1
|
Liu J, Aye Y. Tools to Dissect Lipid Droplet Regulation, Players, and Mechanisms. ACS Chem Biol 2025; 20:539-552. [PMID: 40035358 PMCID: PMC11934092 DOI: 10.1021/acschembio.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Spurred by the authors' own recent discovery of reactive metabolite-regulated nexuses involving lipid droplets (LDs), this perspective discusses the latest knowledge and multifaceted approaches toward deconstructing the function of these dynamic organelles, LD-associated localized signaling networks, and protein players. Despite accumulating knowledge surrounding protein families and pathways of conserved importance for LD homeostasis surveillance and maintenance across taxa, much remains to be understood at the molecular level. In particular, metabolic stress-triggered contextual changes in LD-proteins' localized functions, crosstalk with other organelles, and feedback signaling loops and how these are specifically rewired in disease states remain to be illuminated with spatiotemporal precision. We hope this perspective promotes an increased interest in these essential organelles and innovations of new tools and strategies to better understand context-specific LD regulation critical for organismal health.
Collapse
Affiliation(s)
- Jinmin Liu
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| | - Yimon Aye
- University
of Oxford, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
2
|
Pan C, Zhao H, Cai X, Wu M, Qin B, Li J. The connection between autophagy and ferroptosis in AKI: recent advances regarding selective autophagy. Ren Fail 2024; 46:2379601. [PMID: 39099238 DOI: 10.1080/0886022x.2024.2379601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Acute kidney injury (AKI) is a significant issue in public health, displaying a high occurrence rate and mortality rate. Ferroptosis, a form of programmed cell death (PCD), is characterized by iron accumulation and intensified lipid peroxidation. Recent studies have demonstrated the pivotal significance of ferroptosis in AKI caused by diverse stimuli, including ischemia-reperfusion injury (IRI), sepsis and toxins. Autophagy, a multistep process that targets damaged organelles and macromolecules for degradation and recycling, also plays an essential role in AKI. Previous research has demonstrated that autophagy deletion in proximal tubules could aggravate tubular injury and renal function loss, indicating the protective function of autophagy in AKI. Consequently, finding ways to stimulate autophagy has become a crucial therapeutic strategy. The recent discovery of the role of selective autophagy in influencing ferroptosis has identified new therapeutic targets for AKI and has highlighted the importance of understanding the cross-talk between autophagy and ferroptosis. This study aims to provide an overview of the signaling pathways involved in ferroptosis and autophagy, focusing on the mechanisms and functions of selective autophagy and autophagy-dependent ferroptosis. We hope to establish a foundation for future investigations into the interaction between autophagy and ferroptosis in AKI as well as other diseases.
Collapse
Affiliation(s)
- Chunyu Pan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hairui Zhao
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Cai
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manyi Wu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Qin
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
He Y, Liu Y, Li R, Xiang A, Chen X, Yu Q, Su P. The role of autophagy/lipophagy in the response of osteoblastic cells to hyperlipidemia (Review). Exp Ther Med 2024; 28:328. [PMID: 38979020 PMCID: PMC11229398 DOI: 10.3892/etm.2024.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
There has been interest in the connection between cardiovascular diseases and osteoporosis, both of which share hyperlipidemia as a common pathological basis. Osteoporosis is a progressive metabolic bone disease characterized by reduced bone mass, deteriorated bone microstructure, increased bone fragility and heightened risk of bone fractures. Dysfunction of osteoblastic cells, vital for bone formation, is induced by excessive internalization of lipids under hyperlipidemic conditions, forming the crux of hyperlipidemia-associated osteoporosis. Autophagy, a process fundamental to cell self-regulation, serves a critical role in osteoblastic cell function and bone formation. When activated by lipids, lipophagy inhibits osteoblastic cell differentiation in response to elevated lipid concentrations, resulting in reduced bone mass and osteoporosis. However, an in-depth understanding of the precise roles and mechanisms of lipophagy in the regulation of osteoblastic cell function is required. Study of the molecular mechanisms governing osteoblastic cell response to excessive lipids can result in a clearer understanding of osteoporosis; therefore, potential strategies for preventing hyperlipidemia-induced osteoporosis can be developed. The present review discusses recent progress in elucidating the molecular mechanisms of lipophagy in the regulation of osteoblastic cell function, offering insights into hyperlipidemia-induced osteoporosis.
Collapse
Affiliation(s)
- Yizhang He
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Yantong Liu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Ran Li
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Aoqi Xiang
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaochang Chen
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Qi Yu
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Peihong Su
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
4
|
Borén J, Taskinen MR, Packard CJ. Biosynthesis and Metabolism of ApoB-Containing Lipoproteins. Annu Rev Nutr 2024; 44:179-204. [PMID: 38635875 DOI: 10.1146/annurev-nutr-062222-020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Jan Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden;
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
6
|
Sood C, Verma JK, Basak R, Kapoor A, Gupta S, Mukhopadhyay A. Leishmania highjack host lipid body for its proliferation in macrophages by overexpressing host Rab18 and TRAPPC9 by downregulating miR-1914-3p expression. PLoS Pathog 2024; 20:e1012024. [PMID: 38412149 PMCID: PMC10898768 DOI: 10.1371/journal.ppat.1012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Lipids stored in lipid-bodies (LBs) in host cells are potential sources of fatty acids for pathogens. However, the mechanism of recruitment of LBs from the host cells by pathogens to acquire fatty acids is not known. Here, we have found that Leishmania specifically upregulates the expression of host Rab18 and its GEF, TRAPPC9 by downregulating the expression of miR-1914-3p by reducing the level of Dicer in macrophages via their metalloprotease gp63. Our results also show that miR-1914-3p negatively regulates the expression of Rab18 and its GEF in cells. Subsequently, Leishmania containing parasitophorous vacuoles (Ld-PVs) recruit and retain host Rab18 and TRAPPC9. Leishmania infection also induces LB biogenesis in host cells and recruits LBs on Ld-PVs and acquires FLC12-labeled fatty acids from LBs. Moreover, overexpression of miR-1914-3p in macrophages significantly inhibits the recruitment of LBs and thereby suppresses the multiplication of parasites in macrophages as parasites are unable to acquire fatty acids. These results demonstrate a novel mechanism how Leishmania acquire fatty acids from LBs for their growth in macrophages.
