1
|
Huang Y, Huang Y, Wu Z, Fan Z, Zheng F, Liu Y, Xu X. Characterization and genomic insights into bacteriophages Kpph1 and Kpph9 against hypervirulent carbapenem-resistant Klebsiella pneumoniae. Virulence 2025; 16:2450462. [PMID: 39803864 PMCID: PMC11730680 DOI: 10.1080/21505594.2025.2450462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
The increasing incidence of infections attributed to hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp K. pneumoniae NUHL30457 strain that possesses a K2 capsule serotype. Both phages exhibit remarkable environmental tolerance, displaying stability over a range of pH values (4-11) and temperatures (up to 50°C). The phages demonstrate potent antibacterial and antibiofilm efficacy, as indicated by their capacity to inhibit biofilm formation and to disrupt established biofilms of Hv-CRKp. Through phylogenetic analysis, it has been revealed that Kpph1 belongs to the new species of Webervirus genus, and Kpph9 to the Drulisvirus genus. Comparative genomic analysis suggests that the tail fiber protein region exhibits the greatest diversity in the genomes of phages within the same genus, which implies distinct co-evolution histories between phages and their corresponding hosts. Interestingly, both phages have been found to contain two tail fiber proteins that may exhibit potential depolymerase activities. However, the exact role of depolymerase in the interaction between phages and their hosts warrants further investigation. In summary, our findings emphasize the therapeutic promise of phages Kpph1 and Kpph9, as well as their encoded proteins, in the context of research on phage therapy targeting hypervirulent carbapenem-resistant Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Ye Huang
- Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, Jiangxi, P.R. China
| | - Yuan Huang
- Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
- Gerontology Department of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhiping Wu
- Central Sterile Supply Department of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ziyue Fan
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Fanglin Zheng
- Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, Jiangxi, P.R. China
| | - Yang Liu
- Jiangxi Hospital of China-Japan Friendship Hospital, Jiangxi, P.R. China
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, Jiangxi, P.R. China
| |
Collapse
|
2
|
Nikapitiya C, Chandrarathna HPSU, Dias MKHM, Lee J, De Zoysa M. Characterization and biocontrol efficacy of lytic phage (KPP-1) that infects multidrug resistant Klebsiella variicola. Braz J Microbiol 2023; 54:2509-2520. [PMID: 37368195 PMCID: PMC10484831 DOI: 10.1007/s42770-023-01037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Klebsiella variicola strain was identified from a natural water stream. Novel phage (KPP-1) infecting K. variicola was isolated and characterized. The biocontrol efficacy of KPP-1 against K. variicola-infected adult zebrafish was also investigated. The host K. variicola strain was resistant to six of the antibiotics tested and comprised the virulence genes kfuBC, fim, ureA, and Wza-Wzb-Wzccps. Morphological analysis by transmission electron microscopy revealed that KPP-1 has icosahedron head and tail structures. The latent period and burst size of KPP-1 were 20 min and 88 PFU per infected cell, respectively, at a multiplicity of infection of 0.1. KPP-1 was stable over a broad pH range (3-11), temperature (4-50 °C), and salinity (0.1-3%). KPP-1 inhibits the growth of K. variicola in vitro and in vivo. In the zebrafish infection model, treatment with KPP-1-infected K. variicola demonstrated 56% of cumulative survival. This suggests the possibility of developing KPP-1 as a potential biocontrol agent against multidrug-resistant K. variicola that belongs to the K. pneumoniae complex.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - H P S U Chandrarathna
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | | | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
- Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Lourenço M, Osbelt L, Passet V, Gravey F, Megrian D, Strowig T, Rodrigues C, Brisse S. Phages against Noncapsulated Klebsiella pneumoniae: Broader Host range, Slower Resistance. Microbiol Spectr 2023; 11:e0481222. [PMID: 37338376 PMCID: PMC10433977 DOI: 10.1128/spectrum.04812-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Klebsiella pneumoniae (Kp), a human gut colonizer and opportunistic pathogen, is a major contributor to the global burden of antimicrobial resistance. Virulent bacteriophages represent promising agents for decolonization and therapy. However, the majority of anti-Kp phages that have been isolated thus far are highly specific to unique capsular types (anti-K phages), which is a major limitation to phage therapy prospects due to the highly polymorphic capsule of Kp. Here, we report on an original anti-Kp phage isolation strategy, using capsule-deficient Kp mutants as hosts (anti-Kd phages). We show that anti-Kd phages have a broad host range, as the majority are able to infect noncapsulated mutants of multiple genetic sublineages and O-types. Additionally, anti-Kd phages induce a lower rate of resistance emergence in vitro and provide increased killing efficiency when in combination with anti-K phages. In vivo, anti-Kd phages are able to replicate in mouse guts colonized with a capsulated Kp strain, suggesting the presence of noncapsulated Kp subpopulations. The original strategy proposed here represents a promising avenue that circumvents the Kp capsule host restriction barrier, offering promise for therapeutic development. IMPORTANCE Klebsiella pneumoniae (Kp) is an ecologically generalist bacterium as well as an opportunistic pathogen that is responsible for hospital-acquired infections and a major contributor to the global burden of antimicrobial resistance. In the last decades, limited advances have been made in the use of virulent phages as alternatives or complements to antibiotics that are used to treat Kp infections. This work demonstrates the potential value of an anti-Klebsiella phage isolation strategy that addresses the issue of the narrow host range of anti-K phages. Anti-Kd phages may be active in infection sites in which capsule expression is intermittent or repressed or in combination with anti-K phages, which often induce the loss of capsule in escape mutants.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - François Gravey
- Dynamycure Inserm UM1311 Normandie Univ, UNICAEN, UNIROUEN, Caen, France
| | - Daniela Megrian
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Carla Rodrigues
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| |
Collapse
|
4
|
Dunstan RA, Bamert RS, Tan KS, Imbulgoda U, Barlow CK, Taiaroa G, Pickard DJ, Schittenhelm RB, Dougan G, Short FL, Lithgow T. Epitopes in the capsular polysaccharide and the porin OmpK36 receptors are required for bacteriophage infection of Klebsiella pneumoniae. Cell Rep 2023; 42:112551. [PMID: 37224021 DOI: 10.1016/j.celrep.2023.112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/09/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
To kill bacteria, bacteriophages (phages) must first bind to a receptor, triggering the release of the phage DNA into the bacterial cell. Many bacteria secrete polysaccharides that had been thought to shield bacterial cells from phage attack. We use a comprehensive genetic screen to distinguish that the capsule is not a shield but is instead a primary receptor enabling phage predation. Screening of a transposon library to select phage-resistant Klebsiella shows that the first receptor-binding event docks to saccharide epitopes in the capsule. We discover a second step of receptor binding, dictated by specific epitopes in an outer membrane protein. This additional and necessary event precedes phage DNA release to establish a productive infection. That such discrete epitopes dictate two essential binding events for phages has profound implications for understanding the evolution of phage resistance and what dictates host range, two issues critically important to translating knowledge of phage biology into phage therapies.
