1
|
Li B, Liang C, Xu B, Song P, Liu D, Zhang J, Gu H, Jiang F, Gao H, Cai Z, Zhang T. Extreme winter environment dominates gut microbiota and metabolome of white-lipped deer. Microbiol Res 2025; 297:128182. [PMID: 40252261 DOI: 10.1016/j.micres.2025.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Qinghai-Tibet Plateau (QTP) is marked by harsh environments that drive the evolution of unique nutrient metabolism mechanism in indigenous animal gut microbiotas. Yet, responses of these microbiotas to different extreme environments remain poorly understood. White-lipped deer (Przewalskium albirostris), a native endangered species in the QTP, serves as an ideal model to study how gut microbiotas adapt to season and human disturbances. Here, a multi-omics integrated analysis of 16S rRNA, metagenomics, and untargeted metabolomics was performed to investigate the composition, function, and metabolic characteristics of gut microbiota in White-lipped deer across different seasons and living environments. Our results revealed that extreme winter environment dominated the composition, function, and metabolism of gut microbiota in white-lipped deer. The white-lipped deer exhibited an enriched gut microbiota associated with producing short-chain fatty acids in winter, with core feature genera including norank_o_Rhodospirillales, Rikenellaceae_RC9_gut_group, and unclassified_c_Clostridia. However, potential pathogenic bacteria and few short-chain fatty acid producers, with core feature genera including norank_f_p-2534-18B5_gut_group, Cellulosilyticum, and Paeniclostridium, showed enrichment in captivity. Pathways associated with carbohydrate metabolism, amino acid metabolism, and immune regulation showed enrichment in winter group as an adaptation to the cold and food scarcity. Among these, Rikenellaceae_RC9_gut_group and unclassified_c_Clostridia contributed significantly to these metabolic pathways. The gut microbiota of white-lipped deer exhibited enrichment in pathways related to intestinal inflammation and enhanced immune regulation to alleviate the stress of captivity. Among these, norank_f_p-2534-18B5_gut_group contributed the most to these pathways. Butyric, valeric, and valproic acids were significantly more abundant in the winter group, while 3-hydroxybutyric and (S)-beta-aminoisobutyric acids were higher in the captive group. Furthermore, enriched metabolites and associated pathways in both groups further supported the inferences on metagenomic functions. This study confirms the key role of specific gut microbiota in adapting to high-altitude winters and anthropogenic disturbances, emphasizing its importance for environmental resilience in wild, high-altitude mammals.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chengbo Liang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | | | | | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.
| |
Collapse
|
2
|
Wang Y, Shi M, Wu J, Han X, Li M, Wu Y, Jiang Y, Zhang H, Liu S, Hu D. Variations in Intestinal Microbiota Among Three Species in the Cervidae Family Under the Same Feeding Conditions. Vet Sci 2025; 12:438. [PMID: 40431531 PMCID: PMC12115930 DOI: 10.3390/vetsci12050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
The breeding of large animals in the family Cervidae in China contributes to achieving two tasks: restoring the provenance of wild populations and providing raw materials for traditional Chinese medicine. Currently, red deer (Cervus elaphus), sika deer (C. nippon), and white-lipped deer (C. albirostris) maintain a large number of breeding populations. Some studies on the relationship between the intestinal microbiota and the feed of these deer have been conducted; however, owing to differences in feeding conditions between studies, it has been impossible to compare the intestinal microecology and related adaptability between species. Therefore, the present study is aiming to investigate whether the differences in intestinal microbiota of the three deer species are related to the distance of phylogenetic relationships under the same feeding environment. On this basis, we discuss whether there are differences in the adaptability of the intestinal microbiota of the three deer species to feed nutrients, deepen the understanding of the relationship between the three deer intestinal microbiota and feed nutrition, and provide basic data for improving the scientific feeding of the three deer species. In this study, 16S rRNA high-throughput sequencing technology was utilized to analyze the intestinal microbiota in feces of the abovementioned healthy deer species. The results of this study indicated that the intestinal microbiota diversity and relative abundance in female white-lipped deer (FWLD) were significantly lower than those in female sika deer (FSD) and female red deer (FRD; p < 0.05); however, there was no significant difference between the latter two groups (p > 0.05). The community compositions of the intestinal microbiota in FSD and FRD were more similar, whereas that of FWLD was significantly different from those of the first two groups. Firmicutes and Bacteroidetes were the most abundant phyla in the intestinal microbiota of all three deer species, and Ruminococcceae_UCG-005 was the most abundant genus. No known obligatory pathogenic bacteria were observed in any sample. The relative abundance of the operational taxonomic units Christensenellaceae_R-7_group, Treponema_2, and Akkermansia exhibited significant differences among FSD, FRD, and FWLD, respectively. Therefore, the phylogenetic relatedness of the three deer species appears to play a major role in their intestinal microecology under the same feeding conditions-the greater the phylogenetic relatedness between hosts, the more similar is their intestinal microbiota. In addition, the PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) function prediction results indicated that FSD were less capable than FRD and FWLD in the functional category of nutrient metabolism, and FWLD were less capable than FSD and FRD in the functional category of intestinal absorption. These results indicated that there may be differences in the nutritional adaptation abilities of the three deer species under different feeding conditions. In summary, these results revealed the differences in intestinal microbiota among the three deer species under the same food conditions, indicating that the intestinal microbiota of the three deer species had significant differences in food adaptation. Based on this, the nutritional supply of feed for the three deer should consider the species differences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China (S.L.)