Collapse
Affiliation(s)
- Chandni Sood
- National Institute of Immunology, New Delhi, India
| | - Jitender Kumar Verma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Swarnima Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
7
|
López-Alcalá J, Gordon A, Trávez A, Tercero-Alcázar C, Correa-Sáez A, González-Rellán MJ, Rangel-Zúñiga OA, Rodríguez A, Membrives A, Frühbeck G, Nogueiras R, Calzado MA, Guzmán-Ruiz R, Malagón MM. Localization, traffic and function of Rab34 in adipocyte lipid and endocrine functions. J Biomed Sci 2024; 31:2. [PMID: 38183057 PMCID: PMC10770960 DOI: 10.1186/s12929-023-00990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Excessive lipid accumulation in the adipose tissue in obesity alters the endocrine and energy storage functions of adipocytes. Adipocyte lipid droplets represent key organelles coordinating lipid storage and mobilization in these cells. Recently, we identified the small GTPase, Rab34, in the lipid droplet proteome of adipocytes. Herein, we have characterized the distribution, intracellular transport, and potential contribution of this GTPase to adipocyte physiology and its regulation in obesity. METHODS 3T3-L1 and human primary preadipocytes were differentiated in vitro and Rab34 distribution and trafficking were analyzed using markers of cellular compartments. 3T3-L1 adipocytes were transfected with expression vectors and/or Rab34 siRNA and assessed for secretory activity, lipid accumulation and expression of proteins regulating lipid metabolism. Proteomic and protein interaction analyses were employed for the identification of the Rab34 interactome. These studies were combined with functional analysis to unveil the role played by the GTPase in adipocytes, with a focus on the actions conveyed by Rab34 interacting proteins. Finally, Rab34 regulation in response to obesity was also evaluated. RESULTS Our results show that Rab34 localizes at the Golgi apparatus in preadipocytes. During lipid droplet biogenesis, Rab34 translocates from the Golgi to endoplasmic reticulum-related compartments and then reaches the surface of adipocyte lipid droplets. Rab34 exerts distinct functions related to its intracellular location. Thus, at the Golgi, Rab34 regulates cisternae integrity as well as adiponectin trafficking and oligomerization. At the lipid droplets, this GTPase controls lipid accumulation and lipolysis through its interaction with the E1-ubiquitin ligase, UBA1, which induces the ubiquitination and proteasomal degradation of the fatty acid transporter and member of Rab34 interactome, FABP5. Finally, Rab34 levels in the adipose tissue and adipocytes are regulated in response to obesity and related pathogenic insults (i.e., fibrosis). CONCLUSIONS Rab34 plays relevant roles during adipocyte differentiation, including from the regulation of the oligomerization (i.e., biological activity) and secretion of a major adipokine with insulin-sensitizing actions, adiponectin, to lipid storage and mobilization from lipid droplets. Rab34 dysregulation in obesity may contribute to the altered adipokine secretion and lipid metabolism that characterize adipocyte dysfunction in conditions of excess adiposity.
Collapse
Affiliation(s)
- Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Ana Gordon
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain.
| | - Andrés Trávez
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Alejandro Correa-Sáez
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - María Jesús González-Rellán
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Oriol A Rangel-Zúñiga
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Lipids and Atherosclerosis Unit, IMIBIC/University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Amaia Rodríguez
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clinic, University of Navarra, IdiSNA, Pamplona, Spain
| | - Antonio Membrives
- Department of Medical-Surgical Specialties, University of Córdoba (UCO), Reina Sofia University Hospital (HURS), Córdoba, Spain
| | - Gema Frühbeck
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clinic, University of Navarra, IdiSNA, Pamplona, Spain
| | - Rubén Nogueiras
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marco A Calzado
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Nazeer B, Khawar MB, Khalid MU, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Ali A, Fatima H, Ahmad S. Emerging role of lipophagy in liver disorders. Mol Cell Biochem 2024; 479:1-11. [PMID: 36943663 DOI: 10.1007/s11010-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.