Collapse
Affiliation(s)
- Rhys A Dunstan
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
| | - Rebecca S Bamert
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Kher Shing Tan
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Uvini Imbulgoda
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - George Taiaroa
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Clayton, VIC, Australia
| | - Derek J Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Francesca L Short
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia; Department of Medicine, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Mohammadi M, Saffari M, Siadat SD. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiol (Praha) 2023; 68:357-368. [PMID: 37036571 DOI: 10.1007/s12223-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Klebsiella spp. is a commensal gram-negative bacterium and a member of the human microbiota. It is the leading cause of various hospital-acquired infections. The occurrence of multi-drug drug resistance and carbapenemase-producing strains of Klebsiella pneumoniae producing weighty contaminations is growing, and Klebsiella oxytoca is an arising bacterium. Alternative approaches to tackle contaminations led by these microorganisms are necessary as strains enhance opposing to last-stage antibiotics in the way that Colistin. The lytic bacteriophages are viruses that infect and rapidly eradicate bacterial cells and are strain-specific to their hosts. They and their proteins are immediately deliberate as opportunities or adjuncts to antibiotic therapy. There are several reports in vitro and in vivo form that proved the potential use of lytic phages to combat superbug stains of K. pneumoniae. Various reports dedicated that the phage area can be returned to the elimination of multi-drug resistance and carbapenemase resistance isolates of K. pneumoniae. This review compiles our current information on phages of Klebsiella spp. and highlights technological and biological issues related to the evolution of phage-based therapies targeting these bacterial hosts.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Pertics BZ, Kovács T, Schneider G. Characterization of a Lytic Bacteriophage and Demonstration of Its Combined Lytic Effect with a K2 Depolymerase on the Hypervirulent Klebsiella pneumoniae Strain 52145. Microorganisms 2023; 11:microorganisms11030669. [PMID: 36985241 PMCID: PMC10051899 DOI: 10.3390/microorganisms11030669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen. Among its virulence factors is the capsule with a prominent role in defense and biofilm formation. Bacteriophages (phages) can evoke the lysis of bacterial cells. Due to the mode of action of their polysaccharide depolymerase enzymes, phages are typically specific for one bacterial strain and its capsule type. In this study, we characterized a bacteriophage against the capsule-defective mutant of the nosocomial K. pneumoniae 52145 strain, which lacks K2 capsule. The phage showed a relatively narrow host range but evoked lysis on a few strains with capsular serotypes K33, K21, and K24. Phylogenetic analysis showed that the newly isolated Klebsiella phage 731 belongs to the Webervirus genus in the Drexlerviridae family; it has a 31.084 MDa double-stranded, linear DNA with a length of 50,306 base pairs and a G + C content of 50.9%. Out of the 79 open reading frames (ORFs), we performed the identification of orf22, coding for a trimeric tail fiber protein with putative capsule depolymerase activity, along with the mapping of other putative depolymerases of phage 731 and homologous phages. Efficacy of a previously described recombinant K2 depolymerase (B1dep) was tested by co-spotting phage 731 on K. pneumoniae strains, and it was demonstrated that the B1dep-phage 731 combination allows the lysis of the wild type 52145 strain, originally resistant to the phage 731. With phage 731, we showed that B1dep is a promising candidate for use as a possible antimicrobial agent, as it renders the virulent strain defenseless against other phages. Phage 731 alone is also important due to its efficacy on K. pneumoniae strains possessing epidemiologically important serotypes.
Collapse
Affiliation(s)
- Botond Zsombor Pertics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Kertváros St. 2., H-7632 Pécs, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536-200 (ext. 1908)
| |
Collapse
|
7
|
Gilcrease EB, Casjens SR, Bhattacharjee A, Goel R. A Klebsiella pneumoniae NDM-1+ bacteriophage: Adaptive polyvalence and disruption of heterogenous biofilms. Front Microbiol 2023; 14:1100607. [PMID: 36876079 PMCID: PMC9983693 DOI: 10.3389/fmicb.2023.1100607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Bacteriophage KL-2146 is a lytic virus isolated to infect Klebsiella pneumoniae BAA2146, a pathogen carrying the broad range antibiotic resistance gene New Delhi metallo-betalactamase-1 (NDM-1). Upon complete characterization, the virus is shown to belong to the Drexlerviridae family and is a member of the Webervirus genus located within the (formerly) T1-like cluster of phages. Its double-stranded (dsDNA) genome is 47,844 bp long and is predicted to have 74 protein-coding sequences (CDS). After challenging a variety of K. pneumoniae strains with phage KL-2146, grown on the NDM-1 positive strain BAA-2146, polyvalence was shown for a single antibiotic-sensitive strain, K. pneumoniae 13,883, with a very low initial infection efficiency in liquid culture. However, after one or more cycles of infection in K. pneumoniae 13,883, nearly 100% infection efficiency was achieved, while infection efficiency toward its original host, K. pneumoniae BAA-2146, was decreased. This change in host specificity is reversible upon re-infection of the NDM-1 positive strain (BAA-2146) using phages grown on the NDM-1 negative strain (13883). In biofilm infectivity experiments, the polyvalent nature of KL-2146 was demonstrated with the killing of both the multidrug-resistant K. pneumoniae BAA-2146 and drug-sensitive 13,883 in a multi-strain biofilm. The ability to infect an alternate, antibiotic-sensitive strain makes KL-2146 a useful model for studying phages infecting the NDM-1+ strain, K. pneumoniae BAA-2146. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Eddie B Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, United States
| | - Sherwood R Casjens
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States.,Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT, United States
| | - Ananda Bhattacharjee
- Department of Environmental Sciences, University of California, Riverside, CA, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Noble A, Pring ET, Durant L, Man R, Dilke SM, Hoyles L, James SA, Carding SR, Jenkins JT, Knight SC. Altered immunity to microbiota, B cell activation and depleted γδ/resident memory T cells in colorectal cancer. Cancer Immunol Immunother 2022. [PMID: 35316367 DOI: 10.1007/s00262-021-03135-8/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Edward T Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella M Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Steve A James
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
| | - Simon R Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - John T Jenkins
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK.
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK.
| |
Collapse
|
9
|
Noble A, Pring ET, Durant L, Man R, Dilke SM, Hoyles L, James SA, Carding SR, Jenkins JT, Knight SC. Altered immunity to microbiota, B cell activation and depleted γδ/resident memory T cells in colorectal cancer. Cancer Immunol Immunother 2022; 71:2619-2629. [PMID: 35316367 PMCID: PMC9519644 DOI: 10.1007/s00262-021-03135-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Edward T Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella M Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Steve A James
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
| | - Simon R Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - John T Jenkins
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK.