| |
Collapse
|
3
|
Zhao C, Yang Y, Zhao P, Bai L. Comparative analysis of the fecal microbiota in Père David's deer and five other captive deer species. Front Microbiol 2025; 16:1547348. [PMID: 40207150 PMCID: PMC11979286 DOI: 10.3389/fmicb.2025.1547348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Gut microbes are essential for host nutrition, immunity, and development. Various factors influence the composition and function of the gut microbial community. However, there is limited knowledge regarding the comparison of gut microbiota across different deer species, particularly those in the World Deer Park of Baotou (Inner Mongolia, China). Methods This study utilized 16S rRNA gene amplicon sequencing to analyze the fecal microbiota and potential microbial function in Père David's Deer (Elaphurus davidianus), Sika deer (Cervus nippon), American Wapiti (Cervus canadensis), Red Deer (Cervuselaphus), Fallow Deer (Dama dama), and Reindeer (Rangifer tarandus). Results and discussion The findings indicated no significant differences in alpha diversity, yet there was a noteworthy distinction in beta diversity among the six deer groups. At the phylum level, the predominant bacteria in the deer populations were Firmicutes, Bacteroidetes, and Proteobacteria. At the genus level, 54 core bacterial microbiota were identified. The top four genera in AW, FD, PD, and SD were Ruminococcaceae UCG-005, Rikenellaceae RC9 gut group, RuminococcaceaeUCG-010 and Christensenellaceae R-7 group. The results of the neutral model revealed that neutral processes predominantly governed the gut microbiota community assembly in different deer species, particularly in Père David's deer. PICRUSt2 predictions showed significant enrichment of fecal bacterial functions related to fatty acid, lipid, metabolic regulator, and amino acid biosynthesis. This comparative analysis sheds light on the microbial community structure, community assembly, and potential functions, offering improved insights into the management and conservation of deer species, especially Père David's deer. Future research might focus on exploring metagenomic functions and dynamics in wild settings or across different seasons using metagenomics or metatranscriptomics.
Collapse
Affiliation(s)
| | | | | | - LiGe Bai
- College of Ecology and Environment, Baotou Teacher's College, Baotou, China
| |
Collapse
|
4
|
Wang W, Gibson J, Horsman S, Mikkelsen D, Bertin F. Characterization and comparison of fecal microbiota in horses with pituitary pars intermedia dysfunction and age-matched controls. J Vet Intern Med 2025; 39:e17288. [PMID: 39853825 PMCID: PMC11758151 DOI: 10.1111/jvim.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/04/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Altered gut microbiota has been associated with dopaminergic degenerative diseases in people, but studies on horses with pituitary pars intermedia dysfunction (PPID) are lacking. HYPOTHESIS/OBJECTIVES Investigate the effect of PPID on fecal microbiota in horses. ANIMALS Nine horses with PPID and 13 age-matched control horses. METHODS Prospective control study. Fecal samples were collected bimonthly. Microbial analysis used 16S rRNA sequencing to determine the relative abundance at genus and phylum levels, assess alpha and beta diversity and identify core microbiota. RESULTS Horses with PPID had decreased relative abundances of Christensenellaceae R-7 group (median; 95% confidence interval [CI]: PPID, 2.04; 1.82-2.35 vs control, 2.54; 2.37-2.76; P = .02) and NK4A214 group (PPID, 2.21; 2.02-2.56 vs control, 2.62; 2.44-2.85; P = .05), and significant lower abundances of Romboutsia (log2FoldChange = -3.54; P = .04) and Peptococcaceae uncultured (log2FoldChange = -0.89; P = .04) by differential abundance analysis. However, the abundance of Fibrobacter (log2FoldChange = 0.74; P = .04) was significantly higher in the PPID group. A significant effect of PPID on beta diversity was observed (P = .004), whereas alpha diversity varied with months (P = .001). Seven unique genera were identified in horses with PPID and 12 in control horses. CONCLUSIONS AND CLINICAL IMPORTANCE The fecal microbial composition is altered in horses with PPID. These findings support the potential role of the microbiota-gut-brain axis in the pathogenesis of PPID.