Collapse
Affiliation(s)
- Bismillah Nazeer
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Muhammad Usman Khalid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ahmad Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hooriya Fatima
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sadia Ahmad
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
López-Alcalá J, Soler-Vázquez MC, Tercero-Alcázar C, Sánchez-Ceinos J, Guzmán-Ruiz R, Malagón MM, Gordon A. Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions. Int J Mol Sci 2023; 24:17177. [PMID: 38139006 PMCID: PMC10743551 DOI: 10.3390/ijms242417177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The adipose tissue stores excess energy in the form of neutral lipids within adipocyte lipid droplets (LDs). The correct function of LDs requires the interaction with other organelles, such as the endoplasmic reticulum (ER) as well as with LD coat-associated proteins, including Rab18, a mediator of intracellular lipid trafficking and ER-LD interaction. Although perturbations of the inter-organelle contact sites have been linked to several diseases, such as cancer, no information regarding ER-LD contact sites in dysfunctional adipocytes from the obese adipose tissue has been published to date. Herein, the ER-LD connection and Rab18 distribution at ER-LD contact sites are examined in adipocytes challenged with fibrosis and inflammatory conditions, which represent known hallmarks of the adipose tissue in obesity. Our results show that adipocytes differentiated in fibrotic conditions caused ER fragmentation, the expansion of ER-LD contact sites, and modified Rab18 dynamics. Likewise, adipocytes exposed to inflammatory conditions favored ER-LD contact, Rab18 accumulation in the ER, and Rab18 redistribution to large LDs. Finally, our studies in human adipocytes supported the suggestion that Rab18 transitions to the LD coat from the ER. Taken together, our results suggest that obesity-related pathogenic processes alter the maintenance of ER-LD interactions and interfere with Rab18 trafficking through these contact sites.
Collapse
Affiliation(s)
- Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - M. Carmen Soler-Vázquez
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Instituto de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institute (KI), Karolinska University Hospital (NKS), 17177 Stockholm, Sweden;
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Gordon
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| |
Collapse
|
10
|
Thomes PG, Strupp MS, Donohue TM, Kubik JL, Sweeney S, Mahmud R, Schott MB, Schulze RJ, McNiven MA, Casey CA. Hydroxysteroid 17β-dehydrogenase 11 accumulation on lipid droplets promotes ethanol-induced cellular steatosis. J Biol Chem 2023; 299:103071. [PMID: 36849008 PMCID: PMC10060109 DOI: 10.1016/j.jbc.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Lipid droplets (LDs) are fat-storing organelles enclosed by a phospholipid monolayer, which harbors membrane-associated proteins that regulate distinct LD functions. LD proteins are degraded by the ubiquitin-proteasome system (UPS) and/or by lysosomes. Because chronic ethanol (EtOH) consumption diminishes the hepatic functions of the UPS and lysosomes, we hypothesized that continuous EtOH consumption slows the breakdown of lipogenic LD proteins targeted for degradation, thereby causing LD accumulation. Here, we report that LDs from livers of EtOH-fed rats exhibited higher levels of polyubiquitylated-proteins, linked at either lysine 48 (directed to proteasome) or lysine 63 (directed to lysosomes) than LDs from pair-fed control rats. MS proteomics of LD proteins, immunoprecipitated with UB remnant motif antibody (K-ε-GG), identified 75 potential UB proteins, of which 20 were altered by chronic EtOH administration. Among these, hydroxysteroid 17β-dehydrogenase 11 (HSD17β11) was prominent. Immunoblot analyses of LD fractions revealed that EtOH administration enriched HSD17β11 localization to LDs. When we overexpressed HSD17β11 in EtOH-metabolizing VA-13 cells, the steroid dehydrogenase 11 became principally localized to LDs, resulting in elevated cellular triglycerides (TGs). Ethanol exposure augmented cellular TG, while HSD17β11 siRNA decreased both control and EtOH-induced TG accumulation. Remarkably, HSD17β11 overexpression lowered the LD localization of adipose triglyceride lipase. EtOH exposure further reduced this localization. Reactivation of proteasome activity in VA-13 cells blocked the EtOH-induced rises in both HSD17β11 and TGs. Our findings indicate that EtOH exposure blocks HSD17β11 degradation by inhibiting the UPS, thereby stabilizing HSD17β11 on LD membranes, to prevent lipolysis by adipose triglyceride lipase and promote cellular LD accumulation.
Collapse
Affiliation(s)
- Paul G Thomes
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Michael S Strupp
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Terence M Donohue
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacy L Kubik
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sarah Sweeney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Mahmud
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Micah B Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ryan J Schulze
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Carol A Casey
- Department of Veterans' Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
11
|
Pressly JD, Gurumani MZ, Varona Santos JT, Fornoni A, Merscher S, Al-Ali H. Adaptive and maladaptive roles of lipid droplets in health and disease. Am J Physiol Cell Physiol 2022; 322:C468-C481. [PMID: 35108119 PMCID: PMC8917915 DOI: 10.1152/ajpcell.00239.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.
Collapse
Affiliation(s)
- Jeffrey D. Pressly
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Z. Gurumani
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier T. Varona Santos
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Hassan Al-Ali
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida,3Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida,4The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida,5Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
12
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
13
|
Sekar M, Thirumurugan K. Autophagy: a molecular switch to regulate adipogenesis and lipolysis. Mol Cell Biochem 2022; 477:727-742. [PMID: 35022960 DOI: 10.1007/s11010-021-04324-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022]
Abstract
Obesity is a complex epidemic disease caused by an imbalance of adipose tissue function that results in hyperglycemia, hyperlipidemia and insulin resistance which further develop into type 2 diabetes, cardiovascular disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Adipose tissue is responsible for fat storage; white adipose tissue stores excess energy as fat for availability during starvation, whereas brown adipose tissue regulates thermogenesis through fat oxidation using uncoupling protein 1. However, hypertrophic fat storage results in inflammation and increase the chances for obesity which triggers autophagy genes and lipolytic enzymes to regulate lipid metabolism. Autophagy degrades cargo molecule with the help of lysosome and redistributes the energy back to the cell. Autophagy regulates adipocyte differentiation by modulating master regulators of adipogenesis. Adipogenesis is the process which stores excessive energy in the form of lipid droplets. Lipid droplets (LD) are dynamic cellular organelles that store toxic free-fatty acids into neutral triglycerides in adipose tissue. LD activates both lipolysis and lipophagy to degrade excess triglycerides. In obese tissue, autophagy is activated via pro-inflammatory cytokines produced by surplus fat stored in the adipose tissue. This review focused on the process of autophagy and adipogenesis and the transcription factors that regulate lipogenesis and lipolysis in the adipose tissue. We have also discussed about the importance of autophagic regulation within adipose tissue which controls the onset of obesity and its associated diseases.