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK.
| |
Collapse
|
10
|
Noble A, Durant L, Dilke SM, Man R, Martin I, Patel R, Hoyles L, Pring ET, Latchford A, Clark SK, Carding SR, Knight SC. Altered Mucosal Immune-Microbiota Interactions in Familial Adenomatous Polyposis. Clin Transl Gastroenterol 2022; 13:e00428. [PMID: 35297393 PMCID: PMC10476795 DOI: 10.14309/ctg.0000000000000428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Familial adenomatous polyposis (FAP) is a condition caused by a constitutional pathogenic variant of the adenomatous polyposis coli gene that results in intestinal adenoma formation and colorectal cancer, necessitating pre-emptive colectomy. We sought to examine interaction between the mucosal immune system and commensal bacteria in FAP to test for immune dysfunction that might accelerate tumorigenesis. METHODS Colonic biopsies were obtained from macroscopically normal mucosal tissue from 14 healthy donors and 13 patients with FAP during endoscopy or from surgical specimens. Intraepithelial and lamina propria lymphocytes were phenotyped. Intraepithelial microbes were labeled with anti-IgA/IgG and analyzed by flow cytometry. RESULTS Proportions of resident memory CD103-expressing CD8 + and γδ T-cell receptor + intraepithelial lymphocytes were dramatically reduced in both the left and right colon of patients with FAP compared with healthy controls. In lamina propria, T cells expressed less CD103, and CD4 + CD103 + cells expressed less CD73 ectonucleotidase. IgA coating of epithelia-associated bacteria, IgA + peripheral B cells, and CD4 T-cell memory responses to commensal bacteria were increased in FAP. DISCUSSION Loss of resident memory T cells and γδ T cells in mucosal tissue of patients with FAP accompanies intestinal microbial dysbiosis previously reported in this precancerous state and suggests impaired cellular immunity and tumor surveillance. This may lead to barrier dysfunction, possible loss of regulatory T-cell function, and excess IgA antibody secretion. Our data are the first to implicate mucosal immune dysfunction as a contributing factor in this genetically driven disease and identify potentially critical pathways in the etiology of CRC.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, United Kingdom;
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Stella M. Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Ripple Man
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
| | - Isabel Martin
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
| | - Roshani Patel
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom;
| | - Edward T. Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Andrew Latchford
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
- Department of Surgery and Cancer, Imperial College London, United Kingdom;
| | - Susan K. Clark
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
- Department of Surgery and Cancer, Imperial College London, United Kingdom;
| | - Simon R. Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, United Kingdom;
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Stella C. Knight
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, United Kingdom;
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| |
Collapse
|
11
|
Krawczyk B, Wysocka M, Michalik M, Gołębiewska J. Urinary Tract Infections Caused by K. pneumoniae in Kidney Transplant Recipients – Epidemiology, Virulence and Antibiotic Resistance. Front Cell Infect Microbiol 2022; 12:861374. [PMID: 35531341 PMCID: PMC9068989 DOI: 10.3389/fcimb.2022.861374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Urinary tract infections are the most common complication in kidney transplant recipients, possibly resulting in the deterioration of a long-term kidney allograft function and an increased risk of recipient’s death. K. pneumoniae has emerged as one of the most prevalent etiologic agents in the context of recurrent urinary tract infections, especially with multidrug resistant strains. This paper discusses the epidemiology and risk factors associated with urinary tract infections in kidney transplant recipients, multi-drug resistance of K. pneumoniae (ESBL, KPC, NDM), treatment and pathogenesis of K. pneumoniae infections, and possible causes of recurrent UTIs. It also addresses the issue of colonization/becoming a carrier of K. pneumoniae in the gastrointestinal tract and asymptomatic bacteriuria in relation to a symptomatic UTI development and epidemiology.
Collapse
Affiliation(s)
- Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Beata Krawczyk,
| | - Magdalena Wysocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Justyna Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Li P, Zhang Y, Yan F, Zhou X. Characteristics of a Bacteriophage, vB_Kox_ZX8, Isolated From Clinical Klebsiella oxytoca and Its Therapeutic Effect on Mice Bacteremia. Front Microbiol 2021; 12:763136. [PMID: 34925270 PMCID: PMC8678519 DOI: 10.3389/fmicb.2021.763136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Klebsiella oxytoca is an important nosocomial and community-acquired opportunistic pathogenic Klebsiella and has become the second most prevalent strain in the clinic after K. pneumoniae. However, there have been few reports of bacteriophages used for treating K. oxytoca. In this study, a novel bacteriophage, vB_Kox_ZX8, which specifically infects K. oxytoca AD3, was isolated for the first time from human fecal samples. The biological characteristics of vB_Kox_ZX8 showed an incubation period of 10 min, a burst size of 74 PFU/cell, and a stable pH range of 3-11. Genomic bioinformatics studies of vB_Kox_ZX8 showed that it belongs to the genus Przondovirus, subfamily Studiervirinae, family Autographiviridae. The genome of vB_Kox_ZX8 is 39,398 bp in length and contains 46 putative open reading frames encoding functional proteins, such as DNA degradation, packaging, structural, lysin-holin, and hypothetical proteins. We further investigated the efficacy of vB_Kox_ZX8 phage in the treatment of mice with bacteremia caused by K. oxytoca infection. The results showed that vB_Kox_ZX8 (5 × 109 PFU/mouse) injected intraperitoneally alone was metabolized rapidly in BALB/c mice, and no significant side effects were observed in the control and treatment groups. Importantly, intraperitoneal injection with a single dose of phage vB_Kox_ZX8 (5 × 107 PFU/mouse) for 1 h post-infection saved 100% of BALB/c mice from bacteremia induced by intraperitoneal challenge with a minimum lethal dose of K. oxytoca AD3. However, all negative control mice injected with PBS alone died. Owing to its good safety, narrow host infectivity, high lysis efficiency in vitro, and good in vivo therapeutic effect, phage vB_Kox_ZX8 has the potential to be an excellent antibacterial agent for clinical K. oxytoca-caused infections.
Collapse
Affiliation(s)
- Ping Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Qadri I, Harakeh S, Demeke Teklemariam A, Al Amri T, Al-Hindi R. Isolation and Identification of a Wastewater Siphoviridae Bacteriophage Targeting Multidrug-resistant Klebsiella pneumoniae. Jundishapur J Microbiol 2021; 14. [DOI: 10.5812/jjm.118910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Background: Based on the WHO, multidrug-resistant Klebsiella pneumoniae is a priority pathogen that causes opportunistic infections and is widely spread in the environment. Phage therapy is considered a natural, safe, and very efficient alternative to treat difficult-to-treat infections. Objectives: This study aimed to isolate highly virulent, lytic bacteriophages and evaluate their efficacy for lysing multidrug-resistant K. pneumoniae. Methods: Municipal wastewater samples were collected and filtered using 0.22 µm syringe filters and cultivated with log-phase cultures of K. pneumoniae using enrichment media. After 48 h of incubation, the cultures were centrifuged, and the resultant supernatant was filtered (0.22 µm). The detection of the phage was done using the spot assay with K. pneumoniae as the host. One-step growth kinetics and bacterial reduction tests were conducted to assess the growth kinetics of the isolated phage. The stability of the isolated phage was characterized by subjecting it to various temperature and pH conditions. The chemical stability of the K. pneumoniae phage was determined by exposing it to various organic compounds. A panel of 20 bacterial strains was tested using the spot assay, as well as double agar overlying assay, to determine the host range of the isolated phage. Results: Out of 40 wastewater samples tested, only one sample was tested positive for the K. pneumoniae phage (2.5%) that was lytic against the host strain. The K. pneumoniae phage had a latent period of 15 min and a burst size of 100 virions per infected cell. It was most stable at 37°C and pH range of 6.0 to 10.0. Chemically, the K. pneumoniae phage was resistant to 10% chloroform treatment. Transmission electron micrograph indicated that the K. pneumoniae phage belonged to the order Caudovirales, family Siphoviridae, morphotype B1. Conclusions: Most of the characteristic features of the K. pneumoniae phage indicated the potential of this phage to be used in phage therapy. Hence, a comprehensive study is highly recommended to characterize the K. pneumoniae phage genome, detect its molecular interactions with the host cell, and determine its lytic activity in combination with other phages, which may lead to the efficient utilization of this phage in phage therapy against K. pneumoniae infections.
