1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
Ma P, Wang R, Chen H, Zheng J, Yang W, Meng B, Liu Y, Lu Y, Zhao J, Gao H. Fecal microbiota transplantation alleviates lipopolysaccharide-induced osteoporosis by modulating gut microbiota and long non-coding RNA TUG1 expression. Front Cell Infect Microbiol 2025; 15:1535666. [PMID: 40292220 PMCID: PMC12021831 DOI: 10.3389/fcimb.2025.1535666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose To study whether fecal microbiota transplantation (FMT) can alleviate lipopolysaccharide (LPS)-induced osteoporosis (OP) by regulating the composition and abundance of gut microbiota and the expression level of long non-coding RNA (lncRNA) TUG1. Methods Twenty C57BL/6 mice were selected. Two mice were randomly designated as fecal donors, while the remaining mice were randomly divided into control group, LPS group, and LPS + FMT group. Each group consisted of 6 mice. The mice in the LPS and LPS + FMT groups were intraperitoneally injected with LPS to establish the OP model, and the mice in the LPS + FMT group were treated with donor feces by gavage. Micro-CT was used to scan the femur specimens of mice, and the bone structural parameters of the control and LPS groups were compared to verify the effectiveness of the OP model. HE staining was used to compare the microstructure of femurs in the 3 groups. 16S rRNA gene sequencing was used to analyze the composition and abundance of gut microbiota in mice. Immunofluorescence staining was used to compare the expression levels of Runt-related transcription factor 2 (RUNX2) in the femur of the 3 groups. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to compare the expression levels of lncRNA TUG1 in the intestines and serum of mice in the 3 groups. Results Micro-CT showed that compared with the control group, the mice in the LPS group had more bone loss. The bone mineral density, trabecular number, and trabecular thickness of the control group was higher, and the trabecular separation was smaller. The models were validated effectively. HE staining showed that compared with the control group, the bone trabeculae in the LPS group were thinner and sparse, while that in the LPS + FMT group were dense and clear. The 16s rRNA sequencing showed that the abundance of Bacteroides and Lactobacillus in LPS+FMT group was significantly higher than that in LPS group. Immunofluorescence staining showed that the RUNX2 level in the control group and LPS + FMT group was similar, and both were higher than that in the LPS group. The qRT-PCR results showed that the TUG1 mRNA level in the control group and LPS + FMT group was similar and significantly higher than that in the LPS group. Conclusion FMT can enhance osteoblast levels and improve bone structure by modulating the abundance of gut microbiota in OP mice (such as increasing Bacteroides and Lactobacillus populations) and promoting the expression of lncRNA TUG1, thereby alleviating LPS-induced OP.
Collapse
Affiliation(s)
- Pengcheng Ma
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Ruoyi Wang
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Huizhi Chen
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Jiachun Zheng
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Weijie Yang
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Bo Meng
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Yifan Liu
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongwei Gao
- Shandong Public Health Clinical Center, Shandong University, Jinan, China
- School of Mechanical Engineering, Shandong University, Jinan, China
| |
Collapse
|
3
|
Zhang W, Xie J, Wang Z, Zhong Y, Liu L, Liu J, Zhang W, Pi Y, Tang F, Liu Z, Shao Y, Liu T, Zheng C, Luo J. Androgen deficiency-induced loss of Lactobacillus salivarius extracellular vesicles is associated with the pathogenesis of osteoporosis. Microbiol Res 2025; 293:128047. [PMID: 39813752 DOI: 10.1016/j.micres.2025.128047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Male osteoporosis is primarily caused by a decrease in testicular testosterone production. Male osteoporosis remains a disease with insufficient diagnosis and treatment, and its consequences are severe, especially in older patients. The gut microbiota plays a crucial role in its occurrence and development. Our study found that the relative abundance of Lactobacillus salivarius in the fecal microbiota of male patients with osteoporosis was significantly lower than that in healthy volunteers. Animal experiments have shown that orchiectomy (ORX) can induce osteoporosis and disrupt the intestinal mucosal barrier, and intestinal microbiota. In addition, we discovered a potential etiological connection between the decreased abundance of the intestinal bacterium L. salivarius and the occurrence of ORX-induced osteoporosis. Cohousing or direct colonization of the intestinal microbiota from healthy rats or direct oral administration of the bacteria alleviated ORX-induced osteoporosis and repaired the intestinal mucosal barrier. Finally, we demonstrated that the extracellular vesicles (EVs) of L. salivarius could be transported to the bones and mitigate ORX-induced osteoporosis in rats. Our results indicate that the gut microbiota participates in protecting bones by secreting and delivering bacterial EVs, and that the reduction of L. salivarius and its EVs is closely related to the development of androgen deficiency-related osteoporosis.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Orthopedics, Longyan First Hospital, Longyan, Fujian 364000, PR China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuchun Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Jun Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wenming Zhang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yimin Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Furui Tang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zehong Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yinjin Shao
- Department of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China
| | - Tian Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
4
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
5
|
Indrio F, Salatto A. Gut Microbiota-Bone Axis. ANNALS OF NUTRITION & METABOLISM 2025:1-10. [PMID: 39848230 DOI: 10.1159/000541999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest. SUMMARY Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis. The major role on gut-bone axis is due to short-chain fatty acids (SCFAs). They have the ability to influence regulatory T-cell (Tregs) development and activate bone metabolism through the action of Wnt10. SCFA production may be a mechanism by which the microbial community, by increasing the serum level of insulin-like growth factor 1 (IGF-1), leads to the growth and regulation of bone homeostasis. A specific SCFA, butyrate, diffuses into the bone marrow where it expands Tregs. The Tregs induce production of the Wnt ligand Wnt10b by CD8+ T cells, leading to activation of Wnt signaling and stimulation of bone formation. At the hormonal level, the effect of the gut microbiota on bone homeostasis is expressed through the biphasic action of serotonin. Some microbiota, such as spore-forming microbes, regulate the level of serotonin in the gut, serum, and feces. Another group of bacterial species (Lactococcus, Mucispirillum, Lactobacillus, and Bifidobacterium) can increase the level of peripheral/vascular leptin, which in turn manages bone homeostasis through the action of brain serotonin.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Alessia Salatto
