1
|
Foreman AD, Duprey NN, Yuval M, Dumestre M, Leichliter JN, Rohr MC, Dodwell RCA, Dodwell GAS, Clua EEG, Treibitz T, Martínez-García A. Severe cold-water bleaching of a deep-water reef underscores future challenges for Mesophotic Coral Ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175210. [PMID: 39098414 DOI: 10.1016/j.scitotenv.2024.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Elevated sea surface temperatures are causing an increase in coral bleaching events worldwide, and represent an existential threat to coral reefs. Early studies of Mesophotic Coral Ecosystems (MCEs) highlighted their potential as thermal refuges for shallow-water coral species in the face of predicted 21st century warming. However, recent genetic evidence implies that limited ecological connectivity between shallow- and deep-water coral communities inhibits their effectiveness as refugia; instead MCEs host distinct endemic communities that are ecologically significant in and of themselves. In either scenario, understanding the response of MCEs to climate change is critical given their ecological significance and widespread global distribution. Such an understanding has so far eluded the community, however, because of the challenges associated with long-term field monitoring, the stochastic nature of climatic events that drive bleaching, and the paucity of deep-water observations. Here we document the first observed cold-water bleaching of a mesophotic coral reef at Clipperton Atoll, a remote Eastern Tropical Pacific (ETP) atoll with high coral cover and a well-developed MCE. The severe bleaching (>70 % partially or fully bleached coral cover at 32 m depth) was driven by an anomalously shallow thermocline, and highlights a significant and previously unreported challenge for MCEs. Prompted by these observations, we compiled published cold-water bleaching events for the ETP, and demonstrate that the timing of past cold-water bleaching events in the ETP coincides with decadal oscillations in mean zonal wind strength and thermocline depth. The latter observation suggests any future intensification of easterly winds in the Pacific could be a significant concern for its MCEs. Our observations, in combination with recent reports of warm-water bleaching of Red Sea and Indian Ocean MCEs, highlight that 21st century MCEs in the Eastern Pacific face a two-pronged challenge: warm-water bleaching from above, and cold-water bleaching from below.
Collapse
Affiliation(s)
- Alan D Foreman
- Climate Geochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany.
| | - Nicolas N Duprey
- Climate Geochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Matan Yuval
- Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; The Interuniversity Institute for Marine Sciences of Eilat, Eilat 8810302, Israel
| | - Marielle Dumestre
- Climate Geochemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Jennifer N Leichliter
- Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Mark C Rohr
- The Rohr Foundation, 6506 Northaven Road, Dallas, TX 75230, United States
| | - Rose C A Dodwell
- The Rohr Foundation, 6506 Northaven Road, Dallas, TX 75230, United States
| | - Guy A S Dodwell
- The Rohr Foundation, 6506 Northaven Road, Dallas, TX 75230, United States
| | - Eric E G Clua
- PSL Research University, Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE) UAR3278 EPHE-CNRS-UPVD, BP 1013, Moorea 98729, French Polynesia; Labex CORAIL, CRIOBE UAR3278 EPHE-CNRS-UPVD, Université de Perpignan, 66000 Perpignan, France
| | - Tali Treibitz
- Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | | |
Collapse
|
2
|
Spring DL, Williams GJ. Influence of upwelling on coral reef benthic communities: a systematic review and meta-analysis. Proc Biol Sci 2023; 290:20230023. [PMID: 36946114 PMCID: PMC10031406 DOI: 10.1098/rspb.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Highly competitive coral reef benthic communities are acutely sensitive to changes in environmental parameters such as temperature and nutrient concentrations. Physical oceanographic processes that induce upwelling therefore act as drivers of community structure on tropical reefs. How upwelling impacts coral communities, however, is not fully understood; upwelling may provide a natural buffer against climate impacts and could potentially enhance the efficacy of spatial management and reef conservation efforts. This study employed a systematic review to assess existing literature linking upwelling with reef community structure, and a meta-analysis to quantify upwelling impact on the percentage cover of coral reef benthic groups. We show that upwelling has context-dependant effects on the cover of hard coral and fleshy macroalgae, with effect size and direction varying with depth, region and remoteness. Fleshy macroalgae were found to increase by 110% on inhabited reefs yet decrease by 56% around one well-studied remote island in response to upwelling. Hard coral cover was not significantly impacted by upwelling on inhabited reefs but increased by 150% when direct local human pressures were absent. By synthesizing existing evidence, this review facilitates adaptive and nuanced reef management which considers the influence of upwelling on reef assemblages.