Collapse
|
14
|
Feng J, Gao L, Li L, Zhang Z, Wu C, Li F, Tong Y. Characterization and genome analysis of novel Klebsiella phage BUCT556A with lytic activity against carbapenemase-producing Klebsiella pneumoniae. Virus Res 2021; 303:198506. [PMID: 34271040 DOI: 10.1016/j.virusres.2021.198506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) have spread globally and led to the limited choice of antimicrobial treatment of K. pneumoniae-induced infections. Bacteriophages are considered as an effective strategy against bacterial infections. In this study, we isolated a novel Klebsiella phage BUCT556A with lytic activity against KPC-producing K. pneumoniae, which was a multi-drug resistant isolate. Phage BUCT556A had a symmetrical head and a long, non-contractile tail, belonging to the family Siphoviridae, order Caudoviridae. Phage BUCT556A had a relatively narrow host range, and a medium burst size of 91 PFU/cell. It was stable at broad temperature/pH range, and exhibited good tolerance to chloroform. The genome of phage BUCT556A was a 49, 376-bp linear double-stranded DNA molecule with average G + C content of 50.2%, and contained 75 open reading frames. There was no tRNA, antibiotic resistance, toxin, virulence related genes or lysogen-formation gene clusters detected in the genome of phage BUCT556A. Phylogenetic analyses based on the major capsid protein Mcp suggested that this phage had a close relationship with Klebsiella phage KLPN1. Together, through phenotypic combined with genomic DNA sequencing and analyses, our study suggests that phage BUCT556A has the potential to be used as a bacterial treatment tool for multidrug-resistant strains K. pneumoniae.
Collapse
Affiliation(s)
- Jiao Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Liting Gao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Lu Li
- Physical and chemical laboratory, Taian centers for diseases prevention control, Taian 271000, China
| | - Zhijun Zhang
- Clinical Laboratory center, Taian City Central Hospital, Taian 271000, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Fei Li
- Clinical Laboratory center, Taian City Central Hospital, Taian 271000, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Townsend EM, Kelly L, Gannon L, Muscatt G, Dunstan R, Michniewski S, Sapkota H, Kiljunen SJ, Kolsi A, Skurnik M, Lithgow T, Millard AD, Jameson E. Isolation and Characterization of Klebsiella Phages for Phage Therapy. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:26-42. [PMID: 33796863 PMCID: PMC8006926 DOI: 10.1089/phage.2020.0046] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Klebsiella is a clinically important pathogen causing a variety of antimicrobial resistant infections in both community and nosocomial settings, particularly pneumonia, urinary tract infection, and sepsis. Bacteriophage (phage) therapy is being considered a primary option for the treatment of drug-resistant infections of these types. Methods: We report the successful isolation and characterization of 30 novel, genetically diverse Klebsiella phages. Results: The isolated phages span six different phage families and nine genera, representing both lysogenic and lytic lifestyles. Individual Klebsiella phage isolates infected up to 11 of the 18 Klebsiella capsule types tested, and all 18 capsule-types were infected by at least one of the phages. Conclusions: Of the Klebsiella-infecting phages presented in this study, the lytic phages are most suitable for phage therapy, based on their broad host range, high virulence, short lysis period and given that they encode no known toxin or antimicrobial resistance genes. Phage isolates belonging to the Sugarlandvirus and Slopekvirus genera were deemed most suitable for phage therapy based on our characterization. Importantly, when applied alone, none of the characterized phages were able to suppress the growth of Klebsiella for more than 12 h, likely due to the inherent ease of Klebsiella to generate spontaneous phage-resistant mutants. This indicates that for successful phage therapy, a cocktail of multiple phages would be necessary to treat Klebsiella infections.
Collapse
Affiliation(s)
- Eleanor M. Townsend
- Department of Microbiology and Virology, School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- Department of Microbiology and Virology, School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, United Kingdom
| | - Lucy Gannon
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - George Muscatt
- Department of Microbiology and Virology, School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, United Kingdom
| | - Rhys Dunstan
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Slawomir Michniewski
- Department of Microbiology and Virology, School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, United Kingdom
| | - Hari Sapkota
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Saija J. Kiljunen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Anna Kolsi
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Andrew D. Millard
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Eleanor Jameson
- Department of Microbiology and Virology, School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Sundaramoorthy NS, Thothathri S, Bhaskaran M, GaneshPrasad A, Nagarajan S. Phages from Ganges River curtail in vitro biofilms and planktonic growth of drug resistant Klebsiella pneumoniae in a zebrafish infection model. AMB Express 2021; 11:27. [PMID: 33587215 PMCID: PMC7884498 DOI: 10.1186/s13568-021-01181-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/11/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are a promising alternative for curtailing infections caused by multi drug resistant (MDR) bacteria. The objective of the present study is to evaluate phage populations from water bodies to inhibit planktonic and biofilm mode of growth of drug resistant Klebsiella pneumoniae in vitro and curtail planktonic growth in vivo in a zebrafish model. Phage specific to K. pneumoniae (MTCC 432) was isolated from Ganges River (designated as KpG). One-step growth curve, in vitro time kill curve study and in vivo infection model were performed to evaluate the ability of phage to curtail planktonic growth. Crystal violet assay and colony biofilm assay were performed to determine the action of phages on biofilms. KpG phages had a greater burst size, better bactericidal potential and enhanced inhibitory effect against biofilms formed at liquid air and solid air interfaces. In vitro time kill assay showed a 3 log decline and a 6 log decline in K. pneumoniae colony counts, when phages were administered individually and in combination with streptomycin, respectively. In vivo injection of KpG phages revealed that it did not pose any toxicity to zebrafish as evidenced by liver/brain enzyme profiles and by histopathological analysis. The muscle tissue of zebrafish, infected with K. pneumoniae and treated with KpG phages alone and in combination with streptomycin showed a significant 77.7% and 97.2% decline in CFU/ml, respectively, relative to untreated control. Our study reveals that KpG phages has the potential to curtail plantonic and biofilm mode of growth in higher animal models.