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
6
|
Dong X, Su Y, Luo Z, Li C, Gao J, Han X, Yao S, Wu W, Tian L, Bai Y, Wang G, Ren W. Fecal microbiota transplantation alleviates cognitive impairment by improving gut microbiome composition and barrier function in male rats of traumatic brain injury following gas explosion. Front Microbiol 2024; 15:1485936. [PMID: 39552646 PMCID: PMC11564976 DOI: 10.3389/fmicb.2024.1485936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Background Dysbiosis of gut microbiota (GM) is intricately linked with cognitive impairment and the incidence of traumatic brain injury (TBI) in both animal models and human subjects. However, there is limited understanding of the impact and mechanisms of fecal microbiota transplantation (FMT) on brain and gut barrier function in the treatment of TBI induced by gas explosion (GE). Methods We have employed FMT technology to establish models of gut microbiota dysbiosis in male rats, and subsequently conducted non-targeted metabolomics and microbiota diversity analysis to explore the bacteria with potential functional roles. Results Hematoxylin-eosin and transmission electron microscopy revealed that GE induced significant pathological damage and inflammation responses, as well as varying degrees of mitochondrial impairment in neuronal cells in the brains of rats, which was associated with cognitive decline. Furthermore, GE markedly elevated the levels of regulatory T cell (Tregs)-related factors interleukin-10, programmed death 1, and fork head box protein P3 in the brains of rats. Similar changes in these indicators were also observed in the colon; however, these alterations were reversed upon transfer of normal flora into the GE-exposed rats. Combined microbiome and metabolome analysis indicated up-regulation of Clostridium_T and Allobaculum, along with activation of fatty acid biosynthesis after FMT. Correlation network analysis indirectly suggested a causal relationship between FMT and alleviation of GE-induced TBI. FMT improved intestinal structure and up-regulated expression of tight junction proteins Claudin-1, Occludin, and ZO-1, potentially contributing to its protective effects on both brain and gut. Conclusion Transplantation of gut microbiota from healthy rats significantly enhanced cognitive function in male rats with traumatic brain injury caused by a gas explosion, through the modulation of gut microbiome composition and the improvement of both gut and brain barrier integrity via the gut-brain axis. These findings may offer a scientific foundation for potential clinical interventions targeting gas explosion-induced TBI using FMT.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yaguang Su
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zheng Luo
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Cuiying Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jie Gao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xiaofeng Han
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Linqiang Tian
- Institute of Trauma and Orthopedics, Xinxiang Medical University, Xinxiang, China
| | - Yichun Bai
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Guizhi Wang
- Department of Pathology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjie Ren
- Institute of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Hao L, Yan Y, Huang G, Li H. From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management. Front Cell Infect Microbiol 2024; 14:1416739. [PMID: 39386168 PMCID: PMC11461468 DOI: 10.3389/fcimb.2024.1416739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density (BMD) and increased fracture risk, poses a significant global health burden. Recent research has shed light on the bidirectional relationship between gut microbiota (GM) and bone health, presenting a novel avenue for understanding OP pathogenesis and developing targeted therapeutic interventions. This review provides a comprehensive overview of the GM-bone axis, exploring the impact of GM on OP development and management. We elucidate established risk factors and pathogenesis of OP, delve into the diversity and functional changes of GM in OP. Furthermore, we examine experimental evidence and clinical observations linking alterations in GM composition or function with variations in BMD and fracture risk. Mechanistic insights into microbial mediators of bone health, such as microbial metabolites and products, are discussed. Therapeutic implications, including GM-targeted interventions and dietary strategies, are also explored. Finally, we identify future research directions and challenges in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Hunthai S, Usawachintachit M, Taweevisit M, Srisa-Art M, Anegkamol W, Tosukhowong P, Rattanachaisit P, Chuaypen N, Dissayabutra T. Unraveling the role of gut microbiota by fecal microbiota transplantation in rat model of kidney stone disease. Sci Rep 2024; 14:21924. [PMID: 39300177 PMCID: PMC11412999 DOI: 10.1038/s41598-024-72694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Emerging research on the microbiome highlights the significant role of gut health in the development of kidney stones, indicating that an imbalance in gut bacteria or dysbiosis can influence the formation of stones by altering oxalate metabolism and urinary metabolite profiles. In particular, the overabundance of specific bacteria such as Enterococcus and Oxalobacter spp., which are known to affect oxalate absorption, is observed in patients with urolithiasis. This study investigates the effects of gut dysbiosis on urolithiasis through fecal microbiota transplantation (FMT) from patients to rats and its impact on urinary mineral excretion and stone formation. Fecal samples from eight patients with calcium oxalate stones and ten healthy volunteers were collected to assess the gut microbiome. These samples were then transplanted to antibiotic-pretreated Wistar rats for a duration of four weeks. After transplantation, we evaluated changes in the fecal gut microbiome profile, urinary mineral excretion rates, and expression levels of intestinal zonula occluden-1 (ZO-1), SLC26A6 and renal NF-κB. In humans, patients with urolithiasis exhibited increased urinary calcium and oxalate levels, along with decreased citrate excretion and increased urinary supersaturation index. The fecal microbiota showed a notable abundance of Bacteroidota. In rodents, urolithiasis-FMT rats showed urinary disturbances similar to patients, including elevated pH, oxalate level, and supersaturation index, despite negative renal pathology. In addition, a slight elevation in the expression of renal NF-κB, a significant intestinal SLC26A6, and a reduction in ZO-1 expression were observed. The gut microbiome of urolithiasis-FMT rats showed an increased abundance of Bacteroidota, particularly Muribaculaceae, compared to their healthy FMT counterparts. In conclusion, the consistent overabundance of Bacteroidota in both urolithiasis patients and urolithiasis-FMT rats is related to altered intestinal barrier function, hyperoxaluria, and renal inflammation. These findings suggest that gut dysbiosis, characterized by an overgrowth of Bacteroidota, plays a crucial role in the pathogenesis of calcium oxalate urolithiasis, underscoring the potential of targeting the gut microbiota as a therapeutic strategy.