Collapse
Affiliation(s)
- Mouliganesh Sekar
- Structural Biology Lab, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Peng Y, Zeng Q, Wan L, Ma E, Li H, Yang X, Zhang Y, Huang L, Lin H, Feng J, Xu Y, Li J, Liu M, Liu J, Lin C, Sun Z, Cheng G, Zhang X, Liu J, Li D, Wei M, Mo Y, Mu X, Deng X, Zhang D, Dong S, Huang H, Fang Y, Gao Q, Yang X, Wu F, Zhong H, Wei C. GP73 is a TBC-domain Rab GTPase-activating protein contributing to the pathogenesis of non-alcoholic fatty liver disease without obesity. Nat Commun 2021; 12:7004. [PMID: 34853313 PMCID: PMC8636488 DOI: 10.1038/s41467-021-27309-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
The prevalence of non-obese nonalcoholic fatty liver disease (NAFLD) is increasing worldwide with unclear etiology and pathogenesis. Here, we show GP73, a Golgi protein upregulated in livers from patients with a variety of liver diseases, exhibits Rab GTPase-activating protein (GAP) activity regulating ApoB export. Upon regular-diet feeding, liver-GP73-high mice display non-obese NAFLD phenotype, characterized by reduced body weight, intrahepatic lipid accumulation, and gradual insulin resistance development, none of which can be recapitulated in liver-GAP inactive GP73-high mice. Common and specific gene expression signatures associated with GP73-induced non-obese NAFLD and high-fat diet (HFD)-induced obese NAFLD are revealed. Notably, metformin inactivates the GAP activity of GP73 and alleviates GP73-induced non-obese NAFLD. GP73 is pathologically elevated in NAFLD individuals without obesity, and GP73 blockade improves whole-body metabolism in non-obese NAFLD mouse model. These findings reveal a pathophysiological role of GP73 in triggering non-obese NAFLD and may offer an opportunity for clinical intervention. Dysregulation of lipid metabolism and transport contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here the authors identify GP73 as a TBC-domain Rab GTPase-activating protein that regulates very low-density lipoprotein export and promotes NAFLD development in mice.
Collapse
Affiliation(s)
- Yumeng Peng
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Qiang Zeng
- Health management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huilong Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Haotian Lin
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiangyue Feng
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yixin Xu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Muyi Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Changqin Lin
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Zhiwei Sun
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuemiao Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongrui Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Meng Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yunhai Mo
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xuetao Mu
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Deng
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dandan Zhang
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Siqing Dong
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hanqing Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yi Fang
- Department of Endocrinology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co., Ltd., Beijing, China
| | - Xiaoli Yang
- Department of Clinical Laboratory, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| |
Collapse
|
16
|
A Decade of Mighty Lipophagy: What We Know and What Facts We Need to Know? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5539161. [PMID: 34777688 PMCID: PMC8589519 DOI: 10.1155/2021/5539161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Lipids are integral cellular components that act as substrates for energy provision, signaling molecules, and essential constituents of biological membranes along with a variety of other biological functions. Despite their significance, lipid accumulation may result in lipotoxicity, impair autophagy, and lysosomal function that may lead to certain diseases and metabolic syndromes like obesity and even cell death. Therefore, these lipids are continuously recycled and redistributed by the process of selective autophagy specifically termed as lipophagy. This selective form of autophagy employs lysosomes for the maintenance of cellular lipid homeostasis. In this review, we have reviewed the current literature about how lipid droplets (LDs) are recruited towards lysosomes, cross-talk between a variety of autophagy receptors present on LD surface and lysosomes, and lipid hydrolysis by lysosomal enzymes. In addition to it, we have tried to answer most of the possible questions related to lipophagy regulation at different levels. Moreover, in the last part of this review, we have discussed some of the pathological states due to the accumulation of these LDs and their possible treatments under the light of currently available findings.
Collapse
|
17
|
Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, Hu W. Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res 2020; 224:55-70. [PMID: 32434006 PMCID: PMC7442628 DOI: 10.1016/j.trsl.2020.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
NFκB signaling and protein trafficking network play important roles in various biological and pathological processes. NIK-and-IKK2-binding protein (NIBP), also known as trafficking protein particle complex 9 (TRAPPC9), is a prototype member of a novel protein family, and has been shown to regulate both NFκB signaling pathway and protein transport/trafficking. NIBP is extensively expressed in the nervous system and plays an important role in regulating neurogenesis and neuronal differentiation. NIBP/TRAPPC9 mutations have been linked to an autosomal recessive intellectual disability syndrome, called NIBP Syndrome, which is characterized by nonsyndromic autosomal recessive intellectual disability along with other symptoms such as obesity, microcephaly, and facial dysmorphia. As more cases of NIBP Syndrome are identified, new light is being shed on the role of NIBP/TRAPPC9 in the central nervous system developments and diseases. NIBP is also involved in the enteric nervous system. This review will highlight the importance of NIBP/TRAPPC9 in central and enteric nervous system diseases, and the established possible mechanisms for developing a potential therapeutic.