Collapse
|
17
|
Zurabov F, Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J 2021; 18:9. [PMID: 33407669 PMCID: PMC7789013 DOI: 10.1186/s12985-020-01485-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background Nowadays, hundreds of thousands of deaths per year are caused by antibiotic resistant nosocomial infections and the prognosis for future years is much worse, as evidenced by modern research. Bacteria of the Klebsiella genus are one of the main pathogens that cause nosocomial infections. Among the many antimicrobials offered to replace or supplement traditional antibiotics, bacteriophages are promising candidates. Methods This article presents microbiological, physicochemical and genomic characterization of 4 virulent bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. Phages were studied by electron microscopy; their host range, lytic activity, adsorption rate, burst size, latent period, frequency of phage-resistant forms generation, lysis dynamics and sensitivity of phage particles to temperature and pH were identified; genomes of all 4 bacteriophages were studied by restriction digestion and complete genome sequence. Results Studied phages showed wide host range and high stability at different temperature and pH values. In contrast with single phages, a cocktail of bacteriophages lysed all studied bacterial strains, moreover, no cases of the emergence of phage-resistant bacterial colonies were detected. Genomic data proved that isolated viruses do not carry antibiotic resistance, virulence or lysogenic genes. Three out of four bacteriophages encode polysaccharide depolymerases, which are involved in the degradation of biofilms and capsules. Conclusions The bacteriophages studied in this work are promising for further in vivo studies and might be used in phage therapy as part of a complex therapeutic and prophylactic phage preparation. The conducted studies showed that the complex preparation is more effective than individual phages. The use of the complex phage cocktail allows to extend the lytic spectrum, and significantly reduces the possibility of phage-resistant forms generation.
Collapse
Affiliation(s)
- Fedor Zurabov
- Research and Production Center "MicroMir", LLC, Moscow, Russia. .,Department of Virology, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
18
|
Wintachai P, Naknaen A, Thammaphet J, Pomwised R, Phaonakrop N, Roytrakul S, Smith DR. Characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae phage KP1801 and evaluation of therapeutic efficacy in vitro and in vivo. Sci Rep 2020; 10:11803. [PMID: 32678251 PMCID: PMC7367294 DOI: 10.1038/s41598-020-68702-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Extended spectrum β lactamase-producing Klebsiella pneumoniae (ESBL-KP) is being reported with high morbidity and mortality rates and is considered as the highest priority for new antimicrobial strategies. To develop an alternative antimicrobial agent, phage KP1801 with broad lytic activity was isolated. The genome of phage KP1801 was double stranded DNA of 49,835 base pairs, with a GC content of 50.26%. There were 75 putative open reading frames. Phage KP1801 was classified as being in the order Caudovirales, belonging to the Siphoviridae family. About 323 proteins were detected by shotgun proteome analysis. The phage inhibited biofilm formation and reduced pre-formed biofilm in a dose dependent manner. Scanning electron microscopic studies demonstrated a membrane damage of bacterial cells treated with phage, resulting in cell death. Prophylactic and therapeutic efficacies of the phage were evaluated in Galleria mellonella. Administration of ESBL-KP infection with phage significantly improved the survival of G. mellonella. The number of intracellular bacteria in larvae showed a significant decrease compared with untreated control while the number of phage increased. These studies suggested that phage KP1801 has the potential for development as an alternative for antibiotics and biocontrol agents against ESBL-KP infection.
Collapse
Affiliation(s)
| | - Ampapan Naknaen
- Department of Microbiology, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Jirapath Thammaphet
- School of Science, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Rattanaruji Pomwised
- Department of Microbiology, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, 73170, Thailand
| |
Collapse
|
19
|
Durant L, Stentz R, Noble A, Brooks J, Gicheva N, Reddi D, O’Connor MJ, Hoyles L, McCartney AL, Man R, Pring ET, Dilke S, Hendy P, Segal JP, Lim DNF, Misra R, Hart AL, Arebi N, Carding SR, Knight SC. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. MICROBIOME 2020; 8:88. [PMID: 32513301 PMCID: PMC7282036 DOI: 10.1186/s40168-020-00868-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract.
Collapse
Affiliation(s)
- Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Alistair Noble
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Johanne Brooks
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Nadezhda Gicheva
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Durga Reddi
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Matthew J. O’Connor
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS UK
| | - Anne L. McCartney
- Food Microbial Sciences Unit, University of Reading, Whiteknights, Reading, RG6 6UR UK
| | - Ripple Man
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - E. Tobias Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Stella Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Philip Hendy
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Jonathan P. Segal
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Dennis N. F. Lim
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ravi Misra
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ailsa L. Hart
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Naila Arebi
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Stella C. Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| |
Collapse
|
20
|
Noble A, Durant L, Hoyles L, Mccartney AL, Man R, Segal J, Costello SP, Hendy P, Reddi D, Bouri S, Lim DNF, Pring T, O’Connor MJ, Datt P, Wilson A, Arebi N, Akbar A, Hart AL, Carding SR, Knight SC. Deficient Resident Memory T Cell and CD8 T Cell Response to Commensals in Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:525-537. [PMID: 31665283 PMCID: PMC7242004 DOI: 10.1093/ecco-jcc/jjz175] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS The intestinal microbiota is closely associated with resident memory lymphocytes in mucosal tissue. We sought to understand how acquired cellular and humoral immunity to the microbiota differ in health versus inflammatory bowel disease [IBD]. METHODS Resident memory T cells [Trm] in colonic biopsies and local antibody responses to intraepithelial microbes were analysed. Systemic antigen-specific immune T and B cell memory to a panel of commensal microbes was assessed. RESULTS Systemically, healthy blood showed CD4 and occasional CD8 memory T cell responses to selected intestinal bacteria, but few memory B cell responses. In IBD, CD8 memory T cell responses decreased although B cell responses and circulating plasmablasts increased. Possibly secondary to loss of systemic CD8 T cell responses in IBD, dramatically reduced numbers of mucosal CD8+ Trm and γδ T cells were observed. IgA responses to intraepithelial bacteria were increased. Colonic Trm expressed CD39 and CD73 ectonucleotidases, characteristic of regulatory T cells. Cytokines/factors required for Trm differentiation were identified, and in vitro-generated Trm expressed regulatory T cell function via CD39. Cognate interaction between T cells and dendritic cells induced T-bet expression in dendritic cells, a key mechanism in regulating cell-mediated mucosal responses. CONCLUSIONS A previously unrecognised imbalance exists between cellular and humoral immunity to the microbiota in IBD, with loss of mucosal T cell-mediated barrier immunity and uncontrolled antibody responses. Regulatory function of Trm may explain their association with intestinal health. Promoting Trm and their interaction with dendritic cells, rather than immunosuppression, may reinforce tissue immunity, improve barrier function, and prevent B cell dysfunction in microbiota-associated disease and IBD aetiology.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, UK,Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark’s Campus, Harrow, London, UK,Corresponding author: Alistair Noble, PhD, Antigen Presentation Research Group, Northwick Park and St Mark’s Hospital, Level 7W, Watford Road, Harrow HA1 3UJ, UK. Tel.: [44] 20 8869 3255;
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark’s Campus, Harrow, London, UK
| | - Lesley Hoyles
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London, UK,Department of Bioscience, Nottingham Trent University, Nottingham, UK
| | - Anne L Mccartney
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Ripple Man
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Jonathan Segal
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London, UK,St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Samuel P Costello
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK,Department of Gastroenterology, Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Philip Hendy
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark’s Campus, Harrow, London, UK,St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Durga Reddi
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark’s Campus, Harrow, London, UK
| | - Sonia Bouri
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Dennis N F Lim
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Toby Pring
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Matthew J O’Connor
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark’s Campus, Harrow, London, UK
| | - Pooja Datt
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Ana Wilson
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Naila Arebi
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Ayesha Akbar
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Ailsa L Hart
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London, UK,St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Simon R Carding
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, UK,Norwich Medical School, University of East Anglia, Norwich, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark’s Campus, Harrow, London, UK,St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| |
Collapse
|
21
|
Herridge WP, Shibu P, O’Shea J, Brook TC, Hoyles L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J Med Microbiol 2020; 69:176-194. [PMID: 31976857 PMCID: PMC7431098 DOI: 10.1099/jmm.0.001141] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Klebsiella spp. are commensals of the human microbiota, and a leading cause of opportunistic nosocomial infections. The incidence of multidrug resistant (MDR) strains of Klebsiella pneumoniae causing serious infections is increasing, and Klebsiella oxytoca is an emerging pathogen. Alternative strategies to tackle infections caused by these bacteria are required as strains become resistant to last-resort antibiotics such as colistin. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their gene products are now being considered as alternatives or adjuncts to antimicrobial therapies. Several in vitro and in vivo studies have shown the potential for lytic phages to combat MDR K. pneumoniae infections. Ready access to cheap sequencing technologies has led to a large increase in the number of genomes available for Klebsiella-infecting phages, with these phages being heterogeneous at the whole-genome level. This review summarizes our current knowledge on phages of Klebsiella spp. and highlights technological and biological issues relevant to the development of phage-based therapies targeting these bacteria.