Collapse
Affiliation(s)
- Sittiphong Hunthai
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manint Usawachintachit
- Division of Urology, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Monpichar Srisa-Art
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Weerapat Anegkamol
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyaratana Tosukhowong
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakkapon Rattanachaisit
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain;
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| |
Collapse
|
10
|
Xue Y, Wang X, Liu H, Kang J, Liang X, Yao A, Dou Z. Assessment of the relationship between gut microbiota and bone mineral density: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1298838. [PMID: 38841058 PMCID: PMC11150656 DOI: 10.3389/fmicb.2024.1298838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Background Emerging evidence from observational studies and clinical trials suggests a connection between the gut microbiota and variations in bone mineral density (BMD). Nonetheless, the specific association between gut microbiota and BMD alterations at different skeletal sites has not been comprehensively explored. To address this, we employed Genome-Wide Association Study (GWAS) summary statistics from a publicly accessible database, conducting a two-sample Mendelian Randomization analysis to elucidate the potential causal relationship between gut microbiota composition and BMD. Methods This study utilized two distinct thresholds for screening instrumental variables (IVs), followed by an extensive series of quality control procedures to identify IVs that were significantly related to exposure. Gut microbiota were classified into two sets based on hierarchical levels: phylum, class, order, family, and genus. Bone mineral density (BMD) data were systematically collected from four skeletal sites: femoral neck, lumbar spine, forearm, and heel. For Mendelian Randomization (MR) analysis, robust methods including Inverse-Variance Weighting (IVW) and the Wald Ratio Test were employed. Additional analytical tests such as the Outlier Test, Heterogeneity Test, 'Leave-One-Out' Test, and Pleiotropy Test were conducted to assess the impact of horizontal pleiotropy, heterogeneities, and the genetic variation stability of gut microbiota on BMD causal associations. The MR Steiger Directionality Test was applied to exclude studies with potential directional biases. Results In this two-sample Mendelian randomization analysis, we utilized five sets of exposure GWAS (Genome-Wide Association Studies) summary statistics and four sets of outcome GWAS summary statistics. The initial analysis, applying a threshold of p < 5 × 10-6, identified 48 significant causal relationships between genetic liability in the gut microbiome and bone mineral density (BMD). A subsequent analysis with a more stringent threshold of p < 5 × 10-8 uncovered 14 additional causal relationships. Upon applying the Bonferroni correction, 9 results from the first analysis and 10 from the second remained statistically significant. Conclusion Our MR analysis revealed a causal relationship between gut microbiota and bone mineral density at all sites, which could lead to discoveries in future mechanistic and clinical studies of microbiota-associated osteoporosis.
Collapse
Affiliation(s)
- Yuan Xue
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuan Wang
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- Dean’s Office, Shanxi Vocational College of Health, Taiyuan, China
| | - Honglin Liu
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Junfeng Kang
- Department of Orthopedics, Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Xiaohong Liang
- Department of Orthopedics, Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Aina Yao
- Department of Brain Disease, Shanxi Acupuncture and Moxibustion Hospital, Taiyuan, China
| | - Zhifang Dou
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| |
Collapse
|
11
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Hiltzik DM, Goodwin AM, Kurapaty SS, Inglis JE, Pagadala MS, Edelstein AI, Hsu WK. The Role of the Gut Microbiome in Orthopedic Surgery-a Narrative Review. Curr Rev Musculoskelet Med 2024; 17:37-46. [PMID: 38133764 PMCID: PMC10805751 DOI: 10.1007/s12178-023-09878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome has received increasing attention in recent years. New literature has revealed significant associations between gut health and various orthopedic disorders, as well as the potential for interventions targeting the gut microbiome to prevent disease and improve musculoskeletal outcomes. We provide a broad overview of available literature discussing the links between the gut microbiome and pathogenesis and management of orthopedic disorders. RECENT FINDINGS Human and animal models have characterized the associations between gut microbiome dysregulation and diseases of the joints, spine, nerves, and muscle, as well as the physiology of bone formation and fracture healing. Interventions such as probiotic supplementation and fecal transplant have shown some promise in ameliorating the symptoms or slowing the progression of these disorders. We aim to aid discussions regarding optimization of patient outcomes in the field of orthopedic surgery by providing a narrative review of the available evidence-based literature involving gut microbiome dysregulation and its effects on orthopedic disease. In general, we believe that the gut microbiome is a viable target for interventions that can augment current management models and lead to significantly improved outcomes for patients under the care of orthopedic surgeons.
