1
|
Du G, Zheng K, Sun C, Sun M, Pan J, Meng D, Guan W, Zhao H. The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1522294. [PMID: 40129568 PMCID: PMC11931143 DOI: 10.3389/fcell.2025.1522294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
The mammalian p38 MAPK pathway plays a vital role in transducing extracellular environmental stresses into numerous intracellular biological processes. The p38 MAPK have been linked to a variety of cellular processes including inflammation, cell cycle, apoptosis, development and tumorigenesis in specific cell types. The p38 MAPK pathway has been implicated in the development of many human diseases and become a target for treatment of cancer. Although MAPK p38 pathway has been extensively studied, many questions still await clarification. More comprehensive understanding of the MAPK p38 pathway will provide new possibilities for the treatment of human diseases. Hog1 in S. cerevisiae is the conserved homolog of p38 in mammalian cells and the HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The deep understanding of HOG MAPK signaling pathway will help provide clues for clarifying the p38 signaling pathway, thereby furthering our understanding of the relationship between p38 and disease. In this review, we elaborate the functions of p38 and the relationship between p38 and human disease. while also analyzing how Hog1 regulates cellular processes in response to environmental stresses. 1, p38 in response to various stresses in mammalian cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved homolog of p38 in response to environmental stresses in Saccharomyces cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The functions of mammalian p38 in human health. 3, Hog1 as conserved homolog of p38 in response to environmental stresses in S. cerevisiae.
Collapse
Affiliation(s)
- Gang Du
- *Correspondence: Gang Du, ; Wenqiang Guan, ; Hui Zhao,
| | | | | | | | | | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
2
|
Li LY, Liu SZ, Yu X, Shi X, You H, Liu P, Wang F, Wang P, Chen LL. Liuwei Anshen Capsule alleviates cognitive impairment induced by sleep deprivation by reducing neuroapoptosis and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119311. [PMID: 39743184 DOI: 10.1016/j.jep.2024.119311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive dysfunction is a common complication of chronic insomnia. Liuwei Anshen Capsule (LAC), a traditional Chinese patent medicine clinically prescribed for insomnia, has been proved to possess good efficacy in reducing insomnia complications including dementia and anxiety in clinic. However, the active substances in LAC and their mechanisms in treating cognitive deficit associated with sleep disorders remain unclear. AIM OF THE STUDY This study aims to explore the potential material basis and therapeutic mechanisms of LAC on cognitive impairment caused by sleep deprivation (SD) through an integrative approach involving serum pharmacochemistry, network pharmacology and experimental validation. METHODS The active ingredients of LAC in vitro and in vivo were screened and identified by liquid chromatography-mass spectrometry (LC-MS) technology. The potential targets and signaling pathways of LAC against cognitive impairment were predicted based on network pharmacology and molecular docking. Subsequently, MWM and NOR were employed to evaluate the efficacy of LAC on cognitive impairment in SD rats, and the mechanism was further validated from pathological and molecular biology perspectives. RESULTS Totally 85 active ingredients in LAC were accurately identified and 8 components absorbed into blood were found by LC-MS. Network pharmacology and molecular docking analysis predicted potential targets involving caspase-3, MAPK3, MAPK1, and Bcl-2. LAC (192, 384, and 768 mg/kg, i.g.) could improve spatial learning and memory of SD rats in a dose-dependent manner, restrain hippocampal neuronal apoptosis and microglia activation, and diminish TNF-α, IL-1β, and IL-6 expression levels, which were achieved by regulating apoptosis-related proteins (caspase-3, Bax, and Bcl-2) and MAPK (p-ERK and p-P38) signaling pathway. CONCLUSION The findings provide evidence that LAC alleviates cognitive abnormality and pathological alterations in sleep-deprived rats by regulating the expression of apoptosis related proteins and MAPK signaling pathway, indicating its potential therapy for the cognitive complaints caused by insomnia or other neurological diseases.
Collapse
Affiliation(s)
- Lian-Yu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shang-Zhi Liu
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xuecheng Yu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiaoyuan Shi
- SCIEX, Analytical Instrument Trading Co., Ltd, Shanghai, 200355, China
| | - Hongtao You
- Chongqing Pharscin Pharmaceutical Group Co., Ltd., Chongqing, 401120, China
| | - Ping Liu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fei Wang
- Dept. of Brain Disease, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China; School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Lin-Lin Chen
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
3
|
Lim CR, Ogawa S, Kumari Y. Exploring β-caryophyllene: a non-psychotropic cannabinoid's potential in mitigating cognitive impairment induced by sleep deprivation. Arch Pharm Res 2025; 48:1-42. [PMID: 39653971 DOI: 10.1007/s12272-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders. This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene's ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB. As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.