Collapse
Affiliation(s)
- Wenqing Wang
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | - Justine Gibson
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | - Sara Horsman
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | - Deirdre Mikkelsen
- School of Agriculture and Food SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - François‐René Bertin
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
- College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
5
|
Ma X, Hu X, Liu K, Wang W, Jia W, Gao H, Lu M, Liu J, Chen Y, Ma Y, Li Y, Nie Y. Spatiotemporal differences induced changes in the structure and function of the gut microbiota in an endangered ungulate. Anim Microbiome 2024; 6:74. [PMID: 39707511 DOI: 10.1186/s42523-024-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
The composition and function of animal gut microbiota are shaped by various factors, among which diet is one of the major factors. Diet is affected by seasonal shifts and geographical differences, which in turn impact the host's nutritional levels. To adapt to these environmental changes, the gut microbiome often produces matching responses. Understanding the relationships among the environment, diet, host and the gut microbiome is helpful for exploring the environmental adaptation of wildlife. Here, we chose wild sika deer (Cervus nippon), which is composed natural allopatric populations, to explore how the environment shapes the gut microbiome and affects the relationship between microbiota composition and function and the mutual adaptation of the seasonal living environment to seasonal dietary changes. To this purpose we used DNA metabarcoding, 16S RNA gene amplification sequencing, metagenomic shotgun sequencing and nutritional analyses to comprehensively examine the relationships among the forage plant, nutrient status and host gut microbiome. Our analyses showed spatiotemporal differences in diet between the Tiebu and Hunchun regions, which ultimately led to varying intakes of protein, cellulose, and soluble sugar. The microbiome composition and function showed unique characteristics in each group, and significant differences were detected at the gene level for the protein absorption and metabolism pathway, the carbohydrate metabolic absorption pathway, and cellulase enzyme function, which are related to nutrition. We also found differences in the pathogenic bacteria and resistance mechanisms genes of the gut microbiota in different groups. Our results showed that the gut microbiome of allopatric populations adapts to changes in food composition and nutrition in different seasons and areas to help the host cope with spatiotemporal changes in the living environment. At the same time, varying levels of human activity can have potential health impacts on wild animals.
Collapse
Grants
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- 32225033, 32071496, 32100399 National Natural Science Foundation of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
- No. 2022YFF1301500 Ministry of Science and Technology of China
Collapse
Affiliation(s)
- Xiaofan Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Liu
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Wei Wang
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Wei Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Huayao Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Lu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunfeng Chen
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yingjie Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, 830046, China
| | - Yumei Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Guo J, Li Z, Liu X, Jin Y, Sun Y, Yuan Z, Zhang W, Wang J, Zhang M. Response of the gut microbiota to changes in the nutritional status of red deer during winter. Sci Rep 2024; 14:24961. [PMID: 39438539 PMCID: PMC11496518 DOI: 10.1038/s41598-024-76142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Unravelling abrupt alterations in the gut microbiota of wild species associated with nutritional stress is imperative but challenging for wildlife conservation. This study assessed the nutritional status of wild red deer during winter on the basis of changes in faecal nitrogen (FN) and urea nitrogen/creatinine (UN: C) levels and identified gut microbes associated with nutritional status via nutritional control experiments and metagenomic sequencing. The FN of wild red deer in winter 2022 was significantly lower than that in winter 2021 (p < 0.05, winter 2021: 1.37 ± 0.16% and winter 2022: 1.26 ± 0.22%), and the UN: C ratio increased (winter 2021: 2.19 ± 1.65 and winter 2022: 3.05 ± 3.50). Similar trends were found in late winter, which indicated greater nutritional pressure in winter (2022) and late winter. Compared with winter 2021, abundances of Ructibacterium and Butyrivibrio significantly increased, and Acetatifactor and Cuneatibacter significantly decreased during winter 2022 (p < 0.05). Compared with early winter, the cell growth and death pathways increased and lipid metabolism and its subpathway of secondary bile acid synthesis (ko00121) significantly decreased during late winter (p < 0.05), which was similar to the changes in malnourished experimental red deer. Abrupt alterations in the gut microbiota should receive increased attention when monitoring the nutritional health of wild ungulates. This study provides new insights and critical implications for the conservation of wild ungulate populations.
Collapse
Affiliation(s)
- Jinhao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Zheng Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinxin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yongchao Jin
- Forestry and Grassland College, Jilin Agricultural University, Changchun, 130118, China
- World Wild Fund for Nature, Beijing, 100009, China
| | - Yue Sun
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, China
| | - Ziao Yuan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150040, China
| | - Weiqi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Jialong Wang
- Institute of Applied Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China.
| | - Minghai Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
7
|
Wang X, Guo T, Zhang Q, Zhao N, Hu L, Liu H, Xu S. Seasonal variations in composition and function of gut microbiota in grazing yaks: Implications for adaptation to dietary shift on the Qinghai-Tibet plateau. Ecol Evol 2024; 14:e70337. [PMID: 39440203 PMCID: PMC11495855 DOI: 10.1002/ece3.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Gut microbiome of animals is affected by external environmental factors and can assist them in adapting to changing environments effectively. Consequently, elucidating the gut microbes of animals under different environmental conditions can provide a comprehensive understanding of the mechanisms of their adaptations to environmental change, with a particular focus on animals in extreme environments. In this study, we compared the structural and functional differences of the gut microbiome of grazing yaks between the summer and winter seasons through metagenomic sequencing and bioinformatics analysis. The results indicated that the composition and function of microbes changed significantly. The study demonstrated an increase in the relative abundance of Actinobacteria and a higher ratio of Firmicutes to Bacteroidetes (F/B) in winter, this process facilitated the adaptation of yaks to the consumption of low-nutrient forages in the winter. Furthermore, the network structure exhibited greater complexity in the winter. Forage nutrition exhibited a significant seasonal variation, with a notable impact on the gut microbiota. The metagenomic analysis revealed an increase in the abundance of enzymes related to amino acid metabolism, axillary activity, and mucin degradation in the winter. In conclusion, this study demonstrated that the gut microbiome of grazing yaks exhibits several adaptive characteristics that facilitate better nutrient accessibility and acid the host in acclimating to the harsh winter conditions. Furthermore, our study offers novel insights into the mechanisms of highland animal adaptation to external environments from the perspective of the gut microbiome.