Collapse
Affiliation(s)
- David M Hiltzik
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Alyssa M Goodwin
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Steven S Kurapaty
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
- Department of Orthopaedic Surgery, Howard University, Washington, DC, USA
| | - Jacqueline E Inglis
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Manasa S Pagadala
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA.
| | - Adam I Edelstein
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| | - Wellington K Hsu
- Department of Orthopaedic Surgery, Northwestern University, 303 E Chicago Ave, Chicago, IL, 60622, USA
| |
Collapse
|
13
|
Xu X, Xu T, Wei J, Chen T. Gut microbiota: an ideal biomarker and intervention strategy for aging. MICROBIOME RESEARCH REPORTS 2024; 3:13. [PMID: 38841415 PMCID: PMC11149087 DOI: 10.20517/mrr.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 06/07/2024]
Abstract
Population aging is a substantial challenge for the global sanitation framework. Unhealthy aging tends to be accompanied by chronic diseases such as cardiovascular disease, diabetes, and cancer, which undermine the welfare of the elderly. Based on the fact that aging is inevitable but retarding aging is attainable, flexible aging characterization and efficient anti-aging become imperative for healthy aging. The gut microbiome, as the most dynamic component interacting with the organism, can affect the aging process through its own structure and metabolites, thus holding the potential to become both an ideal aging-related biomarker and an intervention strategy. This review summarizes the value of applying gut microbiota as aging-related microbial biomarkers in diagnosing aging state and monitoring the effect of anti-aging interventions, ultimately pointing to the future prospects of microbial intervention strategies in maintaining healthy aging.
Collapse
Affiliation(s)
- Xuan Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Tangchang Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jing Wei
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
14
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X, Xin H. Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1957-1981. [PMID: 37884447 DOI: 10.1142/s0192415x23500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
15
|
Xiao X, Wang J, Zhu Y, Deng B, Liu Y, Wang S, Hou T, Song T. Phytosterols Protect against Osteoporosis by Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14539-14549. [PMID: 37756430 DOI: 10.1021/acs.jafc.3c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Osteoporosis is increasingly prevalent worldwide, representing a major health burden. However, there is a lack of nutritional strategies for osteoporotic therapy. Phytosterols, as natural bioactive compounds, have the potential to alleviate osteoporosis. In this study, a glucocorticoid-induced osteoporosis mouse model and treatment with low and high concentrations of phytosterols for 4 weeks were established. The results demonstrated that compared to the control group, low-concentration phytosterols (LP) (0.3 mg/mL) increased bone mass, improved trabecular microstructure, reduced serum levels of cross-linked C-telopeptide of type I collagen (CTX-1), and elevated serum levels of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Conversely, high-concentration phytosterols (0.5 mg/mL) showed no effect. Additionally, we validated the effect of LP in ameliorating osteoporosis using an ovariectomized (OVX)-induced osteoporosis mouse model. Mechanistically, phytosterols altered the microbial composition to counteract glucocorticoid-induced gut microbiota disorder and improve the length and morphology of the small intestine. Particularly, based on selection strategy and correlation analysis, phytosterols increased the relative abundance of Ruminococcus and decreased the relative abundance of Bilophila, which were significantly associated with glucocorticoid-induced osteoporosis indications. Overall, these findings suggest that phytosterols regulate gut microbiota to increase bone mass, thereby exerting an antiosteoporotic effect.
Collapse
Affiliation(s)
- Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jiaojiao Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yucheng Zhu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bohua Deng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yucheng Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
16
|
Bailey S, Fraser K. Advancing our understanding of the influence of drug induced changes in the gut microbiome on bone health. Front Endocrinol (Lausanne) 2023; 14:1229796. [PMID: 37867525 PMCID: PMC10588641 DOI: 10.3389/fendo.2023.1229796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiome has been implicated in a multitude of human diseases, with emerging evidence linking its microbial diversity to osteoporosis. This review article will explore the molecular mechanisms underlying perturbations in the gut microbiome and their influence on osteoporosis incidence in individuals with chronic diseases. The relationship between gut microbiome diversity and bone density is primarily mediated by microbiome-derived metabolites and signaling molecules. Perturbations in the gut microbiome, induced by chronic diseases can alter bacterial diversity and metabolic profiles, leading to changes in gut permeability and systemic release of metabolites. This cascade of events impacts bone mineralization and consequently bone mineral density through immune cell activation. In addition, we will discuss how orally administered medications, including antimicrobial and non-antimicrobial drugs, can exacerbate or, in some cases, treat osteoporosis. Specifically, we will review the mechanisms by which non-antimicrobial drugs disrupt the gut microbiome's diversity, physiology, and signaling, and how these events influence bone density and osteoporosis incidence. This review aims to provide a comprehensive understanding of the complex interplay between orally administered drugs, the gut microbiome, and osteoporosis, offering new insights into potential therapeutic strategies for preserving bone health.