Collapse
Affiliation(s)
- Cher Ryn Lim
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Satoshi Ogawa
- Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Han J, Ye L, Wang Y. Pyroptosis: An Accomplice in the Induction of Multisystem Complications Triggered by Obstructive Sleep Apnea. Biomolecules 2024; 14:1349. [PMID: 39595526 PMCID: PMC11592050 DOI: 10.3390/biom14111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder, primarily characterized by two pathological features: chronic intermittent hypoxia (CIH) and sleep deprivation (SD). OSA has been identified as a risk factor for numerous diseases, and the inflammatory response related to programmed cell necrosis is believed to play a significant role in the occurrence and progression of multisystem damage induced by OSA, with increasing attention being paid to pyroptosis. Recent studies have indicated that OSA can elevate oxidative stress levels in the body, activating the process of pyroptosis within different tissues, ultimately accelerating organ dysfunction. However, the molecular mechanisms of pyroptosis in the multisystem damage induced by OSA remain unclear. Therefore, this review focuses on four major systems that have received concentrated attention in existing research in order to explore the role of pyroptosis in promoting renal diseases, cardiovascular diseases, neurocognitive diseases, and skin diseases in OSA patients. Furthermore, we provide a comprehensive overview of methods for inhibiting pyroptosis at different molecular levels, with the goal of identifying viable targets and therapeutic strategies for addressing OSA-related complications.
Collapse
Affiliation(s)
- Jingwen Han
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Lisong Ye
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| |
Collapse
|
5
|
Tang Z, Zhu Y. Cordycepin ameliorates kidney injury by inhibiting gasdermin D-mediated pyroptosis of renal macrophages through nuclear factor kappa-B. J Biochem Mol Toxicol 2024; 38:e23824. [PMID: 39206630 DOI: 10.1002/jbt.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
To explain the effect and mechanism of cordycepin (COR) in resisting acute kidney injury (AKI). Network pharmacology was employed to analyze the correlations between COR, AKI, and pyroptosis, as well as the action target of COR. A mouse model of AKI was established by ischemia reperfusion injury (IRI), and after treatment with COR, the renal function, tissue inflammatory cytokine levels, and pyroptosis-related signals were detected in mice. In in-vitro experiments, damage of renal macrophages was caused by the oxygen-glucose deprivation model, and pyroptosis indicators and inflammatory cytokine levels were assayed after COR treatment. Network pharmacological analysis revealed that nuclear factor kappa-B (NF-κB) was the primary action target of COR and that COR could inhibit kidney injury and tissue inflammation during IRI by inhibiting NF-κB-mediated gasdermin D cleavage. When NF-κB was inhibited, the effect of COR was weakened. COR in renal macrophages could inhibit pyroptosis and lower the levels of inflammatory cytokines, whose effect was associated with NF-κB. Our study finds that COR can play an anti-inflammatory role and inhibit the progression of AKI through the NF-κB-mediated pyroptosis, which represents its nephroprotective mechanism.
Collapse
Affiliation(s)
- Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Zhu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Fu X, Yan S, Hu Z, Sheng W, Li W, Kuang S, Feng X, Liu L, Zhang W, He Q. Guhan Yangsheng Jing mitigates hippocampal neuronal pyroptotic injury and manifies learning and memory capabilities in sleep deprived mice via the NLRP3/Caspase1/GSDMD signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117972. [PMID: 38403005 DOI: 10.1016/j.jep.2024.117972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guhan Yangsheng Jing (GHYSJ) is a traditional Chinese patent medicine, that has the function of nourishing the kidney and replenishing the essence, invigorating the brain and calming the mind. It is often used to treat dizziness, memory loss, sleep disorders, fatigue, and weakness, etc. However, its mechanism for improving sleep has not yet been determined. AIM OF THE STUDY This study aims to explore the effects of GHYSJ on Sleep Deprivation (SD)-induced hippocampal neuronal pyroptotic injury, learning and cognitive abilities, and sleep quality in mice. METHODS In this study, a PCPA-induced SD mouse model was established. We assessed the influence of GHYSJ on sleep quality and mood by using the pentobarbital-induced sleep test (PIST) and sucrose preference test (SPT). The pharmacological effects of GHYSJ on learning and memory impairment were evaluated by the Morris Water Maze (MWM) and Open Field Test (OFT). Pathological changes in the hippocampal tissue of the SD rats were observed via HE staining and Nissl staining. The severity of neuronal damage was evaluated by detecting the expression of the neuronal marker Microtubule-associated protein 2 (MAP2), via immunohistochemistry and immunofluorescence. Furthermore, the levels of neurotransmitter 