1
|
Saaoud F, Liu L, Xu K, Lu Y, Shao Y, Ben Issa M, Jiang X, Wang X, Liu X, Autieri M, Wu S, Wei J, Yu J, Bouchareb R, Gillespie A, Luo JJ, Martinez L, Vazquez-Padron R, Sun J, Zhao H, Wang H, Pratico D, Yang X. Alzheimer's disease as an auto-innate immune pathology with potential cell trans-differentiation and enhanced trained immunity in 3xTg-AD mouse model. J Alzheimers Dis 2025; 105:550-572. [PMID: 40232249 DOI: 10.1177/13872877251329583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairment. Neuroinflammatory processes, mediated by glial and immune cells, contribute to neuronal damage. Emerging evidence implicates innate immune mechanisms, including trained immunity and cell trans-differentiation, in AD pathogenesis, though their roles remain unclear.ObjectiveTo investigate transcriptomic changes in the 3xTg-AD mouse model, focusing on trained immunity and cell trans-differentiation in disease mechanisms.MethodsRNA-sequencing was performed on brain tissue (cortex plus hippocampus) from 11-month-old female 3xTg-AD and wild-type mice (n = 3/group). Differentially expressed genes (fold change > 1.5, p < 0.05) were identified and followed by bioinformatics and knowledge-based transcriptomic profiling. Public AD datasets were also analyzed.Results3xTg-AD mice exhibited 316 upregulated and 412 downregulated genes. Downregulated genes included those for blood-brain barrier protein, while upregulated genes related to cerebrospinal fluid. Increased expression of proinflammatory markers, as well as genes related to cell differentiation, proliferation, activation, and adhesion. Upregulation of genes associated with cell migration and trans-differentiation suggests a potential role for inflammation and cellular plasticity. Additionally, genes involved in inflammasome pathways, immunometabolism, and trained immunity were upregulated. Mechanistically, these genes were modulated by knockdown of trained immunity promoter SET-7, overexpression of trained immunity inhibitor IL-37, and knockout of inflammasome genes IL-1 receptor, caspase-1, and pattern recognition receptor CD36.ConclusionsThe finding underscore the potential role of trained immunity and cell trans-differentiation in AD, revealing a mechanistic framework in which danger-associated molecular patterns drive innate immune responses, inflammasome activation, and cell plasticity contribute to AD, offering therapeutic targets for neuroinflammation and cellular reprograming.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Michael Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Juncheng Wei
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jun Yu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rihab Bouchareb
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jin Jun Luo
- Department of Neurology, Temple University, Philadelphia, PA, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huaqing Zhao
- Department of Biomedical Education and Data Sciences, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Domenico Pratico
- Alzheimer's Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Abbas A, Hammad AS, Zakaria ZZ, Al-Asmakh M, Hussain K, Al-Shafai M. gnas Knockdown Induces Obesity and AHO Features in Early Zebrafish Larvae. Int J Mol Sci 2024; 25:12674. [PMID: 39684386 DOI: 10.3390/ijms252312674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
GNAS (Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gsα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in GNAS, resulting in Gsα deficiency, cause different variants of pseudohypoparathyroidism, which may manifest features of Albright hereditary osteodystrophy (AHO, a syndrome characterized by early-onset obesity and other developmental defects). Recent findings have linked Gsα deficiency with isolated, severe, early-onset obesity, suggesting it as a potential, underrecognized cause of monogenic, non-syndromic obesity. This study was prompted by identifying several GNAS variants of uncertain significance (VUSs) in pediatric patients presenting with unexplained, severe, early-onset obesity at Sidra Medicine in Qatar. To functionally characterize these variants, we developed the first zebrafish model of Gsα deficiency, offering numerous advantages over other model systems. This was achieved by knockdown of the ortholog through microinjection of translation-blocking Morpholino antisense oligonucleotides into the yolks of 1-8-cell-stage zebrafish embryos. The morphant larvae displayed an obese phenotype, marked by significantly enlarged yolk sacs, increased neutral lipid accumulation, and reduced metabolic rates, among other developmental abnormalities resembling those in AHO. This zebrafish model lays the foundation for efficient functional characterization of GNAS VUSs and paves the way for enhancing our understanding of Gsα deficiency-associated early-onset obesity.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Zain Z Zakaria
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Miura H, Nakamura A, Kurosaki A, Kotani A, Motojima M, Tanaka K, Kakuta S, Ogiwara S, Ohmi Y, Komaba H, Schilit SLP, Morton CC, Gurumurthy CB, Ohtsuka M. Targeted insertion of conditional expression cassettes into the mouse genome using the modified i-PITT. BMC Genomics 2024; 25:568. [PMID: 38840068 PMCID: PMC11155135 DOI: 10.1186/s12864-024-10250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci. PITT was achieved by pre-installing so called landing pad sequences (such as heterotypic LoxP sites or attP sites) to create seed mice and then injecting Cre recombinase or PhiC31 integrase mRNAs along with a compatible donor plasmid into zygotes derived from the seed mice. PITT and its subsequent version, improved PITT (i-PITT), overcome disadvantages of conventional Tg mice such as lack of consistent and reliable expression of the cassettes among different Tg mouse lines, and the PITT approach is superior in terms of cost and labor. One of the limitations of