Collapse
Affiliation(s)
- Warren P. Herridge
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Preetha Shibu
- Life Sciences, University of Westminster, 115 Cavendish Street, London W1W 6UW, UK
| | - Jessica O’Shea
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Thomas C. Brook
- Life Sciences, University of Westminster, 115 Cavendish Street, London W1W 6UW, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|
22
|
Knecht LE, Veljkovic M, Fieseler L. Diversity and Function of Phage Encoded Depolymerases. Front Microbiol 2020; 10:2949. [PMID: 31998258 PMCID: PMC6966330 DOI: 10.3389/fmicb.2019.02949] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages of the Podoviridae family often exhibit so-called depolymerases as structural components of the virion. These enzymes appear as tail spike proteins (TSPs). After specific binding to capsular polysaccharides (CPS), exopolysaccharides (EPS) or lipopolysaccharide (LPS) of the host bacteria, polysaccharide-repeating units are specifically cleaved. Finally, the phage reaches the last barrier, the cell wall, injects its DNA, and infects the cell. Recently, similar enzymes from bacteriophages of the Ackermannviridae, Myoviridae, and Siphoviridae families were also described. In this mini-review the diversity and function of phage encoded CPS-, EPS-, and LPS-degrading depolymerases is summarized. The function of the enzymes is described in terms of substrate specificity and applications in biotechnology.
Collapse
Affiliation(s)
- Leandra E Knecht
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Marjan Veljkovic
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|
23
|
Cai R, Wang Z, Wang G, Zhang H, Cheng M, Guo Z, Ji Y, Xi H, Wang X, Xue Y, Ur Rahman S, Sun C, Feng X, Lei L, Tong Y, Han W, Gu J. Biological properties and genomics analysis of vB_KpnS_GH-K3, a Klebsiella phage with a putative depolymerase-like protein. Virus Genes 2019; 55:696-706. [PMID: 31254238 DOI: 10.1007/s11262-019-01681-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/20/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.
Collapse
Affiliation(s)
- Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai District, Beijing, 100071, People's Republic of China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Xi'an Road 5333#, Changchun, 130062, People's Republic of China.
| |
Collapse
|
24
|
Liao YT, Salvador A, Harden LA, Liu F, Lavenburg VM, Li RW, Wu VCH. Characterization of a Lytic Bacteriophage as an Antimicrobial Agent for Biocontrol of Shiga Toxin-Producing Escherichia coli O145 Strains. Antibiotics (Basel) 2019; 8:E74. [PMID: 31195679 PMCID: PMC6627115 DOI: 10.3390/antibiotics8020074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is one of the most prevalent non-O157 serogroups associated with foodborne outbreaks. Lytic phages are a potential alternative to antibiotics in combatting bacterial pathogens. In this study, we characterized a Siphoviridae phage lytic against STEC O145 strains as a novel antimicrobial agent. Escherichia phage vB_EcoS-Ro145clw (Ro145clw) was isolated and purified prior to physiological and genomic characterization. Then, in vitro antimicrobial activity against an outbreak strain, E. coli O145:H28, was evaluated. Ro145clw is a double-stranded DNA phage with a genome 42,031 bp in length. Of the 67 genes identified in the genome, 21 were annotated with functional proteins, none of which were stx genes. Ro145clw had a latent period of 21 min and a burst size of 192 phages per infected cell. The phage could sustain a wide range of pH (pH 3 to pH 10) and temperatures (-80 °C to -73 °C). Ro145clw was able to reduce E. coli O145:H28 in lysogeny broth by approximately 5 log at 37 °C in four hours. These findings indicate that the Ro145clw phage is a promising antimicrobial agent that can be used to control E. coli O145 in adverse pH and temperature conditions.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Leslie A Harden
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Fang Liu
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Valerie M Lavenburg
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705, USA.
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| |
Collapse
|
25
|
Tabassum R, Shafique M, Khawaja KA, Alvi IA, Rehman Y, Sheik CS, Abbas Z, Rehman SU. Complete genome analysis of a Siphoviridae phage TSK1 showing biofilm removal potential against Klebsiella pneumoniae. Sci Rep 2018; 8:17904. [PMID: 30559386 PMCID: PMC6297243 DOI: 10.1038/s41598-018-36229-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/07/2018] [Indexed: 01/21/2023] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae is a nosocomial pathogen, produces septicemia, pneumonia and UTI. Excessive use of antibiotics contributes towards emergence of multidrug-resistance. Bacteriophage-therapy is a potential substitute of antibiotics with many advantages. In this investigation, microbiological and genome characterization of TSK1 bacteriophage and its biofilm elimination capability are presented. TSK1 showed narrow host range and highest stability at pH 7 and 37 °C. TSK1 reduced the growth of K. pneumoniae during the initial 14 hours of infection. Post-treatment with TSK1 against different age K. pneumoniae biofilms reduced 85-100% biomass. Pre-treatment of TSK1 bacteriophage against the biofilm of Klebsiella pneumoniae reduced > 99% biomass in initial 24 hr of incubation. The genome of TSK1 phage comprised 49,836 base pairs with GC composition of 50.44%. Total seventy-five open reading frames (ORFs) were predicted, 25 showed homology with known functional proteins, while 50 were called hypothetical, as no homologs with proved function exists in the genome databases. Blast and phylogenetic analysis put it in the Kp36 virus genus of family Siphoviridae. Proposed packaging strategy of TSK1 bacteriophage genome is headful packaging using the pac sites. The potential of TSK1 bacteriophage could be used to reduce the bacterial load and biofilm in clinical and non-clinical settings.
