1
|
Song P, Deng H, Liu Y, Zhang M. Integrated bioinformatics analysis and experimental validation reveal the relationship between ALOX5AP and the prognosis and immune microenvironment in glioma. BMC Med Genomics 2024; 17:218. [PMID: 39169376 PMCID: PMC11337642 DOI: 10.1186/s12920-024-01991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Treatment of gliomas, the most prevalent primary malignant neoplasm of the central nervous system, is challenging. Arachidonate 5-lipoxygenase activating protein (ALOX5AP) is crucial for converting arachidonic acid into leukotrienes and is associated with poor prognosis in multiple cancers. Nevertheless, its relationship with the prognosis and the immune microenvironment of gliomas remains incompletely understood. METHODS The differential expression of ALOX5AP was evaluated based on public Databases. Kaplan-Meier, multivariate Cox proportional hazards regression analysis, time-dependent receiver operating characteristic, and nomogram were used to estimate the prognostic value of ALOX5AP. The relationship between ALOX5AP and immune infiltration was calculated using ESTIMATE and CIBERSORT algorithms. Relationships between ALOX5AP and human leukocyte antigen molecules, immune checkpoints, tumor mutation burden, TIDE score, and immunophenoscore were calculated to evaluate glioma immunotherapy response. Single gene GSEA and co-expression network-based GO and KEGG enrichment analysis were performed to explore the potential function of ALOX5AP. ALOX5AP expression was verified using multiplex immunofluorescence staining and its prognostic effects were confirmed using a glioma tissue microarray. RESULT ALOX5AP was highly expressed in gliomas, and the expression level was related to World Health Organization (WHO) grade, age, sex, IDH mutation status, 1p19q co-deletion status, MGMTp methylation status, and poor prognosis. Single-cell RNA sequencing showed that ALOX5AP was expressed in macrophages, monocytes, and T cells but not in tumor cells. ALOX5AP expression positively correlated with M2 macrophage infiltration and poor immunotherapy response. Immunofluorescence staining demonstrated that ALOX5AP was upregulated in WHO higher-grade gliomas, localizing to M2 macrophages. Glioma tissue microarray confirmed the adverse effect of ALOX5AP in the prognosis of glioma. CONCLUSION ALOX5AP is highly expressed in M2 macrophages and may act as a potential biomarker for predicting prognosis and immunotherapy response in patients with glioma.
Collapse
Affiliation(s)
- Ping Song
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China
| | - Hui Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China
| | - Yushu Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China.
| |
Collapse
|
2
|
Fan Z, Yin B, Chen X, Yang G, Zhang W, Ye X, Han H, Li M, Shu M, Liu R. Comprehensive analysis of paraspeckle-associated gene modules unveils prognostic signatures and immunological relevance in multi-cancers. Discov Oncol 2024; 15:345. [PMID: 39133261 PMCID: PMC11319543 DOI: 10.1007/s12672-024-01188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, characterized by high rates of angiogenesis and immune evasion. Paraspeckle genes, involved in gene regulation and RNA metabolism, have recently been linked to tumor progression. This study aims to elucidate the relationship between paraspeckle genes and HCC prognosis, focusing on SFPQ, DDX39B, and UBAP2. METHODS We analyzed HCC (LIHC) and prostate cancer (PRAD) samples from the TCGA database to explore the correlation between paraspeckle genes and angiogenesis. We conducted unsupervised clustering, risk scoring, and survival analysis to identify distinct patient groups and their clinical outcomes. Gene expression data were used to perform differential analysis and Gene Ontology (GO) enrichment. RESULTS Our analysis identified significant correlations between paraspeckle genes and angiogenesis across multiple cancer types. Elevated expression levels of SFPQ, DDX39B, and UBAP2 were associated with poor prognosis in HCC patients, and all of them has statistical significance. Unsupervised clustering of HCC samples based on paraspeckle gene expression revealed two distinct clusters, with high-risk patients exhibiting stronger immune suppression and tumor immune evasion. GO enrichment highlighted critical pathways related to angiogenesis and immune regulation. Additionally, a risk scoring model based on these genes effectively distinguished high-risk and low-risk patient groups, providing valuable prognostic insights. CONCLUSION This study demonstrates that SFPQ, DDX39B, and UBAP2 are significantly associated with poor prognosis in HCC, likely due to their roles in promoting angiogenesis and immune suppression. These findings highlight the potential of paraspeckle genes as prognostic biomarkers and therapeutic targets, offering new avenues for personalized treatment strategies in HCC. Further research into their functional mechanisms and clinical applicability is crucial for advancing HCC treatment and improving patient outcomes.
