibers (NFs) by the electrospinning technique for buccal administration to treat oral mucositis as a safe alternative to orally administered KET, which causes gastrointestinal tract (GIT) side effects. Materials and methods NFs were prepared by electrospinning using Eudragit L and Eudragit S. Several variables were evaluated to optimize NF formulation, such as polymer types and concentrations, applied voltage, flow rate and drug concentrations. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) and analyses of drug contents, hydration capacity, surface pH, drug release and ex vivo permeation were performed to evaluate the NFs. The selected formulation (F1) was evaluated in vivo on induced oral mucositis in rabbits. Results SEM revealed that 20% polymer formed smooth and bead-free NFs. DSC results confirmed the amorphous nature of KET in the NFs. FTIR confirmed hydrogen bond formation between the drug and polymer, which stabilized the NFs. Both formulations (F1 and F2) had an acceptable surface pH. The drug loading was >90%. The amount of KET released from NF formulations was statistically significantly higher (P≤0.001) than that released from the corresponding solvent-casted films. The complete release of KET from F1 occurred within 2 hours. Ex vivo permeation study revealed that only a small fraction of drug permeated from F1, which was a better candidate than F2 for local buccal delivery. In vivo evaluation of F1 on oral mucositis induced in rabbits demonstrated that F1 reduced the clinical severity of mucositis in rabbits under the current experimental conditions. The attenuated clinical severity was accompanied by a marked reduction in inflammatory infiltrate and re-epithelization of the epithelial layer. Conclusion Eudragit L100 nanofibers (EL-NF) loaded with KET (F1) suppressed the inflammatory response associated with mucositis, which confirmed the efficacy of local buccal delivery of KET-loaded EL-NF in treating oral mucositis.
Collapse
Affiliation(s)
- Rana Ihab Reda
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| | - Ming Ming Wen
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | | |
Collapse
|
42
|
Morantes SJ, Buitrago DM, Ibla JF, García YM, Lafaurie GI, Parraga JE. Composites of hydrogels and nanoparticles. BIOPOLYMER-BASED COMPOSITES 2017:107-138. [DOI: 10.1016/b978-0-08-101914-6.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|