Collapse
Affiliation(s)
- Rabia Tabassum
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Muafia Shafique
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Komal Amer Khawaja
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Iqbal Ahmed Alvi
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Yasir Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Cody S Sheik
- Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, USA
| | - Zaigham Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shafiq Ur Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
26
|
Taha OA, Connerton PL, Connerton IF, El-Shibiny A. Bacteriophage ZCKP1: A Potential Treatment for Klebsiella pneumoniae Isolated From Diabetic Foot Patients. Front Microbiol 2018; 9:2127. [PMID: 30254618 PMCID: PMC6141743 DOI: 10.3389/fmicb.2018.02127] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
The recorded growth in infection by multidrug resistant bacteria necessitates prompt efforts toward developing alternatives to antibiotics, such as bacteriophage therapy. Immuno-compromised patients with diabetes mellitus are particularly prone to foot infections by multidrug resistant Klebsiella pneumoniae, which may be compounded by chronic osteomyelitis. Bacteriophage ZCKP1, isolated from freshwater in Giza, Egypt, was tested in vitro to evaluate its lytic activity against a multidrug resistant K. pneumoniae KP/01, isolated from foot wound of a diabetic patient in Egypt. Characterization of ZCKP1 phage indicated that it belonged to the Myoviridae family of bacteriophages with a ds-DNA genome size of 150.9 kb. Bacteriophage ZCKP1 lysed a range of osteomyelitis pathogenic agents including Klebsiella spp., Proteus spp. and E. coli isolates. The bacteriophage reduced the bacterial counts of host bacteria by ≥2 log10 CFU/ml at 25°C, and demonstrated the ability to reduce bacterial counts and biofilm biomass (>50%) when applied at high multiplicity of infection (50 PFU/CFU). These characteristics make ZCKP1 phage of potential therapeutic value to treat K. pneumoniae and associated bacteria present in diabetic foot patients.
Collapse
Affiliation(s)
- Omar A Taha
- Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Phillippa L Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Ayman El-Shibiny
- Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
27
|
Hoyles L, Jiménez-Pranteda ML, Chilloux J, Brial F, Myridakis A, Aranias T, Magnan C, Gibson GR, Sanderson JD, Nicholson JK, Gauguier D, McCartney AL, Dumas ME. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. MICROBIOME 2018; 6:73. [PMID: 29678198 PMCID: PMC5909246 DOI: 10.1186/s40168-018-0461-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The dietary methylamines choline, carnitine, and phosphatidylcholine are used by the gut microbiota to produce a range of metabolites, including trimethylamine (TMA). However, little is known about the use of trimethylamine N-oxide (TMAO) by this consortium of microbes. RESULTS A feeding study using deuterated TMAO in C57BL6/J mice demonstrated microbial conversion of TMAO to TMA, with uptake of TMA into the bloodstream and its conversion to TMAO. Microbial activity necessary to convert TMAO to TMA was suppressed in antibiotic-treated mice, with deuterated TMAO being taken up directly into the bloodstream. In batch-culture fermentation systems inoculated with human faeces, growth of Enterobacteriaceae was stimulated in the presence of TMAO. Human-derived faecal and caecal bacteria (n = 66 isolates) were screened on solid and liquid media for their ability to use TMAO, with metabolites in spent media analysed by 1H-NMR. As with the in vitro fermentation experiments, TMAO stimulated the growth of Enterobacteriaceae; these bacteria produced most TMA from TMAO. Caecal/small intestinal isolates of Escherichia coli produced more TMA from TMAO than their faecal counterparts. Lactic acid bacteria produced increased amounts of lactate when grown in the presence of TMAO but did not produce large amounts of TMA. Clostridia (sensu stricto), bifidobacteria, and coriobacteria were significantly correlated with TMA production in the mixed fermentation system but did not produce notable quantities of TMA from TMAO in pure culture. CONCLUSIONS Reduction of TMAO by the gut microbiota (predominantly Enterobacteriaceae) to TMA followed by host uptake of TMA into the bloodstream from the intestine and its conversion back to TMAO by host hepatic enzymes is an example of metabolic retroconversion. TMAO influences microbial metabolism depending on isolation source and taxon of gut bacterium. Correlation of metabolomic and abundance data from mixed microbiota fermentation systems did not give a true picture of which members of the gut microbiota were responsible for converting TMAO to TMA; only by supplementing the study with pure culture work and additional metabolomics was it possible to increase our understanding of TMAO bioconversions by the human gut microbiota.
Collapse
Affiliation(s)
- Lesley Hoyles
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Maria L. Jiménez-Pranteda
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Faculty of Life Sciences, The University of Reading, Whiteknights Campus, Reading, RG6 6UR UK
| | - Julien Chilloux
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Francois Brial
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France
| | - Antonis Myridakis
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Thomas Aranias
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France
| | - Christophe Magnan
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, 75205 Paris, France
| | - Glenn R. Gibson
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Faculty of Life Sciences, The University of Reading, Whiteknights Campus, Reading, RG6 6UR UK
| | - Jeremy D. Sanderson
- Department of Gastroenterology, Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jeremy K. Nicholson
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Dominique Gauguier
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France
| | - Anne L. McCartney
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, Faculty of Life Sciences, The University of Reading, Whiteknights Campus, Reading, RG6 6UR UK
| | - Marc-Emmanuel Dumas
- Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| |
Collapse
|
28
|
Casey E, van Sinderen D, Mahony J. In Vitro Characteristics of Phages to Guide 'Real Life' Phage Therapy Suitability. Viruses 2018; 10:v10040163. [PMID: 29601536 PMCID: PMC5923457 DOI: 10.3390/v10040163] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
The increasing problem of antibiotic-resistant pathogens has put enormous pressure on healthcare providers to reduce the application of antibiotics and to identify alternative therapies. Phages represent such an alternative with significant application potential, either on their own or in combination with antibiotics to enhance the effectiveness of traditional therapies. However, while phage therapy may offer exciting therapeutic opportunities, its evaluation for safe and appropriate use in humans needs to be guided initially by reliable and appropriate assessment techniques at the laboratory level. Here, we review the process of phage isolation and the application of individual pathogens or reference collections for the development of specific or "off-the-shelf" preparations. Furthermore, we evaluate current characterization approaches to assess the in vitro therapeutic potential of a phage including its spectrum of activity, genome characteristics, storage and administration requirements and effectiveness against biofilms. Lytic characteristics and the ability to overcome anti-phage systems are also covered. These attributes direct phage selection for their ultimate application as antimicrobial agents. We also discuss current pitfalls in this research area and propose that priority should be given to unify current phage characterization approaches.