Collapse
Affiliation(s)
- Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arianna DeGruttola
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Shin DW. Lipophagy: Molecular Mechanisms and Implications in Metabolic Disorders. Mol Cells 2020; 43:686-693. [PMID: 32624503 PMCID: PMC7468585 DOI: 10.14348/molcells.2020.0046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation system that breaks down damaged organelles or damaged proteins using intracellular lysosomes. Recent studies have also revealed that various forms of selective autophagy play specific physiological roles under different cellular conditions. Lipid droplets, which are mainly found in adipocytes and hepatocytes, are dynamic organelles that store triglycerides and are critical to health. Lipophagy is a type of selective autophagy that targets lipid droplets and is an essential mechanism for maintaining homeostasis of lipid droplets. However, while processes that regulate lipid droplets such as lipolysis and lipogenesis are relatively well known, the major factors that control lipophagy remain largely unknown. This review introduces the underlying mechanism by which lipophagy is induced and regulated, and the current findings on the major roles of lipophagy in physiological and pathological status. These studies will provide basic insights into the function of lipophagy and may be useful for the development of new therapies for lipophagy dysfunction-related diseases.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
19
|
Kloska A, Węsierska M, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int J Mol Sci 2020; 21:E6113. [PMID: 32854299 PMCID: PMC7504288 DOI: 10.3390/ijms21176113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
This review discusses how lipophagy and cytosolic lipolysis degrade cellular lipids, as well as how these pathway ys communicate, how they affect lipid metabolism and energy homeostasis in cells and how their dysfunction affects the pathogenesis of lipid storage and lipid metabolism diseases. Answers to these questions will likely uncover novel strategies for the treatment of aforementioned human diseases, but, above all, will avoid destructive effects of high concentrations of lipids-referred to as lipotoxicity-resulting in cellular dysfunction and cell death.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| |
Collapse
|
20
|
Sinha RA, Rajak S, Singh BK, Yen PM. Hepatic Lipid Catabolism via PPARα-Lysosomal Crosstalk. Int J Mol Sci 2020; 21:2391. [PMID: 32244266 PMCID: PMC7170715 DOI: 10.3390/ijms21072391] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors which belong to the nuclear hormone receptor superfamily. They regulate key aspects of energy metabolism within cells. Recently, PPARα has been implicated in the regulation of autophagy-lysosomal function, which plays a key role in cellular energy metabolism. PPARα transcriptionally upregulates several genes involved in the autophagy-lysosomal degradative pathway that participates in lipolysis of triglycerides within the hepatocytes. Interestingly, a reciprocal regulation of PPARα nuclear action by autophagy-lysosomal activity also exists with implications in lipid metabolism. This review succinctly discusses the unique relationship between PPARα nuclear action and lysosomal activity and explores its impact on hepatic lipid homeostasis under pathological conditions such as non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Brijesh K. Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169587, Singapore (P.M.Y.)
| | - Paul M. Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169587, Singapore (P.M.Y.)
| |
Collapse
|
21
|
Drizyte-Miller K, Schott MB, McNiven MA. Lipid Droplet Contacts With Autophagosomes, Lysosomes, and Other Degradative Vesicles. ACTA ACUST UNITED AC 2020; 3:1-13. [PMID: 34113777 PMCID: PMC8188833 DOI: 10.1177/2515256420910892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid droplets (LDs) are dynamic fat-storage organelles that interact readily with numerous cellular structures and organelles. A prominent LD contact site is with degradative vesicles such as autophagosomes, lysosomes, autolysosomes, and late endosomes. These contacts support lipid catabolism through the selective autophagy of LDs (i.e., lipophagy) or the recruitment of cytosolic lipases to the LD surface (i.e., lipolysis). However, LD-autophagosome contacts serve additional functions beyond lipid catabolism, including the supply of lipids for autophagosome biogenesis. In this review, we discuss the molecular mediators of LD contacts with autophagosomes and other degradative organelles as well as the diverse cellular functions of these contact sites in health and disease.
Collapse
Affiliation(s)
- Kristina Drizyte-Miller
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, United States
| | - Micah B Schott
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Mark A McNiven
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
22
|
Kounakis K, Chaniotakis M, Markaki M, Tavernarakis N. Emerging Roles of Lipophagy in Health and Disease. Front Cell Dev Biol 2019; 7:185. [PMID: 31552248 PMCID: PMC6746960 DOI: 10.3389/fcell.2019.00185] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
The term lipophagy is used to describe the autophagic degradation of lipid droplets, the main lipid storage organelles of eukaryotic cells. Ever since its discovery in 2009, lipophagy has emerged as a significant component of lipid metabolism with important implications for organismal health. This review aims to provide a brief summary of our current knowledge on the mechanisms that are responsible for regulating lipophagy and the impact the process has under physiological and pathological conditions.
Collapse
Affiliation(s)
- Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Manos Chaniotakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Chemistry, University of Crete, Heraklion, Greece
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
23
|
Abstract
Lipid droplets (LDs) are key sites of neutral lipid storage that can be found in all cells. Metabolic imbalances between the synthesis and degradation of LDs can result in the accumulation of significant amounts of lipid deposition, a characteristic feature of hepatocytes in patients with fatty liver disease, a leading indication for liver transplant in the United States. In this review, the authors highlight new literature related to the synthesis and autophagic catabolism of LDs, discussing key proteins and machinery involved in these processes. They also discuss recent findings that have revealed novel genetic risk factors associated with LD biology that contribute to lipid retention in the diseased liver.