Collapse
Affiliation(s)
- Danielle L. Spring
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Gareth J. Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
3
|
Palmer C, Jimenez C, Bassey G, Ruiz E, Villalobos Cubero T, Chavarria Diaz MM, Harrison XA, Puschendorf R. Cold water and harmful algal blooms linked to coral reef collapse in the Eastern Tropical Pacific. PeerJ 2022; 10:e14081. [PMID: 36193424 PMCID: PMC9526400 DOI: 10.7717/peerj.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background With conventional coral reef conservation methods proving ineffective against intensifying climate change, efforts have focussed on augmenting coral tolerance to warmer water-the primary driver of coral declines. We document coral cover and composition in relation to sea surface temperature (SST) over 25-years, of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific. Methods Using reef survey data and sea surface temperature (SST) dating back over 25-years, we document coral cover and composition of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific in relation to thermal highs and lows. Results A ubiquitous and catastrophic coral die-off event occurred in 2009, driven by SST minima and likely by the presence of extreme harmful algal blooms. Coral cover was dramatically reduced and coral composition shifted from dominant branching Pocillopora to massive Pavona, Porites, and Gardineroseris. The lack of coral recovery in the decade since indicates a breach in ecosystem tipping-point and highlights a need for resilience-based management (RBM) and restoration. We propose a locally tailored and globally scalable approach to coral reef declines that is founded in RBM and informed by coral health dynamics.
Collapse
Affiliation(s)
- Caroline Palmer
- School of Biological and Marine Sciences, University of Plymouth, University of Plymouth, Devon, United Kingdom,Seeking Survivors, Yelverton, Devon, United Kingdom
| | - Carlos Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Nicosia, Cyprus,Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus
| | | | - Eleazar Ruiz
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Jose, Costa Rica
| | | | | | - Xavier A. Harrison
- Centre for Ecology & Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Robert Puschendorf
- School of Biological and Marine Sciences, University of Plymouth, University of Plymouth, Devon, United Kingdom
| |
Collapse
|
4
|
Combillet L, Fabregat-Malé S, Mena S, Marín-Moraga JA, Gutierrez M, Alvarado JJ. Pocillopora spp. growth analysis on restoration structures in an Eastern Tropical Pacific upwelling area. PeerJ 2022; 10:e13248. [PMID: 35765595 PMCID: PMC9233897 DOI: 10.7717/peerj.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/20/2022] [Indexed: 01/13/2023] Open
Abstract
Coral reefs in Culebra Bay (North Pacific of Costa Rica) are threatened by multiple anthropogenic disturbances including global warming, overfishing, eutrophication, and invasive species outbreaks. It is possible to assist their recovery by implementing ecological restoration techniques. This study used artificial hexagonal steel structures, called "spiders" to compare growth of Pocillopora spp. coral fragments of different sizes. Three initial fragment class sizes were used: 2, 5 and 8 cm, with each class size having 42 initial fragments. Changes in fragment length, width and area were measured monthly from January to December 2020. Results showed an overall survivorship of 70.21%, and no significant differences in survivorship and linear growth rate were detected between class sizes. The linear growth rates are 4.49 ± 1.19 cm year-1, 5.35 ± 1.48 cm year-1 and 3.25 ± 2.22 cm year-1 for the 2, 5 and 8 cm initial class sizes, respectively. Our results do not show significant differences in growth rates between the different initial fragment sizes. However, since small fragments (2 cm) present higher mortality during the first month, we recommend using larger fragments. In addition, coral fragments grew 48% more during the non-upwelling season, which may suggest that it might be more effective and safer to start the restoration efforts during this period.
Collapse
Affiliation(s)
- Lisa Combillet
- Master Sciences pour l’Environnement, parcours Gestion de l’environnement et écologie Littorale, Université de La Rochelle, La Rochelle, France
| | - Sònia Fabregat-Malé
- Posgrado en Biología, Sistema de Estudios de Posgrado, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | - Sebastián Mena
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | | | | | - Juan José Alvarado
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET) (Previously Museo de Zoología), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| |
Collapse
|
5
|
Crisp SK, Tebbett SB, Bellwood DR. A critical evaluation of benthic phase shift studies on coral reefs. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105667. [PMID: 35653967 DOI: 10.1016/j.marenvres.2022.105667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Coral reef decline has accelerated in the last two decades resulting in substantial research into the phenomenon of 'phase shifts' or 'regime shifts'. However, the conclusions drawn from this research have been varied. Some of this variability may stem from methodological approaches, although the extent to which these factors have shaped our understanding remain largely unexplored. To examine this, we conducted a systematic review of the literature. In doing so, we revealed marked variability in the approaches used for studying phase shifts. Notably, very few studies clearly defined what they meant by phase shifts. Therefore, we developed a clarified definition of phase shifts, which specifically defined persistence and dominance. The applicability of this definition was tested on multi-decadal benthic composition data on the Great Barrier Reef. The number of shifts depended critically on the definition selected, suggesting that this may be a primary reason underpinning the variability in past results.