Collapse
Affiliation(s)
- Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
29
|
Carding SR, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 2017; 46:800-815. [PMID: 28869283 PMCID: PMC5656937 DOI: 10.1111/apt.14280] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human virome consists of animal-cell viruses causing transient infections, bacteriophage (phage) predators of bacteria and archaea, endogenous retroviruses and viruses causing persistent and latent infections. High-throughput, inexpensive, sensitive sequencing methods and metagenomics now make it possible to study the contribution dsDNA, ssDNA and RNA virus-like particles make to the human virome, and in particular the intestinal virome. AIM To review and evaluate the pioneering studies that have attempted to characterise the human virome and generated an increased interest in understanding how the intestinal virome might contribute to maintaining health, and the pathogenesis of chronic diseases. METHODS Relevant virome-related articles were selected for review following extensive language- and date-unrestricted, electronic searches of the literature. RESULTS The human intestinal virome is personalised and stable, and dominated by phages. It develops soon after birth in parallel with prokaryotic communities of the microbiota, becoming established during the first few years of life. By infecting specific populations of bacteria, phages can alter microbiota structure by killing host cells or altering their phenotype, enabling phages to contribute to maintaining intestinal homeostasis or microbial imbalance (dysbiosis), and the development of chronic infectious and autoimmune diseases including HIV infection and Crohn's disease, respectively. CONCLUSIONS Our understanding of the intestinal virome is fragmented and requires standardised methods for virus isolation and sequencing to provide a more complete picture of the virome, which is key to explaining the basis of virome-disease associations, and how enteric viruses can contribute to disease aetiologies and be rationalised as targets for interventions.
Collapse
Affiliation(s)
- S. R. Carding
- Norwich Medical SchoolUniversity of East AngliaNorwichUK,The Gut Health and Food Safety Research ProgrammeThe Quadram InstituteNorwich Research ParkNorwichUK
| | - N. Davis
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - L. Hoyles
- Department of Surgery and CancerImperial College LondonLondonUK
| |
Collapse
|
30
|
Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types. Virus Res 2017; 243:10-18. [PMID: 28988127 DOI: 10.1016/j.virusres.2017.09.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/06/2023]
Abstract
Hypermucoviscous (HV) strains of capsular types K1, K2 and K57 are the most virulent representatives of the Klebsiella pneumoniae species. Eight novel bacteriophages lytic for HV K. pneumoniae were isolated and characterized. Three bacteriophages, KpV41, KpV475, and KpV71 were found to have a lytic activity against mainly K. pneumoniae of capsular type K1. Two phages, KpV74, and KpV763 were lytic for K2 capsular type K. pneumoniae, and the phage KpV767 was specific to K57-type K. pneumoniae only. Two more phages, KpV766, and KpV48 had no capsular specificity. The phage genomes consist of a linear double-stranded DNA of 40,395-44,623bp including direct terminal repeats of 180-246 bp. The G + C contents are 52.3-54.2 % that is slightly lower than that of genomes of K. pneumoniae strains being used for phage propagation. According to the genome structures, sequence similarity and phylogenetic data, the phages are classified within the genus Kp32virus and Kp34virus of subfamily Autographivirinae, family Podoviridae. In the phage genomes, genes encoding proteins with putative motifs of polysaccharide depolymerase were identified. Depolymerase genes of phages KpV71 and KpV74 lytic for hypermucoviscous K. pneumoniae of K1 and K2 capsular type, respectively, were cloned and expressed in Escherichia coli, and the recombinant gene products were purified. The specificity and polysaccharide-degrading activity of the recombinant depolymerases were demonstrated.
Collapse
|
31
|
Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 2017; 101:3103-3119. [PMID: 28337580 PMCID: PMC5380687 DOI: 10.1007/s00253-017-8224-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 03/04/2017] [Indexed: 11/24/2022]
Abstract
Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.
Collapse
Affiliation(s)
- Agnieszka Latka
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.,Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
32
|
Genome Sequence of Klebsiella pneumoniae Bacteriophage PMBT1 Isolated from Raw Sewage. GENOME ANNOUNCEMENTS 2017; 5:5/8/e00914-16. [PMID: 28232430 PMCID: PMC5323609 DOI: 10.1128/genomea.00914-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A bacteriophage virulent for extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae strain 182 was isolated from sewage. The double-stranded DNA (dsDNA) genome showed high similarity to the genomes of other Klebsiella pneumoniae phages. It comprises 175,206 bp with a mol% G+C content of 41.9 and contains 276 putative open reading frames (ORFs) and one tRNA.
Collapse
|
33
|
Majkowska-Skrobek G, Łątka A, Berisio R, Maciejewska B, Squeglia F, Romano M, Lavigne R, Struve C, Drulis-Kawa Z. Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy. Viruses 2016; 8:v8120324. [PMID: 27916936 PMCID: PMC5192385 DOI: 10.3390/v8120324] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/13/2023] Open
Abstract
The rise of antibiotic-resistant Klebsiella pneumoniae, a leading nosocomial pathogen, prompts the need for alternative therapies. We have identified and characterized a novel depolymerase enzyme encoded by Klebsiella phage KP36 (depoKP36), from the Siphoviridae family. To gain insights into the catalytic and structural features of depoKP36, we have recombinantly produced this protein of 93.4 kDa and showed that it is able to hydrolyze a crude exopolysaccharide of a K. pneumoniae host. Using in vitro and in vivo assays, we found that depoKP36 was also effective against a native capsule of clinical K. pneumoniae strains, representing the K63 type, and significantly inhibited Klebsiella-induced mortality of Galleria mellonella larvae in a time-dependent manner. DepoKP36 did not affect the antibiotic susceptibility of Klebsiella strains. The activity of this enzyme was retained in a broad range of pH values (4.0–7.0) and temperatures (up to 45 °C). Consistently, the circular dichroism (CD) spectroscopy revealed a highly stability with melting transition temperature (Tm) = 65 °C. In contrast to other phage tailspike proteins, this enzyme was susceptible to sodium dodecyl sulfate (SDS) denaturation and proteolytic cleavage. The structural studies in solution showed a trimeric arrangement with a high β-sheet content. Our findings identify depoKP36 as a suitable candidate for the development of new treatments for K. pneumoniae infections.
Collapse
Affiliation(s)
- Grażyna Majkowska-Skrobek
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Agnieszka Łątka
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Maria Romano
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, box 2462, B-3001 Leuven, Belgium.
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300S Copenhagen, Denmark.
- World Health Organization Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut, Artillerivej 5, DK-2300S Copenhagen, Denmark.
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
34
|
Bennett BJ, Hall KD, Hu FB, McCartney AL, Roberto C. Nutrition and the science of disease prevention: a systems approach to support metabolic health. Ann N Y Acad Sci 2015; 1352:1-12. [PMID: 26415028 DOI: 10.1111/nyas.12945] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022]
Abstract
Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene-diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues.
Collapse
Affiliation(s)
- Brian J Bennett
- Departments of Genetics and Nutrition, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Kevin D Hall
- Integrative Physiology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Frank B Hu
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Anne L McCartney
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Christina Roberto
- Departments of Social and Behavioral Sciences and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|