Collapse
Affiliation(s)
- Xungang Wang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Tongqing Guo
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Qian Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Na Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Hongjin Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Shixiao Xu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| |
Collapse
|
8
|
Zhu Y, Tian J, Cidan Y, Wang H, Li K, Basang W. Influence of Varied Environment Conditions on the Gut Microbiota of Yaks. Animals (Basel) 2024; 14:1570. [PMID: 38891617 PMCID: PMC11171014 DOI: 10.3390/ani14111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the crucial role of the gut microbiota in different physiological processes occurring in the animal body, reports regarding the gut microbiota of animals residing in different environmental conditions like high altitude and different climate settings are limited. The Qinghai-Tibetan Plateau is renowned for its extreme climatic conditions that provide an ideal environment for exploring the effects of high altitude and temperature on the microbiota of animals. Yaks have unique oxygen delivery systems and genes related to hypoxic response. Damxung, Nyêmo, and Linzhou counties in Tibet have variable altitudes and temperatures that offer distinct settings for studying yak adaptation to elevated terrains. The results of our study suggest that amplicon sequencing of V3-V4 and internal transcribed spacer 2 (ITS2) regions yielded 13,683 bacterial and 1912 fungal amplicon sequence variants (ASVs). Alpha and beta diversity indicated distinct microbial structures. Dominant bacterial phyla were Firmicutes, Bacteroidota, and Actinobacteriota. Genera UCG-005, Christensenellaceae_R-7_group, and Rikenellaceae_RC9_gut_group were dominant in confined yaks living in Damxung county (DXS) and yaks living in Linzhou county (LZS), whereas UCG-005 prevailed in confined yaks living in Nyêmo county (NMS). The linear discriminant analysis effect size (LEfSe) analysis highlighted genus-level differences. Meta-stat analysis revealed significant shifts in bacterial and fungal community composition in yaks at different high altitudes and temperatures. Bacterial taxonomic analysis revealed that two phyla and 32 genera differed significantly (p < 0.05). Fungal taxonomic analysis revealed that three phyla and four genera differed significantly (p < 0.05). Functional predictions indicated altered metabolic functions, especially in the digestive system of yaks living in NMS. This study reveals significant shifts in yak gut microbiota in response to varying environmental factors, such as altitude and temperature, shedding light on previously unexplored aspects of yak physiology in extreme environments.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
- Linzhou Animal Husbandry and Veterinary Station, Lhasa 850009, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiayi Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| |
Collapse
|
9
|
Víquez-R L, Henrich M, Riegel V, Bader M, Wilhelm K, Heurich M, Sommer S. A taste of wilderness: supplementary feeding of red deer (Cervus elaphus) increases individual bacterial microbiota diversity but lowers abundance of important gut symbionts. Anim Microbiome 2024; 6:28. [PMID: 38745212 PMCID: PMC11094858 DOI: 10.1186/s42523-024-00315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays a crucial role in the health and well-being of animals. It is especially critical for ruminants that depend on this bacterial community for digesting their food. In this study, we investigated the effects of management conditions and supplemental feeding on the gut bacterial microbiota of red deer (Cervus elaphus) in the Bavarian Forest National Park, Germany. Fecal samples were collected from free-ranging deer, deer within winter enclosures, and deer in permanent enclosures. The samples were analyzed by high-throughput sequencing of the 16 S rRNA gene. The results showed that the gut bacterial microbiota differed in diversity, abundance, and heterogeneity within and between the various management groups. Free-ranging deer exhibited lower alpha diversity compared with deer in enclosures, probably because of the food supplementation available to the animals within the enclosures. Free-living individuals also showed the highest beta diversity, indicating greater variability in foraging grounds and plant species selection. Moreover, free-ranging deer had the lowest abundance of potentially pathogenic bacterial taxa, suggesting a healthier gut microbiome. Winter-gated deer, which spent some time in enclosures, exhibited intermediate characteristics between free-ranging and all-year-gated deer. These findings suggest that the winter enclosure management strategy, including supplementary feeding with processed plants and crops, has a significant impact on the gut microbiome composition of red deer. Overall, this study provides important insights into the effects of management conditions, particularly winter enclosure practices, on the gut microbiome of red deer. Understanding these effects is crucial for assessing the potential health implications of management strategies and highlights the value of microbiota investigations as health marker.