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Chen C, Lei H, Zhao Y, Hou Y, Zheng H, Zhang C, Cao Z, Wu F, Chen G, Song Y, Zhang C, Zhou J, Lu Y, Xie D, Zhang L. A novel small molecule effectively ameliorates estrogen deficiency-induced osteoporosis by targeting the gut-bone signaling axis. Eur J Pharmacol 2023; 954:175868. [PMID: 37369296 DOI: 10.1016/j.ejphar.2023.175868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Postmenopausal osteoporosis stems mainly from estrogen deficiency leading to a gut microbiome-dependent disruption of host systemic immunity. However, the underlying mechanisms of estrogen deficiency-induced bone loss remain elusive and novel pharmaceutical intervention strategies for osteoporosis are needed. Here we reveal that ovariectomy (ovx)-induced estrogen deficiency in C57BL/6 mice causes significant disruption of gut microbiota composition, consequently leading to marked destruction of intestinal barrier function and gut leakage. As a result, signals transportation between intestinal microbiota and T cells from the gut to bone marrow is identified to contribute to osteoclastogenesis in ovx mice. Notably, we show that icariside I (GH01), a novel small molecule naturally occurring in Herbal Epimedium, has potential to alleviate or prevent ovx-induced bone loss in mice through regulation of gut-bone signaling axis. We find that GH01 treatment can effectively restore the gut microbiota composition, intestinal barrier function and host immune status markedly altered in ovx mice, thus significantly ameliorating bone loss and osteoporosis. These findings not only provide systematic understanding of the gut-immunity-bone axis-associated pathophysiology of osteoporosis, but also demonstrate the high potential of GH01 for osteoporosis treatment by targeting the gut-bone signaling axis.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Yitao Zhao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yu Hou
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Hui Zheng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Denghui Xie
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. From Cells to Environment: Exploring the Interplay between Factors Shaping Bone Health and Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1546. [PMID: 37763665 PMCID: PMC10532995 DOI: 10.3390/medicina59091546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The skeletal system is an extraordinary structure that serves multiple purposes within the body, including providing support, facilitating movement, and safeguarding vital organs. Moreover, it acts as a reservoir for essential minerals crucial for overall bodily function. The intricate interplay of bone cells plays a critical role in maintaining bone homeostasis, ensuring a delicate balance. However, various factors, both intrinsic and extrinsic, can disrupt this vital physiological process. These factors encompass genetics, aging, dietary and lifestyle choices, the gut microbiome, environmental toxins, and more. They can interfere with bone health through several mechanisms, such as hormonal imbalances, disruptions in bone turnover, direct toxicity to osteoblasts, increased osteoclast activity, immune system aging, impaired inflammatory responses, and disturbances in the gut-bone axis. As a consequence, these disturbances can give rise to a range of bone disorders. The regulation of bone's physiological functions involves an intricate network of continuous processes known as bone remodeling, which is influenced by various intrinsic and extrinsic factors within the organism. However, our understanding of the precise cellular and molecular mechanisms governing the complex interactions between environmental factors and the host elements that affect bone health is still in its nascent stages. In light of this, this comprehensive review aims to explore emerging evidence surrounding bone homeostasis, potential risk factors influencing it, and prospective therapeutic interventions for future management of bone-related disorders.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA;
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| |
Collapse
|
19
|
Chen S, Zhou G, Han H, Jin J, Li Z. Causal effects of specific gut microbiota on bone mineral density: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1178831. [PMID: 37645419 PMCID: PMC10461557 DOI: 10.3389/fendo.2023.1178831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 08/31/2023] Open
Abstract
Background Recent studies have reported that the gut microbiota is essential for preventing and delaying the progression of osteoporosis. Nonetheless, the causal relationship between the gut microbiota and the risk of osteoporosis has not been fully revealed. Methods A two-sample Mendelian randomization (MR) analysis based on a large-scale genome-wide association study (GWAS) was conducted to investigate the causal relationship between the gut microbiota and bone mineral density (BMD). Instrumental variables for 211 gut microbiota taxa were obtained from the available GWAS meta-analysis (n = 18,340) conducted by the MiBioGen consortium. The summary-level data for BMD were from the Genetic Factors for Osteoporosis (GEFOS) Consortium, which involved a total of 32,735 individuals of European ancestry. The inverse variance-weighted (IVW) method was performed as a primary analysis to estimate the causal effect, and the robustness of the results was tested via sensitivity analyses by using multiple methods. Finally, a reverse MR analysis was applied to evaluate reverse causality. Results According to the IVW method, we found that nine, six, and eight genetically predicted gut microbiota were associated with lumbar spine (LS) BMD, forearm (FA) BMD, and femoral neck (FN) BMD, respectively. Among them, the higher genetically predicted Genus Prevotella9 level was correlated with increased LS-BMD [β = 0.125, 95% confidence interval (CI): 0.050-0.200, P = 0.001] and FA-BMD (β = 0.129, 95% CI: 0.007-0.251, P = 0.039). The higher level of genetically predicted Family Prevotellaceae was associated with increased FA-BMD (β = 0.154, 95% CI: 0.020-0.288, P = 0.025) and FN-BMD (β = 0.080, 95% CI: 0.015-0.145, P = 0.016). Consistent directional effects for all analyses were observed in both the MR-Egger and weighted median methods. Subsequently, sensitivity analyses revealed no heterogeneity, directional pleiotropy, or outliers for the causal effect of specific gut microbiota on BMD (P > 0.05). In reverse MR analysis, there was no evidence of reverse causality between LS-BMD, FA-BMD, and FN-BMD and gut microbiota (P > 0.05). Conclusion Genetic evidence suggested a causal relationship between the gut microbiota and BMD and identified specific bacterial taxa that regulate bone mass variation. Further exploration of the potential microbiota-related mechanisms of bone metabolism might provide new approaches for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
Liu T, Yu H, Wang S, Li H, Du X, He X. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond) 2023; 20:6. [PMID: 36747190 PMCID: PMC9901125 DOI: 10.1186/s12986-023-00726-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
The use of non-drug intervention for calcium deficiency has attracted attention in recent years. Although calcium carbonate is the preferred raw material for calcium supplementation, there are few reports on the mechanism of the combined action of chondroitin sulfate and calcium to alleviate osteoporosis from the perspective of gut microbiota and metabolomics. In this study, a rat model of osteoporosis was established by feeding a low-calcium diet. The intestinal microbiota abundance, fecal and plasma metabolite expression levels of rats fed a basal diet, a low-calcium diet, a low-calcium diet plus calcium carbonate, and a low-calcium diet plus chondroitin sulfate were compared. The results showed that compared with the low calcium group, the calcium content and bone mineral density of femur were significantly increased in the calcium carbonate and chondroitin sulfate groups. 16 S rRNA sequencing and metabolomics analysis showed that chondroitin sulfate intervention could reduce short-chain fatty acid synthesis of intestinal flora, slow down inflammatory response, inhibit osteoclast differentiation, promote calcium absorption and antioxidant mechanism, and alleviate osteoporosis in low-calcium feeding rats. Correlation analysis showed that the selected intestinal flora was significantly correlated with metabolites enriched in feces and plasma. This study provides scientific evidence of the potential impact of chondroitin sulfate as a dietary supplement for patients with osteoporosis.