Collapse
Affiliation(s)
- Ryan J. Schulze
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
24
|
Hegde B, Bodduluri SR, Satpathy SR, Alghsham RS, Jala VR, Uriarte SM, Chung DH, Lawrenz MB, Haribabu B. Inflammasome-Independent Leukotriene B 4 Production Drives Crystalline Silica-Induced Sterile Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 200:3556-3567. [PMID: 29610142 DOI: 10.4049/jimmunol.1701504] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Silicosis is a lung inflammatory disease caused by chronic exposure to crystalline silica (CS). Leukotriene B4 (LTB4) plays an important role in neutrophilic inflammation, which drives silicosis and promotes lung cancer. In this study, we examined the mechanisms involved in CS-induced inflammatory pathways. Phagocytosis of CS particles is essential for the production of LTB4 and IL-1β in mouse macrophages, mast cells, and neutrophils. Phagosomes enclosing CS particles trigger the assembly of lipidosome in the cytoplasm, which is likely the primary source of CS-induced LTB4 production. Activation of the JNK pathway is essential for both CS-induced LTB4 and IL-1β production. Studies with bafilomycin-A1- and NLRP3-deficient mice revealed that LTB4 synthesis in the lipidosome is independent of inflammasome activation. Small interfering RNA knockdown and confocal microscopy studies showed that GTPases Rab5c, Rab40c along with JNK1 are essential for lipidosome formation and LTB4 production. BI-78D3, a JNK inhibitor, abrogated CS-induced neutrophilic inflammation in vivo in an air pouch model. These results highlight an inflammasome-independent and JNK activation-dependent lipidosome pathway as a regulator of LTB4 synthesis and CS-induced sterile inflammation.
Collapse
Affiliation(s)
- Bindu Hegde
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202; and
| | - Sobha R Bodduluri
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202; and
| | - Shuchismita R Satpathy
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202; and
| | - Ruqaih S Alghsham
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202; and
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202.,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202; and
| | - Silvia M Uriarte
- Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Dong-Hoon Chung
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, KY 40202; .,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202; and
| |
Collapse
|
25
|
Tan Z, Xiao L, Tang M, Bai F, Li J, Li L, Shi F, Li N, Li Y, Du Q, Lu J, Weng X, Yi W, Zhang H, Fan J, Zhou J, Gao Q, Onuchic JN, Bode AM, Luo X, Cao Y. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Am J Cancer Res 2018; 8:2329-2347. [PMID: 29721083 PMCID: PMC5928893 DOI: 10.7150/thno.21451] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and MitoTracker Red probe. Results: FAO was active in radiation-resistant NPC cells, and the rate-limiting enzyme of FAO, carnitine palmitoyl transferase 1 A (CPT1A), was consistently up-regulated in these cells. The protein level of CPT1A was significantly associated with poor overall survival of NPC patients following radiotherapy. Inhibition of CPT1A re-sensitized NPC cells to radiation therapy by activating mitochondrial apoptosis both in vitro and in vivo. In addition, we identified Rab14 as a novel CPT1A binding protein. The CPT1A-Rab14 interaction facilitated fatty acid trafficking from lipid droplets to mitochondria, which decreased radiation-induced lipid accumulation and maximized ATP production. Knockdown of Rab14 attenuated CPT1A-mediated fatty acid trafficking and radiation resistance. Conclusion: An active FAO is a vital signature of NPC radiation resistance. Targeting CPT1A could be a beneficial regimen to improve the therapeutic effects of radiotherapy in NPC patients. Importantly, the CPT1A-Rab14 interaction plays roles in CPT1A-mediated radiation resistance by facilitating fatty acid trafficking. This interaction could be an attractive interface for the discovery of novel CPT1A inhibitors.
Collapse
|
26
|
Schulze RJ, Sathyanarayan A, Mashek DG. Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28642194 DOI: 10.1016/j.bbalip.2017.06.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). While the field of lipophagy research is relatively young, an expansion of research in this area over the past several years has greatly advanced our understanding of lipophagy. Since its original characterization in fasted liver, the contribution of lipophagy is now recognized in various organisms, cell types, metabolic states and disease models. Moreover, recent studies provide exciting new insights into the underlying mechanisms of lipophagy induction as well as the consequences of lipophagy on cell metabolism and signaling. This review summarizes recent work focusing on LDs and lipophagy as well as highlighting challenges and future directions of research as our understanding of lipophagy continues to grow and evolve. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Ryan J Schulze
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, MN, United States
| | - Aishwarya Sathyanarayan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
27
|
Li C, Luo X, Zhao S, Siu GK, Liang Y, Chan HC, Satoh A, Yu SS. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 2016; 36:441-457. [PMID: 28003315 DOI: 10.15252/embj.201694866] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/09/2022] Open
Abstract
The transport protein particle (TRAPP) was initially identified as a vesicle tethering factor in yeast and as a guanine nucleotide exchange factor (GEF) for Ypt1/Rab1. In mammals, structures and functions of various TRAPP complexes are beginning to be understood. We found that mammalian TRAPPII was a GEF for both Rab18 and Rab1. Inactivation of TRAPPII-specific subunits by various methods including siRNA depletion and CRISPR-Cas9-mediated deletion reduced lipolysis and resulted in aberrantly large lipid droplets. Recruitment of Rab18 onto lipid droplet (LD) surface was defective in TRAPPII-deleted cells, but the localization of Rab1 on Golgi was not affected. COPI regulates LD homeostasis. We found that the previously documented interaction between TRAPPII and COPI was also required for the recruitment of Rab18 to the LD We hypothesize that the interaction between COPI and TRAPPII helps bring TRAPPII onto LD surface, and TRAPPII, in turn, activates Rab18 and recruits it on the LD surface to facilitate its functions in LD homeostasis.