5-hydroxytryptophan (5-HTP), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), and Glutamic acid (Glu) in hippocampal tissues, as well as the expression of inflammatory factors Interleukin-1β (IL-1β) and Interleukin-18 (IL-18) in serum, were determined by ELISA. The expressions of mRNA and protein NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Cysteinyl aspartate specific proteinase1 (Caspase1), High mobility group box-1 protein (HMGB1) and Apoptosis-associated speck-like protein containing CARD (ASC) related to the cellular ferroptosis pathway were tested and analyzed by RT-PCR and WB respectively. RESULTS PCPA significantly diminishes the sleep span of experimental animals by expediting the expenditure of 5-HT, consequently establishing an essentially direct SD model. The intervention of GHYSJ displays remarkable efficacy in mitigating insomnia symptoms, encompassing difficulties in initiating sleep and insufficient sleep duration. Likewise, it ameliorates memory function impairments induced by sleep deprivation, along with symptoms such as fatigue and depletion of vitality. GHYSJ exerts a protective influence on hippocampal neurons facilitated by inhibiting the down regulation of MAP2 and maintaining the equilibrium of neurotransmitters (5-HTP, 5-HT, GABA, and Glu). It diminishes the expression of intracellular pyroptosis-associated inflammatory factors (IL-1β and IL-18) and curbs the activation of the NLRP3/Caspase1/GSDMD pyroptosis-related signaling pathways, thereby alleviating the damage caused by hippocampal neuronal pyroptosis.
Collapse
Affiliation(s)
- Xinying Fu
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Siyang Yan
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China
| | - Zongren Hu
- College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Wen Sheng
- College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Wanyu Li
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China
| | - Shida Kuang
- College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Xue Feng
- Qidi Pharmaceutical Group Co., Ltd, Hengyang, Hunan, 421099, China
| | - Lumei Liu
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China.
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China.
| | - Qinghu He
- College of Integrated Chinese and Western Medicine, Hunan Provincial Key Laboratory for Prevention and Treatment of Heart and Brain Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; College of Integrated Chinese Medicine, Hunan University of Traditional Chinese Medicine, Hunan, 410208, China; Hunan University of Medicine, Huaihua, Hunan, 418000, China.
| |
Collapse
|
7
|
Jiang N, Zhang Y, Yao C, Chen F, Liu Y, Chen Y, Wang Y, Choudhary MI, Liu X. Hemerocallis citrina Baroni ameliorates chronic sleep deprivation-induced cognitive deficits and depressive-like behaviours in mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:35-43. [PMID: 38245346 DOI: 10.1016/j.lssr.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 01/22/2024]
Abstract
Sleep deprivation (SD) is common during spaceflight. SD is known to cause cognitive deficits and depression, requiring treatment and prevention. Hemerocallis citrina Baroni (Liliaceae) is a perennial herb with antidepressant, antioxidant, antitumor, anti-inflammatory, and neuroprotective effects.The aim of our study was to investigate the effects of H. citrina extract (HCE) on SD-induced cognitive decline and depression-like behavior and possible neuroinflammation-related mechanisms. HCE (2 g/kg/day, i.g.) or vortioxetine (10 mg/kg/day, i.g.) were given to mice by oral gavage for a total of 28 days during the SD process. HCE treatment was found to ameliorate SD-induced impairment of short- and long-term spatial and nonspatial memory, measured using Y-maze, object recognition, and Morris water maze tests, as well as mitigating SD-induced depression-like behaviors, measured by tail suspension and forced swimming tests. HCE also reduced the levels of inflammatory cytokines (IL-1β, IL-18, and IL-6) in the serum and hippocampus. Furthermore, HCE suppressed SD-induced microglial activation in the prefrontal cortex (PFC) and the CA1 and dentate gyrus (DG) regions of the hippocampus. HCE also inhibited the expression of phosphorylated NF-κB and activation of the NLRP3 inflammasome. In summary, our findings indicated that HCE attenuated SD-induced cognitive impairment and depression-like behavior and that this effect may be mediated by the inhibition of inflammatory progression and microglial activation in the hippocampus, as well as the down-regulation of NF-κB and NLRP3 signaling. The findings of these studies showingTthese results indicate that HCE exerts neuroprotective effects and are consistent with the findings of previous studies, suggesting that HCE is beneficial for the prevention and treatment of cognitive decline and depression in SD.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fang Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yupei Liu
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yuzhen Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hunan University of Chinese Medicine, Hunan 410000, China.