Collapse
Affiliation(s)
- Tianshu Liu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Hai Yu
- grid.272242.30000 0001 2168 5385Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Shuai Wang
- grid.27255.370000 0004 1761 1174Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jining, 250012 Shandong China
| | - Huimin Li
- grid.27255.370000 0004 1761 1174Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.506261.60000 0001 0706 7839National Human Genetic Resources Center; National Research Institute for Health and Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Xinyiran Du
- grid.449428.70000 0004 1797 7280College of Stomatology, Jining Medical University, Jining, 272067 Shandong China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012, Shandong, China.
| |
Collapse
|
21
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
22
|
He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review. Osteoporos Int 2022; 33:2495-2506. [PMID: 36169678 DOI: 10.1007/s00198-022-06557-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Osteoporosis is the prevalent metabolic bone disease characterized by a decrease in bone quantity and/or quality and an increase in skeletal fragility, which increases susceptibility to fractures. Osteoporotic fractures severely affect the patients' quality of life and mortality. A plethora of evidences have suggested that the alterations in gut microbiome are associated with the changes in bone mass and microstructure. We summarized pre-clinical and clinical studies to elucidate the underlying mechanism of gut microbiota in osteoporosis. Probiotics, prebiotics, and traditional Chinese medicine may reverse the gut microbiota dysbiosis and consequently improve bone metabolism. However, the causality of gut microbiota on bone metabolism need to be investigated more in depth. In the present review, we focused on the potential mechanism of the microbiota-gut-bone axis and the positive therapeutic effect of probiotics, prebiotics, and traditional Chinese medicine on osteoporosis. Overall, the current scientific literatures support that the gut microbiota may be a novel therapeutic target in treatment of osteoporosis and fracture prevention.
Collapse
Affiliation(s)
- Yinxi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
23
|
Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT, Yu Q, Rui YF. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab 2022; 40:874-889. [PMID: 36357745 PMCID: PMC9649400 DOI: 10.1007/s00774-022-01375-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Osteoporosis is a systemic metabolic bone disease characterized by the descending bone mass and destruction of bone microstructure, which tends to result in the increased bone fragility and associated fractures, as well as high disability rate and mortality. The relation between gut microbiota and bone metabolism has gradually become a research hotspot, and it has been verified that gut microbiota is closely associated with reduction of bone mass and incidence of osteoporosis recently. As a novel "organ transplantation" technique, fecal microbiota transplantation (FMT) mainly refers to the transplantation of gut microbiota from healthy donors to recipients with gut microbiota imbalance, so that the gut microbiota in recipients can be reshaped and play a normal function, and further prevent or treat the diseases related to gut microbiota disorder. Herein, based on the gut-bone axis and proven regulatory effects of gut microbiota on osteoporosis, this review expounds relevant basic researches and clinical practice of FMT on osteoporosis, thus demonstrating the potentials of FMT as a therapeutic option for osteoporosis and further providing certain reference for the future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ruo-Lan Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ting Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui YF. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat 2022; 37:46-60. [PMID: 36196151 PMCID: PMC9520092 DOI: 10.1016/j.jot.2022.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass and destruction of bone microstructure, which tends to result in enhanced bone fragility and related fractures. The postmenopausal osteoporosis (PMOP) has a relatively high proportion, and numerous studies reveal that estrogen-deficiency is related to the imbalance of gut microbiota (GM), impaired intestinal mucosal barrier function and enhanced inflammatory reactivity. However, the underlying mechanisms remain unclear and the existing interventions are also scarce. METHODS In this study, we established a mouse model induced by ovariectomy (OVX) and conducted fecal microbiota transplantation (FMT) by gavage every day for 8 weeks. Subsequently, the bone mass and microarchitecture of mice were evaluated by the micro computed tomography (Micro-CT). The intestinal permeability, pro-osteoclastogenic cytokines expression, osteogenic and osteoclastic activities were detected by the immunohistological analysis, histological examination, enzyme-linked immunosorbent assay (ELISA) and western blot analysis accordingly. Additionally, the composition and abundance of GM were assessed by 16S rRNA sequencing and the fecal short chain fatty acids (SCFAs) level was measured by metabolomics. RESULTS Our results demonstrated that FMT inhibited the excessive osteoclastogenesis and prevented the OVX-induced bone loss. Specifically, compared with the OVX group, FMT enhanced the expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin) and suppressed the release of pro-osteoclastogenic cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)). Furthermore, FMT also optimized the composition and abundance of GM, and increased the fecal SCFAs level (mainly acetic acid and propionic acid). CONCLUSIONS Collectively, based on GM-bone axis, FMT prevented the OVX-induced bone loss by correcting the imbalance of GM, improving the SCFAs level, optimizing the intestinal permeability and suppressing the release of pro-osteoclastogenic cytokines, which may be an alternative option to serve as a promising candidate for the prevention and treatment of PMOP in the future. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study indicates the ingenious involvement of GM-bone axis in PMOP and the role of FMT in reshaping the status of GM and ameliorating the bone loss in OVX-induced mice. FMT might serve as a promising candidate for the prevention and treatment of PMOP in the future.
