1
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
2
|
Crawford MS, Schlägel UE, May F, Wurst S, Grimm V, Jeltsch F. While shoot herbivores reduce, root herbivores increase nutrient enrichment's impact on diversity in a grassland model. Ecology 2021; 102:e03333. [PMID: 33710633 DOI: 10.1002/ecy.3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022]
Abstract
Nutrient enrichment is widespread throughout grassland systems and expected to increase during the Anthropocene. Trophic interactions, like aboveground herbivory, have been shown to mitigate its effect on plant diversity. Belowground herbivory may also impact these habitats' response to nutrient enrichment, but its influence is much less understood, and likely to depend on factors such as the herbivores' preference for dominant species and the symmetry of belowground competition. If preferential toward the dominant, fastest growing species, root herbivores may reduce these species' relative fitness and support diversity during nutrient enrichment. However, as plant competition belowground is commonly considered to be symmetric, root herbivores may be less impactful than shoot herbivores because they do not reduce any competitive asymmetry between the dominant and subordinate plants. To better understand this system, we used an established, two-layer, grassland community model to run a full-factorially designed simulation experiment, crossing the complete removal of aboveground herbivores and belowground herbivores with nutrient enrichment. After 100 yr of simulation, we analyzed communities' diversity, competition on the individual level, as well as their resistance and recovery. The model reproduced both observed general effects of nutrient enrichment in grasslands and the short-term trends of specific experiments. We found that belowground herbivores exacerbate the negative influence of nutrient enrichment on Shannon diversity within our model grasslands, while aboveground herbivores mitigate its effect. Indeed, data on individuals' above- and belowground resource uptake reveals that root herbivory reduces resource limitation belowground. As with nutrient enrichment, this shifts competition aboveground. Since shoot competition is asymmetric, with larger, taller individuals gathering disproportionate resources compared to their smaller, shorter counterparts, this shift promotes the exclusion of the smallest species. While increasing the root herbivores' preferences toward dominant species lessens their negative impact, at best they are only mildly advantageous, and they do very little reduce the negative consequences of nutrient enrichment. Because our model's belowground competition is symmetric, we hypothesize that root herbivores may be beneficial when root competition is asymmetric. Future research into belowground herbivory should account for the nature of competition belowground to better understand the herbivores' true influence.
Collapse
Affiliation(s)
- Michael S Crawford
- Transformation Pathways, Potsdam Institute for Climate Impact Research (PIK), Building A65 Room 120, P.O. Box 60 12 03, Telegraphenberg, Potsdam, 14412, Germany.,Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ulrike E Schlägel
- Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Felix May
- Theoretical Ecology, Institute for Biology, Freie Universität, Berlin, Germany
| | - Susanne Wurst
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität, Berlin, Germany
| | - Volker Grimm
- Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Department of Ecological Modelling, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.,Biodiversity Economics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Florian Jeltsch
- Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
3
|
Heinze J, Wacker A, Kulmatiski A. Plant-soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology 2020; 101:e03023. [PMID: 32083736 DOI: 10.1002/ecy.3023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 01/03/2023]
Abstract
Relatively little is known about how plant-soil feedbacks (PSFs) may affect plant growth in field conditions where factors such as herbivory may be important. Using a potted experiment in a grassland, we measured PSFs with and without aboveground insect herbivory for 20 plant species. We then compared PSF values to plant landscape abundance. Aboveground herbivory had a large negative effect on PSF values. For 15 of 20 species, PSFs were more negative with herbivory than without. This occurred because plant biomass on "home" soils was smaller with herbivory than without. PSF values with herbivory were correlated with plant landscape abundance, whereas PSF values without herbivory were not. Shoot nitrogen concentrations suggested that plants create soils that increase nitrogen uptake, but that greater shoot nitrogen values increase herbivory and that the net effect of positive PSF and greater aboveground herbivory is less aboveground biomass. Results provided clear evidence that PSFs alone have limited power in explaining species abundances and that herbivory has stronger effects on plant biomass and growth on the landscape. Our results provide a potential explanation for observed differences between greenhouse and field PSF experiments and suggest that PSF experiments need to consider important biotic interactions, like aboveground herbivory, particularly when the goal of PSF research is to understand plant growth in field conditions.