Collapse
Affiliation(s)
- Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology, (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaochen Chen
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guowei Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Ye
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Han
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Interventional Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, China.
| |
Collapse
|
3
|
Huang H, Tang Q, Li S, Qin Y, Zhu G. TGFBI: A novel therapeutic target for cancer. Int Immunopharmacol 2024; 134:112180. [PMID: 38733822 DOI: 10.1016/j.intimp.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
TGFBI, an extracellular matrix protein induced by transforming growth factor β, has been found to exhibit aberrant expression in various types of cancer. TGFBI plays a crucial role in tumor cell proliferation, angiogenesis, and apoptosis. It also facilitates invasion and metastasis in various types of cancer, including colon, head and neck squamous, renal, and prostate cancers. TGFBI, a prominent p-EMT marker, strongly correlates with lymph node metastasis. TGFBI demonstrates immunosuppressive effects within the tumor immune microenvironment. Targeted therapy directed at TGFBI shows promise as a potential strategy to combat cancer. Hence, a comprehensive review was conducted to examine the impact of TGFBI on various aspects of tumor biology, including cell proliferation, angiogenesis, invasion, metastasis, apoptosis, and the immune microenvironment. This review also delved into the underlying biochemical mechanisms to enhance our understanding of the research advancements related to TGFBI in the context of tumors.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuexiang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Chang C, Cheng YY, Kamlapurkar S, White S, Tang PW, Elhaw AT, Javed Z, Aird KM, Mythreye K, Phaëton R, Hempel N. GPX3 supports ovarian cancer tumor progression in vivo and promotes expression of GDF15. Gynecol Oncol 2024; 185:8-16. [PMID: 38342006 PMCID: PMC11179984 DOI: 10.1016/j.ygyno.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. METHODS GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. RESULTS GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-β growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. CONCLUSIONS We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Ya-Yun Cheng
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Shriya Kamlapurkar
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Sierra White
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Priscilla W Tang
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA; Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amal T Elhaw
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA; Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Zaineb Javed
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA; Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Katherine M Aird
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rébécca Phaëton
- Department of Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Chang C, Cheng YY, Kamlapurkar S, White SR, Tang PW, Elhaw AT, Javed Z, Aird KM, Mythreye K, Phaëton R, Hempel N. GPX3 supports ovarian cancer tumor progression in vivo and promotes expression of GDF15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577037. [PMID: 38352432 PMCID: PMC10862694 DOI: 10.1101/2024.01.24.577037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Objective We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. Methods GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. Results GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-β growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. Conclusions We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Ya-Yun Cheng
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Shriya Kamlapurkar
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Sierra R White
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Priscilla W Tang
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amal T Elhaw
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Zaineb Javed
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Katherine M Aird
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rébécca Phaëton
- Department of Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| |
Collapse
|
6
|
Wojtowicz K, Świerczewska M, Nowicki M, Januchowski R. The TGFBI gene and protein expression in topotecan resistant ovarian cancer cell lines. Adv Med Sci 2023; 68:379-385. [PMID: 37806183 DOI: 10.1016/j.advms.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE The primary limiting factor in achieving cures for patients with cancer, particularly ovarian cancer, is drug resistance. The mechanisms of drug resistance of cancer cells during chemotherapy may include compounds of the extracellular matrix, such as the transforming growth factor-beta-induced protein (TGFBI). In this study, we aimed to analyze the TGFBI gene and protein expression in different sensitive and drug-resistant ovarian cancer cell lines, as well as test if TGFBI can be involved in the response to topotecan (TOP) at the very early stages of treatment. MATERIALS AND METHODS In this study, we conducted a detailed analysis of TGFBI expression in different ovarian cancer cell lines (A2780, A2780TR1, A2780TR2, W1, W1TR, SKOV-3, PEA1, PEA2 and PEO23). The level of TGFBI mRNA (QPCR), intracellular and extracellular protein (Western blot analysis) were assessed in this study. RESULTS We observed upregulation of TGFBI mRNA in drug-resistant cell lines and estrogen-receptor positive cell lines, which was supported by overexpression of both intracellular and extracellular TGFBI protein. We also showed the TGFBI expression after a short period of treatment of sensitive ovarian cancer cell lines with TOP. CONCLUSION The expression of TGFBI in ovarian cancer cell lines suggests its role in the development of drug resistance.