PITT, particularly using Cre-mRNA, is that the approach cannot be used for insertion of conditional expression cassettes using Cre-LoxP site-specific recombination. This is because the LoxP sites in the donor plasmids intended for achieving conditional expression of the transgene will interfere with the PITT recombination reaction with LoxP sites in the landing pad. RESULTS To enable the i-PITT method to insert a conditional expression cassette, we modified the approach by simultaneously using PhiC31o and FLPo mRNAs. We demonstrate the strategy by creating a model containing a conditional expression cassette at the Rosa26 locus with an efficiency of 13.7%. We also demonstrate that inclusion of FLPo mRNA excludes the insertion of vector backbones in the founder mice. CONCLUSIONS Simultaneous use of PhiC31 and FLP in i-PITT approach allows insertion of donor plasmids containing Cre-loxP-based conditional expression cassettes.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Ayaka Nakamura
- Life Science Support Center, Tokai University, Kanagawa, Japan
| | - Aki Kurosaki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Ai Kotani
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa, Japan
| | - Keiko Tanaka
- Departments of Basic Medicine, Tokai University School of Medicine, Kanagawa, Japan
- Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital, Okayama, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sanae Ogiwara
- Life Science Support Center, Tokai University, Kanagawa, Japan
| | - Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Hirotaka Komaba
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Samantha L P Schilit
- Program in Genetics and Genomics and Certificate Program in Leder Human Biology and Translational Medicine, Biological and Biomedical Sciences Program, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Institute Member, Broad Institute of Massachusetts Institute of Technology and Harvard University, Kendall Square, Cambridge, MA, USA
- Manchester Center for Hearing and Deafness, University of Manchester, Manchester, UK
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan.
| |
Collapse
|
4
|
Lee HHC, Latzer IT, Bertoldi M, Gao G, Pearl PL, Sahin M, Rotenberg A. Gene replacement therapies for inherited disorders of neurotransmission: Current progress in succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:476-493. [PMID: 38581234 PMCID: PMC11096052 DOI: 10.1002/jimd.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.
Collapse
Affiliation(s)
- Henry HC Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Itay Tokatly Latzer
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Tel-Aviv University Faculty of Medicine, Tel-Aviv, Israel
| | - Mariarita Bertoldi
- Dept. of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Guangping Gao
- The Horae Gene Therapy Center, UMass Medical School, MA 01605, USA
| | - Phillip L Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Dai P, Ma C, Chen C, Liang M, Dong S, Chen H, Zhang X. Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines. Biomolecules 2024; 14:529. [PMID: 38785936 PMCID: PMC11117649 DOI: 10.3390/biom14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China; (P.D.); (C.M.); (C.C.); (M.L.); (S.D.); (H.C.)
| |
Collapse
|
6
|
Pan J, Zhang L, Huang Z, Zhao D, Li H, Fu Y, Wang M, Chen B, Iraqi FA, Morahan G, Qin C. Strategies for generating mouse model resources of human disease. Protein Cell 2023; 14:866-870. [PMID: 36916412 PMCID: PMC10691848 DOI: 10.1093/procel/pwad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/12/2023] [Indexed: 03/15/2023] Open
Affiliation(s)
- Jirong Pan
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - Ling Zhang
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - Zhibing Huang
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - Dalu Zhao
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - He Li
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - Yanan Fu
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - Meng Wang
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - Borui Chen
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Chuan Qin
- National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, National Center of Technology Innovation for Animal Model, Changping National Laboratory (CPNL), Beijing 102206, China
| |
Collapse
|
7
|
A flexible system for tissue-specific gene expression in mice using adeno-associated virus. Nat Methods 2023:10.1038/s41592-023-01897-w. [PMID: 37291263 DOI: 10.1038/s41592-023-01897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
8
|
Gebert JT, Scribano F, Engevik KA, Perry JL, Hyser JM. Gastrointestinal organoids in the study of viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 324:G51-G59. [PMID: 36414538 PMCID: PMC9799139 DOI: 10.1152/ajpgi.00152.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Viruses are among the most prevalent enteric pathogens. Although virologists historically relied on cell lines and animal models, human intestinal organoids (HIOs) continue to grow in popularity. HIOs are nontransformed, stem cell-derived, ex vivo cell cultures that maintain the cell type diversity of the intestinal epithelium. They offer higher throughput than standard animal models while more accurately mimicking the native tissue of infection than transformed cell lines. Here, we review recent literature that highlights virological advances facilitated by HIOs. We discuss the variations and limitations of HIOs, how HIOs have allowed for the cultivation of previously uncultivatable viruses, and how they have offered insight into tropism, entry, replication kinetics, and host-pathogen interactions. In each case, we discuss exemplary viruses and archetypal studies. We discuss how the speed and flexibility of HIO-based studies contributed to our knowledge of SARS-CoV-2 and antiviral therapeutics. Finally, we discuss the current limitations of HIOs and future directions to overcome these.