Collapse
Key Words
- BMD, bone mineral density
- Bone loss
- FMT, fecal microbiota transplantation
- Fecal microbiota transplantation
- GM, gut microbiota
- Gut microbiota
- IL-1β, interleukin-1β
- KEGG, kyoto encyclopedia of genes and genomes
- NMDS, non-metric multi-dimensional scaling
- OP, osteoporosis
- OPG, osteoprotegerin
- OPLS-DA, orthogonal partial least squares discriminant analysis
- OPN, osteopontin
- OTU, operational taxonomic unit
- OVX, ovariectomy
- Ovariectomy-induced osteoporosis
- PCoA, principal coordinates analysis
- PMOP, postmenopausal osteoporosis
- QIIME, quantitative insights into microbial ecology
- RANKL, receptor activator for nuclear factor-κB ligand
- RUNX2, recombinant runt related transcription factor 2
- SCFAs, short chain fatty acids
- Short chain fatty acids
- TNF-α, tumor necrosis factor-α
- TRACP5B, tartrate-resistant acid phosphatase 5B
- TRAP, tartrate-resistant acid phosphatase
- ZO-1, zonula occludens protein 1
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
25
|
Tang L, Li J, Sun B, Bai Y, Zhou X, Chen L. Transcriptomic Interaction between Young Fecal Transplantation and Perfluorobutanesulfonate in Aged Zebrafish Gonads. TOXICS 2022; 10:631. [PMID: 36355923 PMCID: PMC9692687 DOI: 10.3390/toxics10110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The transfer of young fecal microbiota has been found to significantly refresh the reproductive endocrine system and effectively ameliorate the toxicity of perfluorobutanesulfonate (PFBS) in aged zebrafish recipients. However, the mechanisms underlying the antagonistic action of young fecal microbiota against the reproductive endocrine toxicity of PFBS remain largely unknown. In this study, the aged zebrafish were transplanted with feces from young donors and then exposed to PFBS for 14 days. After exposure, the shift in the transcriptomic fingerprint of the gonads was profiled by using high-throughput sequencing, aiming to provide mechanistic clues into the interactive mode of action between young fecal transplantation and PFBS's innate toxicity. The results showed that the gene transcription pattern associated with protein and lipid synthesis in the gonads of the aged individuals was quite different from the young counterparts. It was intriguing that the transplantation of young feces established a youth-like transcriptomic phenotype in the elderly recipients, thus attenuating the functional decline and maintaining a healthy aging state of the gonads. A sex specificity response was clearly observed. Compared to the aged females, more metabolic pathways (e.g., glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism; pyrimidine metabolism) were significantly enriched in aged males receiving young feces transplants. PFBS dramatically altered the transcriptome of aged testes, while a much milder effect was observable in aged ovaries. Accordingly, a suite of biological processes related to germ cell proliferation were disrupted by PFBS in aged males, including the ECM-receptor interaction, retinol metabolism, and folate biosynthesis. In aged ovaries exposed to PFBS, mainly the fatty acid and arginine biosynthesis pathway was significantly affected. However, these transcriptomic disorders caused by PFBS were largely mitigated in aged gonads by transferring young feces. Overall, the present findings highlighted the potential of young fecal transplantation to prevent the functional compromise of gonads resulting from aging and PFBS.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Liu L, Tian F, Li GY, Xu W, Xia R. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 2022; 9:1012087. [PMID: 36204373 PMCID: PMC9530816 DOI: 10.3389/fnut.2022.1012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of articular cartilage in middle-aged and older individuals, which can result in the joint pain and dysfunction, and even cause the joint deformity or disability. With the enhancing process of global aging, OA has gradually become a major public health problem worldwide. Explaining pathogenesis of OA is critical for the development of new preventive and therapeutic interventions. In recent years, gut microbiota (GM) has been generally regarded as a “multifunctional organ,” which is closely relevant with a variety of immune, metabolic and inflammatory functions. Meanwhile, more and more human and animal researches have indicated the existence of gut-bone axis and suggested that GM and its metabolites are closely involved in the pathogenic process of OA, which might become a potential and promising intervention target. Based on the close coordination of gut-bone axis, this review aims to summarize and discuss the mechanisms of GM and its metabolites influencing OA from the aspects of the intestinal mucosal barrier modulation, intestinal metabolites modulation, immune modulation and strategies for the prevention or treatment of OA based on perspectives of GM and its metabolites, thus providing a profound knowledge and recognition of it.
Collapse
|
27
|
Sun X, Chen J, Huang Y, Zhu S, Wang S, Xu Z, Zhang J, Sun W. Yishen Qingli Heluo Granule Ameliorates Renal Dysfunction in 5/6 Nephrectomized Rats by Targeting Gut Microbiota and Intestinal Barrier Integrity. Front Pharmacol 2022; 13:858881. [PMID: 35814258 PMCID: PMC9258868 DOI: 10.3389/fphar.2022.858881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied with imbalanced gut microbiota and impaired intestinal barrier. Hence, efforts to ameliorate renal dysfunction by manipulating gut microbial ecosystem are underway. Yishen Qingli Heluo granule (YQHG) is a representative traditional Chinese medicine (TCM) prescription for clinical treatment of CKD. However, its underlying mechanism has not been well elucidated. This study aimed to explore effects of YQHG on renal dysfunction in 5/6 nephrectomized rats by targeting gut microbiota and intestinal barrier. Here, we found that YQHG provided significant renal protection in 5/6 nephrectomized rats by reducing renal fibrosis and inflammation, reestablishing bacterial communities, and improving intestinal barrier. Our analysis showed that YQHG altered the bacterial community of 5/6 nephrectomized rats. In particular, the prescription significantly increased the relative abundance of SCFA-producing bacteria (i.e., Lactobacillaceae, Lactobacillus and Lactobacillus_gasseri), which was contributed to the improved SCFA concentration (i.e., total SCFA, acetic acid, butyric acid) and intestinal barrier (i.e., the improved permeability and microbial translocation). More critically, microbiota-transfer study showed that the protective effect of YQHG was partly attributed to the mediation of the gut microbiota, especially the SCFA-producing bacteria. Our current findings propose a microbiota-targeted intervention and indicate that YQHG may become a novel promising treatment for CKD.