Collapse
Affiliation(s)
- Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Radosław Januchowski
- Department of Anatomy and Histology, Collegium Medicum of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
7
|
Wadapurkar RM, Sivaram A, Vyas R. RNA-Seq Analysis of Clinical Samples from TCGA Reveal Molecular Signatures for Ovarian Cancer. Cancer Invest 2023; 41:394-404. [PMID: 36797673 DOI: 10.1080/07357907.2023.2182123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Identifying differentially expressed genes and co-expression modules lead to novel biomarkers. GO, pathway enrichment, network, and tumor stage analysis of 318 ovarian cancer samples from TCGA, categorised into primary and recurrent, pre-menopause and post-menopause, and early and late stage tumors was performed. Upregulated and downregulated genes in primary vs recurrent, early stage vs late-stage and pre-menopause vs post-menopause tumors were 84 and 62, 84 and 35, and 88 and 14, respectively. IRAK2 and CXCL8 had higher expression in recurrent tumors while REG1A had higher expression in post-menopause samples. In late stage tumors constant expression of IRAK2 and REG1A was observed, while that of CXCL8 and EGF decreased. These genes may be potential biomarkers for the diagnosis of the disease.
Collapse
Affiliation(s)
- Rucha M Wadapurkar
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Aruna Sivaram
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Renu Vyas
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| |
Collapse
|
8
|
Sun KF, Sun LM, Zhou D, Chen YY, Hao XW, Liu HR, Liu X, Chen JJ. XGBG: A Novel Method for Identifying Ovarian Carcinoma Susceptible Genes Based on Deep Learning. Front Oncol 2022; 12:897503. [PMID: 35646648 PMCID: PMC9133413 DOI: 10.3389/fonc.2022.897503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian carcinomas (OCs) represent a heterogeneous group of neoplasms consisting of several entities with pathogenesis, molecular profiles, multiple risk factors, and outcomes. OC has been regarded as the most lethal cancer among women all around the world. There are at least five main types of OCs classified by the fifth edition of the World Health Organization of tumors: high-/low-grade serous carcinoma, mucinous carcinoma, clear cell carcinoma, and endometrioid carcinoma. With the improved knowledge of genome-wide association study (GWAS) and expression quantitative trait locus (eQTL) analyses, the knowledge of genomic landscape of complex diseases has been uncovered in large measure. Moreover, pathway analyses also play an important role in exploring the underlying mechanism of complex diseases by providing curated pathway models and information about molecular dynamics and cellular processes. To investigate OCs deeper, we introduced a novel disease susceptible gene prediction method, XGBG, which could be used in identifying OC-related genes based on different omics data and deep learning methods. We first employed the graph convolutional network (GCN) to reconstruct the gene features based on both gene feature and network topological structure. Then, a boosting method is utilized to predict OC susceptible genes. As a result, our model achieved a high AUC of 0.7541 and an AUPR of 0.8051, which indicates the effectiveness of the XGPG. Based on the newly predicted OC susceptible genes, we gathered and researched related literatures to provide strong support to the results, which may help in understanding the pathogenesis and mechanisms of the disease.
Collapse
Affiliation(s)
- Ke Feng Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Min Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Zhou
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ying Ying Chen
- Department of Nephrology, The First Affiliated Hospital of Heilongjiang University of Chinese Medical, Harbin, China
| | - Xi Wen Hao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong Ruo Liu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Jing Chen
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| |
Collapse
|