Collapse
Affiliation(s)
- Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
- Department of Biology, Bucknell University, Lewisburg, PA, USA.
| | - Maik Henrich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Vanessa Riegel
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marvin Bader
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
- Albert-Ludwigs University, Freiburg, Baden-Württemberg, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Marco Heurich
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Bayern, Germany
- Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, NO-34, Norway
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Baden-Württemberg, Germany.
| |
Collapse
|
10
|
Zheng P, Gao W, Cong S, Leng L, Wang T, Shi L. High-Energy Supplemental Feeding Shifts Gut Microbiota Composition and Function in Red Deer ( Cervus elaphus). Animals (Basel) 2024; 14:1428. [PMID: 38791646 PMCID: PMC11117297 DOI: 10.3390/ani14101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Winter supplemental feeding (SF) is commonly used to improve the survival of captive wildlife. To investigate the impact of winter supplementation on the gut microbiota of wildlife, we assessed changes in the gut microbiota of red deer (Cervus elaphus) during the supplementary and non-supplementary feeding (NSF) groups using 16S rRNA sequencing technology. We found no significant differences in the diversity of the gut microbiota between SF and NSF except for the Simpson's index. However, the relative abundance of Bacteroidetes, Lentisphaerae, and Proteobacteria in the gut microbiota was significantly higher during SF. Further, genera such as Intestinimonas, Rikenella, Lawsonibacter, Muribaculum, and Papillibacter were more abundant during SF. Beta diversity analysis showed significant differences between SF and NSF. The microbes detected during SF were primarily associated with lipid metabolism, whereas those detected during NSF were linked to fiber catabolism. High-energy feed affects the gut microbial composition and function in red deer. During SF, the gut microbes in red deer were enriched in microorganisms associated with butyrate and lipid metabolism, such as R. microfusus, M. intestinale, and Papillibacter cinnamivorans. These gut microbes may be involved in ameliorating obesity associated with high-energy diets. In summary, SF is a reasonable and effective management strategy.
Collapse
Affiliation(s)
- Peng Zheng
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Weizhen Gao
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Shaobo Cong
- Xinjiang Tianshan Wildlife Park, Urumqi 830039, China;
| | - Lin Leng
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Tao Wang
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Lei Shi
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| |
Collapse
|
11
|
Mo Q, Yao H, Wu H, Zhao D. Impact of Environmental Food Intake on the Gut Microbiota of Endangered Père David's Deer: Primary Evidence for Population Reintroduction. Animals (Basel) 2024; 14:728. [PMID: 38473113 DOI: 10.3390/ani14050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 03/14/2024] Open
Abstract
Reintroduction has been successful in re-establishing several endangered wild animals in their historical habitats, including Père David's deer (Elaphurus davidianus). Continuous monitoring of reintroduced individuals is essential for improving the sustainability of ex situ conservation efforts. Despite an increased recognition of the significance of the gut microbiome for animal health, the correlation between diet and the gut microbiome in E. davidianus is unclear. In this study, 15 fresh fecal samples of E. davidianus were collected from Tianjin Qilihai Wetland and the association between dietary and gut microbiota composition was evaluated. Microscopic observations showed that Nymphoides peltata [relative density (RD = 0.3514), Phragmites australis (RD = 0.2662), Setaria viridis (RD = 0.1211), and Typha orientalis (RD = 0.1085) were the main dietary plants in the fecal samples. High-throughput 16S rRNA sequencing showed a predominance of the phyla Firmicutes and Proteobacteria and the genus Psychrobacillus (26.53%) in the gut microbiota. The RD of N. peltata was significantly positively correlated with the abundance of Firmicutes (p = 0.005) and the genus UCG-005 (p = 0.024). This study indicates a close association between food digestion and nutrient intake, providing basic monitoring data for the full reintroduction and recovery of wild E. davidianus.
Collapse
Affiliation(s)
- Qiying Mo
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongyu Yao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
12
|
Wang Y, Long Z, Zhang Y, Li X, Zhang X, Su H. Host genetic background rather than diet-induced gut microbiota shifts of sympatric black-necked crane, common crane and bar-headed goose. Front Microbiol 2023; 14:1270716. [PMID: 37933251 PMCID: PMC10625752 DOI: 10.3389/fmicb.2023.1270716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023] Open
Abstract
Introduction Gut microbiota of wild birds are affected by many factors, and host genetic background and diet are considered to be two important factors affecting their structure and function. Methods In order to clarify how these two factors influence the gut microbiota, this study selected the sympatric and closely related and similar-sized Black-necked Crane (Grus nigricollis) and Common Crane (Grus grus), as well as the distantly related and significantly different-sized Bar-headed Goose (Anser indicus). The fecal samples identified using sanger sequencing as the above three bird species were subjected to high-throughput sequencing of rbcL gene and 16S rRNA gene to identify the feeding types phytophagous food and gut microbiota. Results The results showed significant differences in food diversity between black-necked cranes and Common Cranes, but no significant differences in gut microbiota, Potatoes accounted for approximately 50% of their diets. Bar-headed Geese mainly feed on medicinal plants such as Angelica sinensis, Alternanthera philoxeroides, and Ranunculus repens. Black-necked cranes and Common Cranes, which have a high-starch diet, have a similar degree of enrichment in metabolism and synthesis functions, which is significantly different from Bar-headed Geese with a high-fiber diet. The differences in metabolic pathways among the three bird species are driven by food. The feeding of medicinal plants promotes the health of Bar-headed Geese, indicating that food influences the functional pathways of gut microbiota. Spearman analysis showed that there were few gut microbiota related to food, but almost all metabolic pathways were related to food. Conclusion The host genetic background is the dominant factor determining the composition of the microbiota. Monitoring the changes in gut microbiota and feeding types of wild birds through bird feces is of great reference value for the conservation of other endangered species.