Collapse
Affiliation(s)
- Xian Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Huang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sha Zhu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuaishuai Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Xu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Junfeng Zhang, ; Wei Sun,
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Junfeng Zhang, ; Wei Sun,
| |
Collapse
|
28
|
Species-level gut microbiota analysis in ovariectomized osteoporotic rats by Shallow shotgun sequencing. Gene 2022; 817:146205. [PMID: 35063575 DOI: 10.1016/j.gene.2022.146205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/27/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Gut microbiota was verified to regulate bone metabolism and was closely associated with osteoporosis. Using 16S rRNA sequencing, gut microbiota at genus level such as Helicobacter, Bacteroides, and Prevotella were found to increase in the osteoporotic animals and people. However, the changes of species-level gut microbiota and related functional alterations were still unknown. Female SD rats were divided into the ovariectomized (OVX) group and the control group, and the fecal samples were collected at 4, 8, and 12 weeks to analyze the information of gut microbiota. Using Shallow shotgun sequencing, we compared the species-level gut microbiota structure, composition, and functional pathways of the OVX group with the control group. Alpha diversity of the OVX rats were significantly decreased than those in the control group. Beta diversity showed that samples in the two groups could be distinguished in each coordinate at different time points. Furthermore, the relative abundance of gut microbiota at species-level and differential analysis found that bacteria species such as Helicobacter rodentium, Lachnospiraceae bacterium 10 1, and Lachnospiraceae bacterium A4 were markedly increased in the OVX rats. Furthermore, differential analysis of KEGG functional pathway revealed that lysine metabolism was enriched in the OVX group.In conclusion, gut microbiota were significantly altered in structure and composition estrogen-deficiency osteoporotic rats at the species level. Functional metabolism of gut microbiota was also changed in osteoporotic group. These changes in gut microbiota at the species level might be closely associated with osteoporosis caused by estrogen deficiency.
Collapse
|
29
|
Wang N, Ma S, Fu L. Gut Microbiota Feature of Senile Osteoporosis by Shallow Shotgun Sequencing Using Aged Rats Model. Genes (Basel) 2022; 13:genes13040619. [PMID: 35456425 PMCID: PMC9028978 DOI: 10.3390/genes13040619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Senile osteoporosis is defined as an age-related bone metabolic disorder, which is characterized by bone loss and decreased bone fragility. Gut microbiota (GM) could regulate the bone metabolic process and be closely related to senile osteoporosis. Several genus-level GM were found to increase in osteoporotic animals and patients. However, to reveal the pathogenic bacteria in senile osteoporosis, further studies are still needed to investigate the complete characteristics of bacteria species. In the present study, the rats were equally divided into two groups: the control group (Con, 6-month-old) and the osteoporosis group (OP, 22-month-old). Fecal samples were freshly collected to conduct the shallow shotgun sequencing. Then, we compared the species numbers, microbial diversity, GM composition at genus and species-level, and functional metabolic pathways in the two groups. The results showed that the species number was lower in the OP group (1272) than in the control group (1413), and 1002 GM species were shared between the two groups. The OP group had the decreased α diversity compared with the control group. As for β diversity, The PCA revealed that samples in the two groups had distinguishable ecological distance in each coordinate. At the species level, Bacteroide coprocola (B. coprocola), Acinetobacter baumannii (A. baumannii), Parabacteroides distasonis (P. distasonis), and Prevotella copri (P. copri) were higher in the OP group, while Corynebacterium stationis (C. stationis), Akkermansia muciniphila (A. muciniphila), and Alistipes indistinctus (A. indistinctus) were decreased. Moreover, functional metabolic analysis revealed that metabolic pathways of fatty acid biosynthesis, valine/isoleucine biosynthesis, GABA biosynthesis, and ubiquinone biosynthesis were enriched in the senile osteoporotic rats. In conclusion, GM at the species level in senile osteoporotic rats was significantly altered in structure, composition, and function. The altered GM structure, increased GM species such as P. copri, and decreased GM species such as A. muciniphila might be linked with the development of senile osteoporosis.
Collapse
Affiliation(s)
| | | | - Lingjie Fu
- Correspondence: ; Tel.: +86-135-6402-1392; Fax: +86-216-313-9920
| |
Collapse
|
30
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
31
|
Bhardwaj A, Sapra L, Tiwari A, Mishra PK, Sharma S, Srivastava RK. "Osteomicrobiology": The Nexus Between Bone and Bugs. Front Microbiol 2022; 12:812466. [PMID: 35145499 PMCID: PMC8822158 DOI: 10.3389/fmicb.2021.812466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of scientific evidence supports the notion that gut microbiota plays a key role in the regulation of various physiological and pathological processes related to human health. Recent findings have now established that gut microbiota also contributes to the regulation of bone homeostasis. Studies on animal models have unraveled various underlying mechanisms responsible for gut microbiota-mediated bone regulation. Normal gut microbiota is thus required for the maintenance of bone homeostasis. However, dysbiosis of gut microbiota communities is reported to be associated with several bone-related ailments such as osteoporosis, rheumatoid arthritis, osteoarthritis, and periodontitis. Dietary interventions in the form of probiotics, prebiotics, synbiotics, and postbiotics have been reported in restoring the dysbiotic gut microbiota composition and thus could provide various health benefits to the host including bone health. These dietary interventions prevent bone loss through several mechanisms and thus could act as potential therapies for the treatment of bone pathologies. In the present review, we summarize the current knowledge of how gut microbiota and its derived microbial compounds are associated with bone metabolism and their roles in ameliorating bone health. In addition to this, we also highlight the role of various dietary supplements like probiotics, prebiotics, synbiotics, and postbiotics as promising microbiota targeted interventions with the clinical application for leveraging treatment modalities in various inflammatory bone pathologies.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhay Tiwari
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|