| |
Collapse
|
8
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
9
|
Zhang C, Yang Y. Targeting toll-like receptor 4 (TLR4) and the NLRP3 inflammasome: Novel and emerging therapeutic targets for hyperuricaemia nephropathy. BIOMOLECULES & BIOMEDICINE 2023; 24:688-697. [PMID: 38041694 PMCID: PMC11293219 DOI: 10.17305/bb.2023.9838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 12/03/2023]
Abstract
The clinical manifestation of hyperuricaemia, known as hyperuricaemia nephropathy, is relatively common. Its pathophysiology is largely based on chronic inflammation in circulatory and renal tissues. Toll-like receptor 4 (TLR4), a subclass of innate immune receptors, detects both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), initiating inflammatory and immune responses that lead to the release of pro-inflammatory cytokines interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α). These cytokines are pivotal in renal inflammation, especially in conditions like hyperuricaemia, acute renal injury, ischemia-reperfusion injury, and acute renal failure. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune signaling complex, plays a central role in inflammation. It finely regulates the activation of caspase-1 and the production and secretion of the pro-inflammatory cytokine IL-1β, mediating and amplifying the inflammatory cascade response. Activation of TLR4 indirectly promotes the assembly of the NLRP3 inflammasome by regulating the nuclear factor kappa B (NF-κB) signaling pathway, thereby amplifying the inflammatory process and playing a significant pro-inflammatory role in hyperuricaemia nephropathy. TLR4 and NLRP3 inflammasome are anticipated to be novel markers and therapeutic targets for assessing treatment efficacy and prognosis in hyperuricaemia nephropathy. This paper provides a comprehensive overview of the structural composition and biological functions of TLR4 and NLRP3 inflammasome and systematically reviews their relevance in the pathogenesis of hyperuricaemia nephropathy.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yanlang Yang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
10
|
Li J, Zhang H, Deng B, Wang X, Liang P, Xu S, Jing Z, Xiao Z, Sun L, Gao C, Wang J, Sun X. Dexmedetomidine Improves Anxiety-like Behaviors in Sleep-Deprived Mice by Inhibiting the p38/MSK1/NFκB Pathway and Reducing Inflammation and Oxidative Stress. Brain Sci 2023; 13:1058. [PMID: 37508990 PMCID: PMC10377202 DOI: 10.3390/brainsci13071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Sleep deprivation (SD) triggers a range of neuroinflammatory responses. Dexmedetomidine can improve sleep deprivation-induced anxiety by reducing neuroinflammatory response but the mechanism is unclear; (2) Methods: The sleep deprivation model was established by using an interference rod device. An open field test and an elevated plus maze test were used to detect the emotional behavior of mice. Mouse cortical tissues were subjected to RNA sequence (RNA-seq) analysis. Western blotting and immunofluorescence were used to detect the expression of p38/p-p38, MSK1/p-MSK1, and NFκBp65/p- NFκBp65. Inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA); (3) Results: SD triggered anxiety-like behaviors in mice and was closely associated with inflammatory responses and the MAPK pathway (as demonstrated by transcriptome analysis). SD led to increased expression levels of p-p38, p-MSK1, and p-NFκB. P38 inhibitor SB203580 was used to confirm the important role of the p38/MSK1/NFκB pathway in SD-induced neuroinflammation. Dexmedetomidine (Dex) effectively improves emotional behavior in sleep-deprived mice by attenuating SD-induced inflammatory responses and oxidative stress in the cerebral cortex, mainly by inhibiting the activation of the p38/MSK1/NFκB pathway; (4) Conclusions: Dex inhibits the activation of the p38/MSK1/NFκB pathway, thus attenuating SD-induced inflammatory responses and oxidative stress in the cerebral cortex of mice.