Collapse
Affiliation(s)
- Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xiaomin Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shan Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Gavin Ky Siu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yongheng Liang
- Key Laboratory of Agricultural Environmental Microbiology of MOA, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hsiao Chang Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Sidney Sb Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China .,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
28
|
Honvo-Houéto E, Henry C, Chat S, Layani S, Truchet S. The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane. Mol Biol Cell 2016; 27:2946-64. [PMID: 27535430 PMCID: PMC5042581 DOI: 10.1091/mbc.e16-06-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/03/2016] [Indexed: 12/28/2022] Open
Abstract
The endoplasmic reticulum and the secretory vesicles contribute to the formation of the milk fat globule membrane. In addition, lipid raft microdomains may play a role in the transport and/or secretion of the milk fat globule, and SNARE proteins appear to coordinate membrane exchanges during milk product secretion. During lactation, mammary epithelial cells secrete huge amounts of milk from their apical side. The current view is that caseins are secreted by exocytosis, whereas milk fat globules are released by budding, enwrapped by the plasma membrane. Owing to the number and large size of milk fat globules, the membrane surface needed for their release might exceed that of the apical plasma membrane. A large-scale proteomics analysis of both cytoplasmic lipid droplets and secreted milk fat globule membranes was used to decipher the cellular origins of the milk fat globule membrane. Surprisingly, differential analysis of protein profiles of these two organelles strongly suggest that, in addition to the plasma membrane, the endoplasmic reticulum and the secretory vesicles contribute to the milk fat globule membrane. Analysis of membrane-associated and raft microdomain proteins reinforces this possibility and also points to a role for lipid rafts in milk product secretion. Our results provide evidence for a significant contribution of the endoplasmic reticulum to the milk fat globule membrane and a role for SNAREs in membrane dynamics during milk secretion. These novel aspects point to a more complex model for milk secretion than currently envisioned.
Collapse
Affiliation(s)
- Edith Honvo-Houéto
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Céline Henry
- INRA, UMR1319, MICALIS, PAPPSO, F-78352 Jouy-en-Josas Cedex, France
| | - Sophie Chat
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Sarah Layani
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Sandrine Truchet
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| |
Collapse
|
29
|
Grasselli E, Voci A, Demori I, Vecchione G, Compalati AD, Gallo G, Goglia F, De Matteis R, Silvestri E, Vergani L. Triglyceride Mobilization from Lipid Droplets Sustains the Anti-Steatotic Action of Iodothyronines in Cultured Rat Hepatocytes. Front Physiol 2016; 6:418. [PMID: 26793120 PMCID: PMC4709507 DOI: 10.3389/fphys.2015.00418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue, dietary lipids and de novo lipogenesis are sources of hepatic free fatty acids (FFAs) that are stored in lipid droplets (LDs) as triacylglycerols (TAGs). Destiny of TAGs stored in LDs is determined by LD proteomic equipment. When adipose triglyceride lipase (ATGL) localizes at LD surface the lipid mobilization is stimulated. In this work, an in vitro model of cultured rat hepatocytes mimicking a mild steatosis condition was used to investigate the direct lipid-lowering action of iodothyronines, by focusing, in particular, on LD-associated proteins, FFA oxidation and lipid secretion. Our results demonstrate that in “steatotic” hepatocytes iodothyronines reduced the lipid excess through the recruitment of ATGL on LD surface, and the modulation of the LD-associated proteins Rab18 and TIP47. As an effect of ATGL recruitment, iodothyronines stimulated the lipid mobilization from LDs then followed by the up-regulation of carnitine-palmitoyl-transferase (CPT1) expression and the stimulation of cytochrome-c oxidase (COX) activity that seems to indicate a stimulation of mitochondrial function. The lipid lowering action of iodothyronines did not depend on increased TAG secretion. On the basis of our data, ATGL could be indicated as an early mediator of the lipid-lowering action of iodothyronines able to channel hydrolyzed FFAs toward mitochondrial beta-oxidation rather than secretion.
Collapse
Affiliation(s)
- Elena Grasselli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di GenovaGenova, Italia; Istituto Nazionale Biostrutture e BiosistemiRoma, Italia
| | - Adriana Voci
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova Genova, Italia
| | - Ilaria Demori
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova Genova, Italia
| | - Giulia Vecchione
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova Genova, Italia
| | - Andrea D Compalati
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova Genova, Italia
| | - Gabriella Gallo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova Genova, Italia
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università del Sannio Benevento, Italia
| | - Rita De Matteis
- Dipartimento di Scienze Biomolecolari, Università di Urbino Urbino, Italia
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università del Sannio Benevento, Italia
| | - Laura Vergani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di GenovaGenova, Italia; Istituto Nazionale Biostrutture e BiosistemiRoma, Italia
| |
Collapse
|
30
|
Chua CEL, Tang BL. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci 2015; 72:2289-304. [PMID: 25690707 PMCID: PMC11113524 DOI: 10.1007/s00018-015-1862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The vesicular transport pathways, which shuttle materials to and from the cell surface and within the cell, and the metabolic (growth factor and nutrient) signalling pathways, which integrate a variety of extracellular and intracellular signals to mediate growth, proliferation or survival, are both important for cellular physiology. There is evidence to suggest that the transport and metabolic signalling pathways intersect-vesicular transport can affect the regulation of metabolic signals and vice versa. The Rab family GTPases regulate the specificity of vesicular transport steps in the cell. Together with their interacting proteins, Rabs would likely constitute the points of intersection between vesicular transport and metabolic signalling pathways. Examples of these points would include growth factor signalling, glucose and lipid metabolism, as well as autophagy. Many of these processes involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades, or are regulated by TORC signalling. A general functionality of the vesicular transport processes controlled by the Rabs is also important for spatial and temporal regulation of the transmission of metabolic signals between the cell surface and the nucleus. In other cases, specific Rabs and their interacting proteins are known to function in recruiting metabolism-related proteins to target membranes, or may compete with other factors in the TORC signalling pathway as a means of metabolic regulation. We review and discuss herein examples of how Rabs and their interacting proteins can mediate metabolic signalling and regulation in cells.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore, 117597, Singapore,
| | | |
Collapse
|
31
|
D’Aquila T, Sirohi D, Grabowski JM, Hedrick VE, Paul LN, Greenberg AS, Kuhn RJ, Buhman KK. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLoS One 2015; 10:e0126823. [PMID: 25992653 PMCID: PMC4436333 DOI: 10.1371/journal.pone.0126823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 01/23/2023] Open
Abstract
Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption.