Collapse
Affiliation(s)
- Johannes Heinze
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, D-14469, Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstrasse 6, 14195, Berlin, Germany
| | - Alexander Wacker
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany
| | - Andrew Kulmatiski
- Department of Wildland Resources and the Ecology Center, Utah State University, 84322-5230, Logan, Utah, USA
| |
Collapse
|
4
|
The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory. Oecologia 2019; 190:651-664. [DOI: 10.1007/s00442-019-04442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/19/2019] [Indexed: 11/25/2022]
|
5
|
de Vries J, Poelman EH, Anten N, Evers JB. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling. ANNALS OF BOTANY 2018; 121:1019-1031. [PMID: 29373660 PMCID: PMC5906910 DOI: 10.1093/aob/mcx212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/11/2018] [Indexed: 05/22/2023]
Abstract
Background and Aims Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions.
Collapse
Affiliation(s)
- Jorad de Vries
- Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands
- Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands
| | - Erik H Poelman
- Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands
| | - Niels Anten
- Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands
| | - Jochem B Evers
- Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands
| |
Collapse
|
6
|
Heinze J, Joshi J. Plant–soil feedback effects can be masked by aboveground herbivory under natural field conditions. Oecologia 2017; 186:235-246. [DOI: 10.1007/s00442-017-3997-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/28/2017] [Indexed: 12/01/2022]
|
7
|
Yang Z, Xiong W, Xu Y, Jiang L, Zhu E, Zhan W, He Y, Zhu D, Zhu Q, Peng C, Chen H. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:678. [PMID: 27858261 DOI: 10.1007/s10661-016-5663-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/31/2016] [Indexed: 05/12/2023]
Abstract
As the main form of land use and human disturbance of grassland, livestock grazing has great influences on the soil resources and plant communities. This study observed the variation of soil properties and community characteristics of four treatments of different grazing intensity (no grazing, UG; light grazing, LG; moderate grazing, MG; and heavy grazing, HG) in an alpine meadow of Sichuan Province on the northeastern margin of the Tibetan Plateau. The results showed that grazing increased the pH, soil bulk density (BD), and contents of total carbon (TC) and total nitrogen (TN), and the BD increased while the others decreased with the grazing intensity. At the community level, with the increase of the grazing intensity, the vegetation coverage (R 2 = 0.61, P < 0.001), mean height of community (R 2 = 0.37, P < 0.001), aboveground biomass (R 2 = 0.54, P < 0.001), litter biomass (R 2 = 0.84, P < 0.001), and percentage of aboveground biomass of palatable grasses to total biomass (R 2 = 0.74, P < 0.001) significantly decreased, while the belowground biomass (R 2 = 0.72, P < 0.001) and the root/shoot (R/S) ratio (R 2 = 0.65, P < 0.001) increased. The species richness was the greatest at LG and the total biomass at UG. With grazing, the dominant species of the plant community shifted from palatable grasses (Gramineae and Cyperaceae) to unpalatable grasses (Compositae and Ranunculaceae). Based on the results, LG may be the optimal grassland management mode to be used in the long time in the alpine meadow of the Tibetan Plateau.
Collapse
Affiliation(s)
- Zhen'an Yang
- Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wan Xiong
- Chinese Journal of Applied and Environmental Biology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yingyi Xu
- Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Jiang
- Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Erxiong Zhu
- Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Zhan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yixin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Dan Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qiuan Zhu
- Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Changhui Peng
- Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Center of CEE/ESCER Biology Science Department, University of Quebec at Montreal, C3H3P8, Montreal, Canada
| | - Huai Chen
- Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|