Collapse
Affiliation(s)
- Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Heming Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710065, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Peng Liang
- Department of Rehabilitative Physioltherapy, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Shenglong Xu
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an 710068, China
| | - Ziwei Jing
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Zhibin Xiao
- Department of Anesthesiology, The 986th Air Force Hospital, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Jin Wang
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an 710068, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
11
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
12
|
Li L, Mou Y, Zhai Q, Yan C, Zhang X, Du M, Li Y, Wang Q, Xiao Z. PirB negatively regulates the inflammatory activation of astrocytes in a mouse model of sleep deprivation. Neuropharmacology 2023; 235:109571. [PMID: 37146940 DOI: 10.1016/j.neuropharm.2023.109571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Reactive astrocytes play a potential regulatory role in sleep deprivation (SD). Paired immunoglobulin-like receptor B (PirB) is expressed in reactive astrocytes, suggesting that PirB may participate in regulating the inflammatory response of astrocytes. We used lentiviral and adeno-associated viral approaches to interfere with the expression of PirB in vivo and in vitro. C57BL/6 mice were sleep deprived for 7 days and neurological function was measured via behavioral tests. We found that overexpressed PirB in SD mice could decrease the number of neurotoxic reactive astrocytes, alleviate cognitive deficits, and promote reactive astrocytes tended to be neuroprotective state. IL-1α, TNFα, and C1q were used to induce neurotoxic reactive astrocytes in vitro. Overexpression of PirB relieved the toxicity of neurotoxic astrocytes. Silencing PirB expression had the opposite effect and exacerbated the transition of reactive astrocytes to a neurotoxic state in vitro. Moreover, PirB-impaired astrocytes demonstrated STAT3 hyperphosphorylation which could be reversed by stattic (p-STAT3 inhibitor). Furthermore, Golgi-Cox staining confirmed that dendrite morphology defects and synapse-related protein were significantly increased in PirB-overexpressed SD mice. Our data demonstrated that SD induced neurotoxic reactive astrocytes and contributed to neuroinflammation and cognitive deficits. PirB performs a negative regulatory role in neurotoxic reactive astrocytes via the STAT3 signaling pathway in SD.
Collapse
Affiliation(s)
- Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yan Mou
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
13
|
Tan LM, Chen P, Nie ZY, Liu XF, Wang B. Circular RNA XRCC5 aggravates glioma progression by activating CLC3/SGK1 axis via recruiting IGF2BP2. Neurochem Int 2023; 166:105534. [PMID: 37061192 DOI: 10.1016/j.neuint.2023.105534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Increasing evidences have reported the critical roles of circular RNA (circRNA) in gliomas. Whereas, the role of circXRCC5 in glioma and its underlying molecular mechanism has not been reported. METHODS The RNA transcripts and protein levels were detected using qRT-PCR, immunohistochemistry (IHC) and in situ hybridization (ISH) assays. Cell proliferation was characterized by CCK-8 and clone formation assays. The formation of NLRP3-inflammasomes was identified using immunofluorescence (IF) and Western blot assays. The cytokines were determined using immunosorbent assay (ELISA) and Western blot assays. The molecular interactions were validated using RIP and pull-down assays. RESULTS circXRCC5 was over-expressed in glioma and positively related to the shorter survival rate, advanced TNM stage and larger tumor volume. circXRCC5 knockdown inhibited cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. Subsequently, we found that circXRCC5 maintained mRNA stability of CLC3 by binding to IGF2BP2. Furthermore, CLC3 accelerated SGK1 expression via PI3K/PDK1/AKT pathway. The rescue experiments showed that both overexpression of CLC3 or SGK1 dramatically alleviated circXRCC5 knockdown-induced inhibition of cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. In vivo, our study proved that circXRCC5 accelerated glioma growth by regulating CLC3/SGK1 axis. CONCLUSION Our data concluded that circXRCC5 formed a complex with IGF2BP2 to regulate inflammasome activation and tumor growth via CLC3/SGK1 axis.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Ping Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Zhen-Yu Nie
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Xiao-Fei Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Bing Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China.
| |
Collapse
|
14
|
Chen J, Xiao L, Chen Y, Li W, Liu Y, Zhou Y, Tan H. YT521-B homology domain containing 1 ameliorates mitochondrial damage and ferroptosis in sleep deprivation by activating the sirtuin 1/nuclear factor erythroid-derived 2-like 2/heme oxygenase 1 pathway. Brain Res Bull 2023; 197:1-12. [PMID: 36935054 DOI: 10.1016/j.brainresbull.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
In sleep deprivation (SD) models, ferroptosis is increased. SIRT1 alleviates cognitive impairment in SD, and SIRT1/NRF2/HO1 pathway depresses ferroptosis in different diseases. Moreover, YTHDC1 can regulate SIRT1 mRNA stability. Therefore, our study explored effects of the YTHDC1/SIRT1/NRF2/HO1 axis on neuronal damage and ferroptosis in SD. The SD mouse model was established through a modified multi-platform water environment method and a cell model of ferroptosis was constructed with Erastin, followed by gain- and loss-of-function assays. In mice, the cognitive impairment and CLOCK and BMAL1 levels in hippocampal tissues were assessed. In cells, viability was measured. In mice and cells, mitochondrial ultrastructure, the content of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and iron, and the expression of GPX4 and ACSL4 were detected. The potential relationships among YTHDC1, SIRT1, and NRF2 were analyzed. SD mice had downregulated YTHDC1, SIRT1, NRF2, and HO1 protein expression in hippocampal tissues and increased ferroptosis. Mechanically, SIRT1 activated the NRF2/HO1 pathway through deacetylation, and YTHDC1 increased SIRT1 mRNA stability. YTHDC1 overexpression diminished mitochondrial damage, the content of ROS, iron, and MDA, and the expression of ACSL4 while enhancing GSH contents and GPX4 expression in hippocampal tissues of SD mice and Erastin-induced HT22 cells. Additionally, YTHDC1 overexpression elevated viability in Erastin-induced HT22 cells. SIRT1 or NRF2 overexpression ameliorated Erastin-induced mitochondrial damage and ferroptosis in HT22 cells. Silencing SIRT1 abolished the impact of YTHDC1 overexpression on SD mice and Erastin-induced HT22 cells. Collectively, YTHDC1 ameliorates mitochondrial damage and ferroptosis after SD by activating the SIRT1/NRF2/HO1 pathway.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China.