Collapse
Affiliation(s)
- Theresa D’Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Devika Sirohi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jeffrey M. Grabowski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Victoria E. Hedrick
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Lake N. Paul
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew S. Greenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Kimberly K. Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Seo H, Jeon BD, Ryu S. Persimmon vinegar ripening with the mountain-cultivated ginseng ingestion reduces blood lipids and lowers inflammatory cytokines in obese adolescents. J Exerc Nutrition Biochem 2015; 19:1-10. [PMID: 25960949 PMCID: PMC4424440 DOI: 10.5717/jenb.2015.19.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/02/2015] [Accepted: 03/11/2015] [Indexed: 11/17/2022] Open
Abstract
[Purpose] This study investigated the effect of the vinegar, which is made of 4-year-old mountain-cultivated ginseng ripened into 4-year-matured persimmon vinegar, on the blood lipids level and inflammatory cytokines concentration in obese female adolescents. [Methods] Subjects ingested the vinegar, so-called 'mountain-cultivated ginseng persimmon vinegar (MPV)', without meals every day for 6 weeks with activities control. Subjects were grouped into control (CON), persimmon vinegar (PV), and MPV with 10 people in each group. Blood lipids, triglyceride (TG), total-cholesterol (TC), and high density lipoprotein-cholesterol (HDL-C) were analyzed. Also, glutamic oxaloacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT) were analyzed for the hepatotoxicity. Blood cytokines, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) were analyzed. [Results] Subjects showed a high reduction in body weight and body fat. Their blood lipid level was effectively improved, and the secretion of inflammatory cytokine was suppressed as well, except for TNF-α. However, the change ratio of the cytokines was high in PV and MPV. Such results were similar to those from research subjects who took persimmon vinegar only (PV), but the effect of the vinegar (MPV) was more remarkable. Besides, this mixture was found to have no effect on the hepatotoxicity. [Conclusion] The significance of this study is that all the experiments were conducted without controlling research subjects' daily lives, and it is suggested that the vinegar may be recommended as a kind of health supplement food to suppress obesity. Especially, since these two products are traditional foods of Korean people, which have been taken for ages, it is expected that the fusing of two foods may be better applied to ordinary people who are concerned about obesity.
Collapse
Affiliation(s)
- Hyobin Seo
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea
| | - Byung-Duk Jeon
- Department of Physical Education Leisure, Suseong College, Daegu, Korea
| | - Sungpil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea
| |
Collapse
|
33
|
Liang P, He L, Yu J, Xie Z, Chen X, Mao Q, Liang C, Huang Y, Lu G, Yu X. Identification and characterization of a member of Rab subfamily, Rab8, from Clonorchis sinensis. Parasitol Res 2015; 114:1857-64. [PMID: 25773178 DOI: 10.1007/s00436-015-4372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
Abstract
The Rabs act as a binary molecular switch that utilizes the conformational changes associated with the GTP/GDP cycle to elicit responses from target proteins. It regulates a broad spectrum of cellular processes including cell proliferation, cytoskeletal assembly, and intracellular membrane trafficking in eukaryotes. The Rab8 from Clonorchis sinensis (CsRab8) was composed of 199 amino acids. The deduced amino acid sequence shared above 50% identities with other species from trematode, tapeworm, mammal, insecta, nematode, and reptile, respectively. The homologous analysis of sequences showed the conservative domains: G1 box (GDSGVGKS), G2 box (T), G3 box (DTAG), G4 box (GNKCDL), and G5 box. In addition, the structure modeling had also shown other functional domains: GTP/Mg(2+) binding sites, switch I region, and switch II region. A phylogenic tree analysis indicated that the CsRab8 was clustered with the Rab from Schistosoma japonicum, and trematode and tapeworm came from the same branch, which was different from an evolutional branch built by other species, such as mammal animal, insecta, nematode, and reptile. The recombinant CsRab8 protein was expressed in Escherichia coli and the purified protein was a soluble molecule by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. CsRab8 was identified as a component of excretory/secretory products of C. sinensis by western blot analysis. The transcriptional level of CsRab8 at metacercaria stage was the highest at the four stages and higher by 56.49-folds than that at adult worm, 1.23-folds than that at excysted metacercaria, and 2.69-folds than that at egg stage. Immunohistochemical localization analysis showed that CsRab8 was specifically distributed in the tegument, vitellarium, eggs, and testicle of adult worms, and detected on the vitellarium and tegument of metacercaria. Combined with the results, CsRab8 is indispensable for survival and development of parasites, especially for regulating excretory/secretory products secretion.
Collapse
Affiliation(s)
- Pei Liang
- Department of Pathogen Biology, Hainan Medical College, Haikou, Hainan, 571199, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|