Collapse
Affiliation(s)
- J Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Francesca Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jacob L Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Sato M, Nakamura A, Sekiguchi M, Matsuwaki T, Miura H, Gurumurthy CB, Kakuta S, Ohtsuka M. Improved Genome Editing via Oviductal Nucleic Acids Delivery (i-GONAD): Protocol Steps and Additional Notes. Methods Mol Biol 2023; 2631:325-340. [PMID: 36995675 DOI: 10.1007/978-1-0716-2990-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) technology has made it possible to produce genome-edited (GE) animals more easily and rapidly than before. In most cases, GE mice are produced by microinjection (MI) or by in vitro electroporation (EP) of CRISPR reagents into fertilized eggs (zygotes). Both of these approaches require ex vivo handling of isolated embryos and their subsequent transfer into another set of mice (called recipient or pseudopregnant mice). Such experiments are performed by highly skilled technicians (especially for MI). We recently developed a novel genome editing method, called "GONAD (Genome-editing via Oviductal Nucleic Acids Delivery)," which can completely eliminate the ex vivo handling of embryos. We also made improvements to the GONAD method, termed "improved-GONAD (i-GONAD)." The i-GONAD method involves injection of CRISPR reagents into the oviduct of an anesthetized pregnant female using a mouthpiece-controlled glass micropipette under a dissecting microscope, followed by EP of the entire oviduct allowing the CRISPR reagents to enter into the zygotes present inside the oviduct, in situ. After the i-GONAD procedure, the mouse recovered from anesthesia is allowed to continue the pregnancy to full term to deliver its pups. The i-GONAD method does not require pseudopregnant female animals for embryo transfer, unlike the methods relying on ex vivo handling of zygotes. Therefore, the i-GONAD method can reduce the number of animals used, compared to the traditional methods. In this chapter, we describe some newer technical tips about the i-GONAD method. Additionally, even though the detailed protocols of GONAD and i-GONAD have been published elsewhere (Gurumurthy et al., Curr Protoc Hum Genet 88:15.8.1-15.8.12, 2016 Nat Protoc 14:2452-2482, 2019), we provide all the protocol steps of i-GONAD in this chapter so that the reader can find most of the information, needed for performing i-GONAD experiments, in one place.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | - Ayaka Nakamura
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Marie Sekiguchi
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan.
| |
Collapse
|
10
|
Tanaka M, Yokoyama K, Hayashi H, Isaki S, Kitatani K, Wang T, Kawata H, Matsuzawa H, Gurumurthy CB, Miura H, Ohtsuka M. CRISPR-KRISPR: a method to identify on-target and random insertion of donor DNAs and their characterization in knock-in mice. Genome Biol 2022; 23:228. [PMID: 36284311 PMCID: PMC9594901 DOI: 10.1186/s13059-022-02779-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/30/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR tools can generate knockout and knock-in animal models easily, but the models can contain off-target genomic lesions or random insertions of donor DNAs. Simpler methods to identify off-target lesions and random insertions, using tail or earpiece DNA, are unavailable. We develop CRISPR-KRISPR (CRISPR-Knock-ins and Random Inserts Searching PRotocol), a method to identify both off-target lesions and random insertions. CRISPR-KRISPR uses as little as 3.4 μg of genomic DNA; thus, it can be easily incorporated as an additional step to genotype founder animals for further breeding.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| | - Keiko Yokoyama
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Sanae Isaki
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Kanae Kitatani
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Ting Wang
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hisako Kawata
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hideyuki Matsuzawa
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hiromi Miura
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
11
|
Gurumurthy CB, Quadros RM, Ohtsuka M. Prototype mouse models for researching SEND-based mRNA delivery and gene therapy. Nat Protoc 2022; 17:2129-2138. [PMID: 35922579 DOI: 10.1038/s41596-022-00721-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
One of the major challenges of gene therapy-an approach to treat diseases caused by faulty genes-is a lack of technologies that deliver healthy gene copies to target tissues and cells. Some commonly used approaches include viral vectors or coating therapeutic nucleic acids with lipid-based nanoparticles to pass through cell membranes, but these technologies have had limited success. A revolutionary tool, the CRISPR-Cas gene-editing system, offers tremendous promise, but it too suffers from problems with delivery. Another tool, called 'SEND' (for 'selective endogenous encapsidation for cellular delivery'), seems to offer a better solution. The SEND system uses endogenous genetic components to package mRNA cargoes to deliver them to other cells via virus-like particles (VLPs). The SEND-VLP tool has enormous potential as a gene-therapy tool, if the endogenous components of SEND can be repurposed to produce VLPs containing therapeutic cargoes. However, several aspects of this newly identified phenomenon are not yet fully understood. Genetically engineered mouse (GEM) models, expressing different combinations of SEND components in a controllable and inducible fashion, could serve as valuable tools to understand more about this tool and to repurpose it for gene-therapy applications. In this Perspective, we discuss how GEM models and mouse molecular genetics tools could be used for SEND-VLP research.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA. .,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA.,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan. .,The Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|