| | - Lijun Xiao
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ying Chen
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Wei Li
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Yinan Liu
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ying Zhou
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Hong Tan
- Department of Neurology, the First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
15
|
Jiang T, Gong Y, Zhang W, Qiu J, Zheng X, Li Z, Yang G, Hong Z. PD0325901, an ERK inhibitor, attenuates RANKL-induced osteoclast formation and mitigates cartilage inflammation by inhibiting the NF-κB and MAPK pathways. Bioorg Chem 2023; 132:106321. [PMID: 36642020 DOI: 10.1016/j.bioorg.2022.106321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA), a degenerative disease affecting the joint, is characterized by degradation of the joint edge, cartilage injury, and subchondral bone hyperplasia. Treatment of early subchondral bone loss in OA can inhibit subsequent articular degeneration and improve the prognosis of OA. PD0325901, a specific inhibitor of ERK, is widely used in oncology and has potential as a therapeutic agent for osteoarthritis In this study, we investigated the biological function of PD0325901 in bone marrow monocytes/macrophages (BMMs)treated with RANKL and found that it inhibited osteoclast differentiation in vitro in a time- and dose-dependent manner. PD0325901 restrained the expression of osteoclast marker genes, such as c-Fos and NFATc1 induced by RANKL. We tested the biological effects of PD035901 on ATDC5 cells stimulated by IL-1β and found that it had protective effects on ATDC5 cells. In animal studies, we used a destabilization of the medial meniscus (DMM) model and injected 5 mg/kg or 10 mg/kg of PD0325901 compound into each experimental group of mice. We found that PD0325901 significantly reduced osteochondral pathological changes in post-OA subchondral bone destruction.Finally, we found that PD0325901 down-regulated the pyroptosis level in chondrocytes to rescue cartilage degeneration. Therefore, PD0325901 is expected to be a new generation alternative therapy for OA.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Yuhang Gong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Wekang Zhang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Jianxin Qiu
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Xiaohang Zheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Ze Li
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Guangyong Yang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China.
| | - Zhenghua Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China.
| |
Collapse
|
16
|
Li YJ, He XL, Zhang JY, Liu XJ, Liang JL, Zhou Q, Zhou GH. 8-O-acetyl shanzhiside methylester protects against sleep deprivation-induced cognitive deficits and anxiety-like behaviors by regulating NLRP3 and Nrf2 pathways in mice. Metab Brain Dis 2023; 38:641-655. [PMID: 36456714 DOI: 10.1007/s11011-022-01132-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Sleep deprivation (SD) is prevalent throughout the world, which has negative effects on cognitive abilities, and causing mood alterations. 8-O-acetyl shanzhiside methylester (8-OaS), a chief component in Lamiophlomis rotata (L. rotata) Kudo, possesses potent neuroprotective properties and analgesic effects. Here, we evaluated the alleviative effects of 8-OaS on memory impairment and anxiety in mice subjected to SD (for 72-h). Our results demonstrated that 8-OaS (0.2, 2, 20 mg/kg) administration dose-dependently ameliorated behavioral abnormalities in SD mice, accompanied with restored synaptic plasticity and reduced shrinkage and loss of hippocampal neurons. 8-OaS reduced the inflammatory response and oxidative stress injury in hippocampus caused by SD, which may be related to inhibition of NLRP3 inflammasome-mediated inflammatory process and activation of the Nrf2/HO-1 pathway. SD also led to increases in the expressions of TLR-4/MyD88, active NF-κB, pro-IL-1β, TNFα and MDA, as well as a decrease in the level of SOD in mice hippocampus, which were reversed by 8-OaS administration. Moreover, our molecular docking analyses showed that 8-OaS also has good affinity for NLRP3 and Nrf2 signaling pathways. These results suggested that 8-OaS could be used as a novel herbal medicine for the treatment of sleep loss and for use as a structural base for developing new drugs.