Collapse
Affiliation(s)
- Yeying Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
- Research Center for Biodiversity and Natural Conservation, Guizhou University, Guiyang, Guizhou, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, National Forestry and Grassland Administration, Bijie, Guizhou, China
| | - Zhengmin Long
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Yu Zhang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xianyu Li
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Area of Southwestern of China, School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xu Zhang
- Research Center for Biodiversity and Natural Conservation, Guizhou University, Guiyang, Guizhou, China
| | - Haijun Su
- Research Center for Biodiversity and Natural Conservation, Guizhou University, Guiyang, Guizhou, China
- Guizhou Caohai Observation and Research Station for Wet Ecosystem, National Forestry and Grassland Administration, Bijie, Guizhou, China
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Zhai J, Sun X, Lu R, Hu X, Huang Z. Bibliometric Analysis of Global Trends in Research on Seasonal Variations in Gut Microbiota from 2012 to 2022. Microorganisms 2023; 11:2125. [PMID: 37630685 PMCID: PMC10458723 DOI: 10.3390/microorganisms11082125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Seasons are the important influencing factor for gut microbiota, which in turn affects the ecology and evolution of the host. The seasonal variation in gut microbiota has increasingly attracted the attention of researchers and professionals worldwide. However, studies of seasonal variations in gut microbiota have not been systematically analyzed by bibliometrics or visual analysis. This study is based on 271 publications from 2012 to 2022 in the Web of Science Core Collection database (WOSCC) to analyze hot spots and trends in this field. The collaborations between different countries, institutions, authors, journals, and keywords were bibliometrically analyzed using Excel, CiteSpace (Version 6.2. R4), and VOSviewer (version 1.6.19) software. The number of publications has been increasing rapidly and shows a general upward trend. China and the Chinese Academy of Sciences are the country and institution contributing the most, respectively. The research hotspots and trends mainly include the diversity of gut microbiota communities in different seasons, the relationship between diet and gut microbiota in seasonal changes, and the relationship between gut microbiota and evolutionary adaptation in seasonal changes. This is the first bibliometric and visualization analysis of seasonal variations in gut microbiota, which may advance this field and lay the foundation for future research.
Collapse
Affiliation(s)
- Jiancheng Zhai
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xiao Sun
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
| | - Rui Lu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xueqin Hu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Zhiqiang Huang
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
14
|
Pacheco-Torres I, Hernández-Sánchez D, García-De la Peña C, Tarango-Arámbula LA, Crosby-Galván MM, Sánchez-Santillán P. Analysis of the Intestinal and Faecal Bacterial Microbiota of the Cervidae Family Using 16S Next-Generation Sequencing: A Review. Microorganisms 2023; 11:1860. [PMID: 37513032 PMCID: PMC10386072 DOI: 10.3390/microorganisms11071860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The Cervidae family has a wide distribution due to its adaptation to numerous ecological environments, which allows it to develop a diverse microbial community in its digestive tract. Recently, research has focused on the taxonomic composition and functionality of the intestinal and faecal microbiota of different cervid species worldwide, as well as their microbial diversity and variation under different associated factors such as age, sex, diet, distribution, and seasonal variation. In addition, there is special interest in knowing how cervids act as reservoirs of zoonotic pathogenic microorganisms, which represent a threat to public health. This review provides a synthesis of the growing field of microbiota determination in cervids worldwide, focusing on intestinal and faecal samples using 16S next-generation sequencing. It also documents factors influencing microbial diversity and composition, the microorganisms reported as pathogenic/zoonotic, and the perspectives regarding the conservation of these species. Knowing the interactions between bacteria and cervid health can drive management and conservation strategies for these species and help develop an understanding of their evolutionary history and the interaction with emerging disease-causing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Paulino Sánchez-Santillán
- Faculty of Veterinary Medicine and Zootechnics No. 2, Autonomous University of Guerrero, Cuajinicuilapa 41940, Mexico
| |
Collapse
|
15
|
Zhu Y, Cidan Y, Sun G, Li X, Shahid MA, Luosang Z, Suolang Z, Suo L, Basang W. Comparative analysis of gut fungal composition and structure of the yaks under different feeding models. Front Vet Sci 2023; 10:1193558. [PMID: 37396992 PMCID: PMC10310795 DOI: 10.3389/fvets.2023.1193558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