Collapse
Affiliation(s)
- Samantha K Crisp
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
6
|
Wizemann A, Nandini SD, Stuhldreier I, Sánchez-Noguera C, Wisshak M, Westphal H, Rixen T, Wild C, Reymond CE. Rapid bioerosion in a tropical upwelling coral reef. PLoS One 2018; 13:e0202887. [PMID: 30208050 PMCID: PMC6135564 DOI: 10.1371/journal.pone.0202887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 08/12/2018] [Indexed: 11/18/2022] Open
Abstract
Coral reefs persist in an accretion-erosion balance, which is critical for understanding the natural variability of sediment production, reef accretion, and their effects on the carbonate budget. Bioerosion (i.e. biodegradation of substrate) and encrustation (i.e. calcified overgrowth on substrate) influence the carbonate budget and the ecological functions of coral reefs, by substrate formation/consolidation/erosion, food availability and nutrient cycling. This study investigates settlement succession and carbonate budget change by bioeroding and encrusting calcifying organisms on experimentally deployed coral substrates (skeletal fragments of Stylophora pistillata branches). The substrates were deployed in a marginal coral reef located in the Gulf of Papagayo (Costa Rica, Eastern Tropical Pacific) for four months during the northern winter upwelling period (December 2013 to March 2014), and consecutively sampled after each month. Due to the upwelling environmental conditions within the Eastern Tropical Pacific, this region serves as a natural laboratory to study ecological processes such as bioerosion, which may reflect climate change scenarios. Time-series analyses showed a rapid settlement of bioeroders, particularly of lithophagine bivalves of the genus Lithophaga/Leiosolenus (Dillwyn, 1817), within the first two months of exposure. The observed enhanced calcium carbonate loss of coral substrate (>30%) may influence seawater carbon chemistry. This is evident by measurements of an elevated seawater pH (>8.2) and aragonite saturation state (Ωarag >3) at Matapalo Reef during the upwelling period, when compared to a previous upwelling event observed at a nearby site in distance to a coral reef (Marina Papagayo). Due to the resulting local carbonate buffer effect of the seawater, an influx of atmospheric CO2 into reef waters was observed. Substrates showed no secondary cements in thin-section analyses, despite constant seawater carbonate oversaturation (Ωarag >2.8) during the field experiment. Micro Computerized Tomography (μCT) scans and microcast-embeddings of the substrates revealed that the carbonate loss was primarily due to internal macrobioerosion and an increase in microbioerosion. This study emphasizes the interconnected effects of upwelling and carbonate bioerosion on the reef carbonate budget and the ecological turnovers of carbonate producers in tropical coral reefs under environmental change.
Collapse
Affiliation(s)
- André Wizemann
- Leibniz Centre for Tropical Marine Research, ZMT, Bremen, Germany
- * E-mail:
| | - Sri D. Nandini
- Leibniz Centre for Tropical Marine Research, ZMT, Bremen, Germany
- University of Bremen, MARUM, Center for Marine Environmental Sciences, Bremen, Germany
| | - Ines Stuhldreier
- Leibniz Centre for Tropical Marine Research, ZMT, Bremen, Germany
| | - Celeste Sánchez-Noguera
- Leibniz Centre for Tropical Marine Research, ZMT, Bremen, Germany
- Centro de Investigación en Ciencias del Mar y Limnología, CIMAR, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | | | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research, ZMT, Bremen, Germany
- University of Bremen, Faculty of Geosciences, Bremen, Germany
| | - Tim Rixen
- Leibniz Centre for Tropical Marine Research, ZMT, Bremen, Germany
| | - Christian Wild
- University of Bremen, Faculty of Biology & Chemistry, Marine Ecology Department, Bremen, Germany
| | | |
Collapse
|
7
|
Renfro B, Chadwick NE. Benthic community structure on coral reefs exposed to intensive recreational snorkeling. PLoS One 2017; 12:e0184175. [PMID: 28873449 PMCID: PMC5584949 DOI: 10.1371/journal.pone.0184175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/19/2017] [Indexed: 12/01/2022] Open
Abstract
Chronic anthropogenic disturbances on coral reefs in the form of overfishing and pollution can shift benthic community composition away from stony corals and toward macroalgae. The use of reefs for recreational snorkeling and diving potentially can lead to similar ecological impacts if not well-managed, but impacts of snorkeling on benthic organisms are not well understood. We quantified variation in benthic community structure along a gradient of snorkeling frequency in an intensively-visited portion of the Mesoamerican Barrier Reef. We determined rates of snorkeling in 6 water sections and rates of beach visitation in 4 adjacent land sections at Akumal Bay, Mexico. For each in-water section at 1–3 m depth, we also assessed the percent cover of benthic organisms including taxa of stony corals and macroalgae. Rates of recreational snorkeling varied from low in the southwestern to very high (>1000 snorkelers d-1) in the northeastern sections of the bay. Stony coral cover decreased and macroalgal cover increased significantly with levels of snorkeling, while trends varied among taxa for other organisms such as gorgonians, fire corals, and sea urchins. We conclude that benthic organisms appear to exhibit taxon-specific variation with levels of recreational snorkeling. To prevent further degradation, we recommend limitation of snorkeler visitation rates, coupled with visitor education and in-water guides to reduce reef-damaging behaviors by snorkelers in high-use areas. These types of management activities, integrated with reef monitoring and subsequent readjustment of management, have the potential to reverse the damage potentially inflicted on coral reefs by the expansion of reef-based recreational snorkeling.
Collapse
Affiliation(s)
- Bobbie Renfro
- Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, Alabama, United States of America
| | - Nanette E. Chadwick
- Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pawlik JR, Burkepile DE, Thurber RV. A Vicious Circle? Altered Carbon and Nutrient Cycling May Explain the Low Resilience of Caribbean Coral Reefs. Bioscience 2016. [DOI: 10.1093/biosci/biw047] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|