Collapse
Affiliation(s)
- Yu-Jiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Xiao-Lu He
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Jie-Yu Zhang
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Xue-Jiao Liu
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| | - Jia-Long Liang
- No.946 Hospital of PLA land Force, Yining, 835000, Xinjiang Uygur Autonomous Regions, China.
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Qing Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China.
| | - Guo-Hua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, China
| |
Collapse
|
17
|
Jiang N, Zhang Y, Yao C, Liu Y, Chen Y, Chen F, Wang Y, Choudhary MI, Liu X. Tenuifolin ameliorates the sleep deprivation-induced cognitive deficits. Phytother Res 2023; 37:464-476. [PMID: 36608695 DOI: 10.1002/ptr.7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 01/09/2023]
Abstract
Tenuifolin (TEN), a natural neuroprotective compound obtained from the Polygala tenuifolia Willd plant, has improved cognitive symptoms. However, the impact of TEN on memory impairments caused by sleep deprivation (SD) is unclear. Accordingly, the objective of this study was to investigate the mechanisms behind the preventative benefits of TEN on cognitive impairment caused by SD. TEN (10 and 20 mg/kg) and Huperzine A (0.1 mg/kg) were given to mice through oral gavage for 28 days during the SD process. The results indicate that TEN administrations improve short- and long-term memory impairments caused by SD in the Y-maze, object identification, and step-through tests. Moreover, TEN stimulated the generation of anti-inflammatory cytokines (interleukin-10), lowered the production of pro-inflammatory cytokines (interleukin-1β, interleukin-6, and interleukin-18), and activated microglia, improving antioxidant status in the hippocampus. TEN treatments significantly boosted the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 while considerably decreasing the expression of NOD-like receptor thermal protein domain associated protein 3 and caspase-1 p20. Additionally, TEN restored the downregulation of the brain-derived neurotrophic factor signaling cascade and the impaired hippocampal neurogenesis induced by SD. When considered collectively, our data suggest that TEN is a potentially effective neuroprotective agent for cognition dysfunction.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Liu
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuzhen Chen
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Chen
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
18
|
Li J, Li L, He J, Xu J, Bao F. The NLRP3 inflammasome is a potential mechanism and therapeutic target for perioperative neurocognitive disorders. Front Aging Neurosci 2023; 14:1072003. [PMID: 36688154 PMCID: PMC9845955 DOI: 10.3389/fnagi.2022.1072003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are frequent complications associated with cognitive impairment during the perioperative period, including acute postoperative delirium and long-lasting postoperative cognitive dysfunction. There are some risk factors for PNDs, such as age, surgical trauma, anesthetics, and the health of the patient, but the underlying mechanism has not been fully elucidated. Pyroptosis is a form of programmed cell death that is mediated by the gasdermin protein and is involved in cognitive dysfunction disorders. The canonical pathway induced by nucleotide oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contributes to PNDs, which suggests that targeting NLRP3 inflammasomes may be an effective strategy for the treatment of PNDs. Therefore, inhibiting upstream activators and blocking the assembly of the NLRP3 inflammasome may attenuate PNDs. The present review summarizes recent studies and systematically describes the pathogenesis of NLRP3 activation and regulation and potential therapeutics targeting NLRP3 inflammasomes in PNDs patients.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jiannan He
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Fangping Bao
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China,Department of Anesthesiology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Fangping Bao,
| |
Collapse
|
19
|
Amini M, Yousefi Z, Ghafori SS, Hassanzadeh G. Sleep deprivation and NLRP3 inflammasome: Is there a causal relationship? Front Neurosci 2022; 16:1018628. [PMID: 36620464 PMCID: PMC9815451 DOI: 10.3389/fnins.2022.1018628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
In the modern era, sleep deprivation (SD) is one of the most common health problems that has a profound influence on an individual's quality of life and overall health. Studies have identified the possibility that lack of sleep can stimulate inflammatory responses. NLRP3 inflammasome, a key component of the innate immune responses, initiates inflammatory responses by enhancing proinflammatory cytokine release and caspase-1-mediated pyroptosis. In this study, NLRP3 modification, its proinflammatory role, and potential targeted therapies were reviewed with regard to SD-induced outcomes. A growing body of evidence has showed the importance of the mechanistic connections between NLRP3 and the detrimental consequences of SD, but there is a need for more clinically relevant data. In animal research, (i) some animals show differential vulnerability to the effects of SD compared to humans. (ii) Additionally, the effects of sleep differ depending on the SD technique employed and the length of SD. Moreover, paying attention to the crosstalk of all the driving factors of NLRP3 inflammasome activation such as inflammatory responses, autonomic control, oxidative stress, and endothelial function is highly recommended. In conclusion, targeting NLRP3 inflammasome or its downstream pathways for therapy could be complicated due to the reciprocal and complex relationship of SD with NLRP3 inflammasome activation. However, additional research is required to support such a causal claim.