The yaks that inhabit the Tibetan plateau are a rare breed that is closely related to local economic development and human civilization. This ancient breed may have evolved a unique gut microbiota due to the hypoxic high-altitude environment. The gut microbiota is susceptible to external factors, but research regarding the effects of different feeding models on the gut fungal community in yaks remains scarce. In this study, we compared and analyzed the composition and variability of the gut fungal community among wild yaks (WYG), house-feeding domestic yaks (HFG), and grazing domestic yaks (GYG). The results revealed that Basidiomycota and Ascomycota were the most preponderant phyla in the gut fungal community, regardless of feeding models. Although the types of dominant fungal phyla did not change, their abundances did. Intergroup analysis of fungal diversity showed that the Shannon and Simpson indices of WYG and GYG were significantly higher than those of HFG. Fungal taxonomic analysis showed that there were 20 genera (Sclerostagonospora and Didymella) that were significantly different between WYG and GYG, and 16 genera (Thelebolus and Cystobasidium) that were significantly different between the WYG and HFG. Furthermore, the proportions of 14 genera (Claussenomyces and Papiliotrema) significantly decreased, whereas the proportions of eight genera (Stropharia and Lichtheimia) significantly increased in HFG as compared to GYG. Taken together, this study indicated that the gut fungal composition and structure differ significantly between yaks raised in different breeding groups.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Xin Li
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Zhaxi Luosang
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Zhaxi Suolang
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Lang Suo
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
16
|
Liu C, Liu M, Wang Y, Shi B, Pan D. Insights into the Gut Microbiota of the Freshwater Crab Sinopotamon planum across Three Seasons and Its Associations with the Surrounding Aquatic Microbiota. DIVERSITY 2023. [DOI: 10.3390/d15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Gut microbiota is closely related to the health of the host and its adaptation to environmental changes. Sinopotamon planum is a species of freshwater crab that lives in the water for three seasons and plays a key role in freshwater ecosystems as a benthic macroinvertebrate, an important indicator of aquatic ecological health. In this study, we sequenced 60 gut microbial samples of S. planum and nine microbial samples from the surrounding water in spring, summer, and autumn based on the 16S rRNA gene. The results showed that gut microbiota had the highest alpha diversity in summer, which may be related to increased adaptability in summer. Firmicutes, Proteobacteria, and Bacteroidota were the most dominant phyla of gut microbiota across three seasons, with Candidatus Hepatoplasma and Candidatus Bacilloplasma being the main genera. These main phyla and genera may be key to maintaining a stable function of the intestinal environment. Firmicutes was the phylum with the highest relative abundance, which is probably related to the carnivorous behaviour of S. planum. The abundant C. Hepatoplasma may be related to the starvation of S. planum in the wild. In both gut and water microbiota, beta diversity analyses showed significant differences across seasons. Comparative analysis of gut microbes and surrounding water microbes showed significant differences in microbial diversity and composition between gut and surrounding water. In conclusion, the structure of the gut microbial community of S. planum differed significantly between the studied seasons, but the water microbial community around S. planum was less variable and significantly different from the gut microbes. The seasonal differences in gut microbes are more likely the result of self-internal adaptation to changes in water temperature and food resources between seasons.
Collapse
Affiliation(s)
- Caixin Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Meijun Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Boyang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Yao H, Mo Q, Wu H, Zhao D. How do living conditions affect the gut microbiota of endangered Père David's deer ( Elaphurus davidianus)? Initial findings from the warm temperate zone. PeerJ 2023; 11:e14897. [PMID: 36860766 PMCID: PMC9969852 DOI: 10.7717/peerj.14897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/03/2023] Open
Abstract
Reintroduction is an effective strategy in the conservation of endangered species under scientific monitoring. Intestinal flora plays an important role in the envir onmental adaptation of endangered Père David's deer (Elaphurus davidianus). In this study, 34 fecal samples from E. davidianus were collected from different habitats in Tianjin city of China to investigate differences in the intestinal flora under captive and semi-free-ranging conditions. Based on 16S rRNA high-throughput sequencing technology, a total of 23 phyla and 518 genera were obtained. Firmicutes was dominant in all individuals. At the genus level, UCG-005 (13.05%) and Rikenellaceae_RC9_gut_group (8.94%) were dominant in captive individuals, while Psychrobacillus (26.53%) and Pseudomonas (11.33%) were dominant in semi-free-ranging individuals. Alpha diversity results showed that the intestinal flora richness and diversity were significantly (P < 0.001) higher in captive individuals than in semi-free-ranging individuals. Beta diversity analysis also showed a significant difference (P = 0.001) between the two groups. In addition, some age- and sex-related genera such as Monoglobus were identified. In summary, the structure and diversity of intestinal flora showed significant habitat variation. This is the first time an analysis has been undertaken of the structural differences of the intestinal flora in Père David's deer, under different habitats in the warm temperate zone, providing a reference basis for the conservation of endangered species.