Collapse
Affiliation(s)
- Mohammad Amini
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sayed Soran Ghafori
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Gholamreza Hassanzadeh,
| |
Collapse
|
20
|
Chen J, Xiao L, Chen Y, Li W, Liu Y, Yi F, Zhou Y, Tan H. Butylphthalide alleviates sleep deprivation-induced cognitive deficit by regulating Nrf2/HO-1 pathway. Sleep Med 2022; 100:427-433. [PMID: 36244317 DOI: 10.1016/j.sleep.2022.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE The purpose of this study was to assess the effects of butylphthalide on cognitive deficiencies following sleep deprivation (SD). METHODS The influence of butylphthalide on cognitive function changes in SD-induced mice was evaluated. Nissl staining and HE staining were used to analyze the morphology changes of the hippocampal formation. The changes in cognitive function of SD-induced mice were detected by the Morris water maze. Inflammatory factors, apoptosis, and signal pathway-related proteins in the mice hippocampus were detected. RESULTS SD increased escape latency and path length for mice to reach the hidden platform, decreased the time and range of activity in the target area, and reduced the number and time for traversing the target area. Butylphthalide significantly improved the cognitive decline of SD-induced spatial exploration and learning/memory ability. Butylphthalide also decreased the degeneration of hippocampal neurone, neuronal apoptosis, and inflammatory factors in hippocampus tissue. In addition, butylphthalide activated the nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase 1 (HO-1) pathway. CONCLUSION Butylphthalide alleviated SD-induced cognitive decline, neuronal apoptosis, and inflammation by activating Nrf2/HO-1 pathway. We suggested that butylphthalide may be a prospective candidate for the alleviation of cognitive deficit induced by SD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China.
| | - Lijun Xiao
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Ying Chen
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Wei Li
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Yinan Liu
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Fang Yi
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Ying Zhou
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| | - Hong Tan
- Department of Neurology, The First Hospital of Changsha, Changsha City, HuNan Province, 410005, China
| |
Collapse
|
21
|
Walker WE. GOODNIGHT, SLEEP TIGHT, DON'T LET THE MICROBES BITE: A REVIEW OF SLEEP AND ITS EFFECTS ON SEPSIS AND INFLAMMATION. Shock 2022; 58:189-195. [PMID: 35959798 PMCID: PMC9489678 DOI: 10.1097/shk.0000000000001976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Sleep is a restorative biological process that is crucial for health and homeostasis. However, patient sleep is frequently interrupted in the hospital environment, particularly within the intensive care unit. Suboptimal sleep may alter the immune response and make patients more vulnerable to infection and sepsis. In addition, hospitalized patients with sepsis experience altered sleep relative to patients without infectious disease, suggesting a bidirectional interplay. Preclinical studies have generated complementary findings, and together, these studies have expanded our mechanistic understanding. This review article summarizes clinical and preclinical studies describing how sleep affects inflammation and the host's susceptibility to infection. We also highlight potential strategies to reverse the detrimental effects of sleep interruption in the intensive care unit.
Collapse
Affiliation(s)
- Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX
| |
Collapse
|
22
|
Xiong X, Zuo Y, Cheng L, Yin Z, Hu T, Guo M, Han Z, Ge X, Li W, Wang Y, Wang D, Wang C, Zhang L, Zhang Y, Liu Q, Chen F, Lei P. Modafinil Reduces Neuronal Pyroptosis and Cognitive Decline After Sleep Deprivation. Front Neurosci 2022; 16:816752. [PMID: 35310096 PMCID: PMC8927040 DOI: 10.3389/fnins.2022.816752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) induces systemic inflammation that promotes neuronal pyroptosis. The purpose of this study was to investigate the effect of an antioxidant modafinil on neuronal pyroptosis and cognitive decline following SD. Using a mouse model of SD, we found that modafinil improved learning and memory, reduced proinflammatory factor (IL-1β, TNF-α, and IL-6) production, and increased the expression of anti-inflammatory factors (IL-10). Modafinil treatment attenuated inflammasome activity and reduced neuronal pyroptosis involving the NLRP3/NLRP1/NLRC4-caspase-1-IL-1β pathway. In addition, modafinil induced an upregulation of brain-derived neurotrophic factor (BDNF) and synaptic activity. These results suggest that modafinil reduces neuronal pyroptosis and cognitive decline following SD. These effects should be further investigated in future studies to benefit patients with sleep disorders.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zuo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtian Guo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhu Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaodan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|