Collapse
|
18
|
Li J, Sun Y, Wang R, Ma S, Shi L, Wang K, Zhang H, Wang T, Liu L. Seasonal differences in intestinal flora are related to rats' intestinal water metabolism. Front Microbiol 2023; 14:1109696. [PMID: 36910220 PMCID: PMC9999011 DOI: 10.3389/fmicb.2023.1109696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Many studies have reported obvious seasonal differences in the intestinal flora of rats, and this stable distribution of the seasonal flora helps in maintaining the normal physiological function of the host. However, the mechanism underlying these seasonal differences in intestinal flora remains unclear. To explore the correlation among seasonal factors and intestinal water metabolism and intestinal flora, 20 Sprague Dawley (SD) rats were divided into spring, summer, autumn, and winter groups. The environment for the four seasons was simulated using the Balanced Temperature and Humidity Control system. The intestinal water metabolism was evaluated by determining the intestinal transmission function, fecal water content, water content of colonic tissue, and the colonic expression levels of AQP3, AQP4, and AQP8. The composition and relative abundance of intestinal microflora in rats in each season were assessed through 16S rDNA amplifier sequencing, and the relationship between the dominant flora and intestinal water metabolism in each season was analyzed using Spearman correlation analysis. The high temperature and humidity season could lead to an increase in intestinal water metabolism and intestinal water content in rats, whereas the low temperature and humidity season could lead to a decrease, which was closely related to the change in microflora. To explore the molecular mechanism of seasonal changes in intestinal water metabolism, the concentration of colonic 5-HT, VIP, cAMP, and PKA associated with intestinal water metabolism in rats were also examined. Seasonal changes could affect the concentration of colonic 5-HT and VIP in rats, and then regulate AQPs through cAMP/PKA pathway to affect the intestinal water metabolism. These results suggest that seasonal factors affect the level of intestinal water metabolism in rats and result in seasonal differences in intestinal flora.
Collapse
Affiliation(s)
- Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yike Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruochong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuran Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Wang
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hairong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Leilei Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Wang Y, Xu B, Chen H, Yang F, Huang J, Jiao X, Zhang Y. Environmental factors and gut microbiota: Toward better conservation of deer species. Front Microbiol 2023; 14:1136413. [PMID: 36960286 PMCID: PMC10027939 DOI: 10.3389/fmicb.2023.1136413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Thousands of microbial species inhabiting the animal gut, collectively known as the gut microbiota, play many specific roles related to host nutrient metabolism and absorption, immune regulation, and protection from pathogenic bacteria. Gut microbiota composition is affected by several internal and external factors, such as the host genotype, dietary intake, breeding environment, and antibiotic exposure. As deer species are important members for maintaining ecosystem balance, understanding the effects of multiple factors on the gut microbiota of deer species, particularly endangered ones, is crucial. In this review, we summarize and discuss the factors that significantly affect the gut microbiota of deer and present the impacts of these factors on microbial composition. In particular, we focused on the changes in gut microbiota due to dietary differences under different conditions, including seasonal changes, different geographical locations, and captivity, as well as weaning and pathogen disturbance. Understanding the correlations between gut microbiota composition and its driving factors is important for evaluating and improving the captive breeding environment for better conservation of endangered deer species, and reintroducing wild deer populations in the future.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Bo Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Fang Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xin’an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Xin’an Jiao,
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- *Correspondence: Yunzeng Zhang,
| |
Collapse
|
20
|
Lee SK, Woo C, Lee EJ, Yamamoto N. Using high-throughput sequencing to investigate the dietary composition of the Korean water deer (Hydropotes inermis argyropus): a spatiotemporal comparison. Sci Rep 2022; 12:22271. [PMID: 36564425 PMCID: PMC9789119 DOI: 10.1038/s41598-022-26862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The Korean water deer (Hydropotes inermis argyropus) is considered a vermin in Korea because it damages crops, but also listed as a vulnerable species on the IUCN's red list. Therefore, it is indispensable to manage them appropriately by understanding the ecology such as food habits. Here, we aimed to apply high-throughput sequencing (HTS), a sensitive and objective method, to investigate the dietary composition of the Korean water deer inhabiting the lowland and forest areas in summer and winter. We targeted the internal transcribed spacer 2 (ITS2) region for plant identification. From a total of 40 fecal samples analyzed, 63 plant genera were identified, with Morus being the most abundant, and some of the plant taxa identified by HTS were detected for the first time as the diets of Korean water deer. By type, woody plants (68.6%) were the most predominant, followed by forbs (7.0%) and graminoids (0.7%). We found that the deer in the forest area ate more woody plants (84.6%) than those in the lowland area (52.7%). It was also found that the type of woody plants that the deer ate changed by season. Overall, our results indicate that the Korean water deer is a browser that is seasonally adaptable and feeds on a wide variety of woody plants. We expect that the results and genetics methods reported here, by parallelly investigating their habitat range and reproductive behavior in the future, will help the management and conservation of the Korean water deer, which is in contradictory situations.
Collapse
Affiliation(s)
- Seung-Kyung Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Cheolwoon Woo
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 South Korea
| | - Eun Ju Lee
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Naomichi Yamamoto
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Institute of Health and Environment, Seoul National University, Seoul, South Korea
| |
Collapse
|