1
|
Paula JR, Repolho T, Grutter AS, Rosa R. Access to Cleaning Services Alters Fish Physiology Under Parasite Infection and Ocean Acidification. Front Physiol 2022; 13:859556. [PMID: 35755439 PMCID: PMC9213755 DOI: 10.3389/fphys.2022.859556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Cleaning symbioses are key mutualistic interactions where cleaners remove ectoparasites and tissues from client fishes. Such interactions elicit beneficial effects on clients’ ecophysiology, with cascading effects on fish diversity and abundance. Ocean acidification (OA), resulting from increasing CO2 concentrations, can affect the behavior of cleaner fishes making them less motivated to inspect their clients. This is especially important as gnathiid fish ectoparasites are tolerant to ocean acidification. Here, we investigated how access to cleaning services, performed by the cleaner wrasse Labroides dimidiatus, affect individual client’s (damselfish, Pomacentrus amboinensis) aerobic metabolism in response to both experimental parasite infection and OA. Access to cleaning services was modulated using a long-term removal experiment where cleaner wrasses were consistently removed from patch reefs around Lizard Island (Australia) for 17 years or left undisturbed. Only damselfish with access to cleaning stations had a negative metabolic response to parasite infection (maximum metabolic rate—ṀO2Max; and both factorial and absolute aerobic scope). Moreover, after an acclimation period of 10 days to high CO2 (∼1,000 µatm CO2), the fish showed a decrease in factorial aerobic scope, being the lowest in fish without the access to cleaners. We propose that stronger positive selection for parasite tolerance might be present in reef fishes without the access to cleaners, but this might come at a cost, as readiness to deal with parasites can impact their response to other stressors, such as OA.
Collapse
Affiliation(s)
- José Ricardo Paula
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Tiago Repolho
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| |
Collapse
|
2
|
|
3
|
Warren DT, McCormick MI. Intrageneric differences in the effects of acute temperature exposure on competitive behaviour of damselfishes. PeerJ 2019; 7:e7320. [PMID: 31346499 PMCID: PMC6642626 DOI: 10.7717/peerj.7320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/01/2022] Open
Abstract
Projected increases in global temperatures brought on by climate change threaten to disrupt many biological and ecological processes. Tropical ectotherms, like many fishes, can be particularly susceptible to temperature change as they occupy environments with narrow thermal fluctuations. While climate change models predict temperatures to increase over decades, thermal fluctuations are already experienced on a seasonal scale, which may affect the ability to capture and defend resources across a thermal gradient. For coral reef fish, losers of competitive interactions are often more vulnerable to predation, and this pressure is strongest just after settlement. Competitive interactions may determine future success for coral reef fishes, and understanding how temperature experienced during settlement can influence such interactions will give insight to community dynamics in a future warmer world. We tested the effect of increased temperatures on intraspecific competitive interactions of two sympatric species of reef damselfish, the blue damselfish Pomacentrus nagasakiensis, and the whitetail damselfish Pomacentrus chrysurus. Juvenile fishes were exposed to one of four temperature treatments, ranging from 26–32 °C, for seven days then placed into competitive arenas where aggressive interactions were recorded between sized matched individuals within each species. While there was no apparent effect of temperature treatment on aggressive behaviour for P. chrysurus, we observed up to a four-fold increase in aggression scores for P. nagasakiensis with increasing temperature. Results suggest that temperature experienced as juveniles can impact aggressive behaviour; however, species-specific thermal tolerances led to behavioural affects that differ among closely related species. Differential thermal tolerance among species may cause restructuring of the interaction network that underlies the structure of reef assemblages.
Collapse
Affiliation(s)
- Donald T Warren
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Mark I McCormick
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
4
|
The cost of carryover effects in a changing environment: context-dependent benefits of a behavioural phenotype in a coral reef fish. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Grande H, Rezende SDM, Simon TE, Félix-Hackradt FC, García-Charton JA, Maida M, Gaspar ALB, Francini-Filho RB, Fredou T, Ferreira BP. Diversity of settlement-stage reef fishes captured by light-trap in a tropical south-west Atlantic Ocean coastal reef system. JOURNAL OF FISH BIOLOGY 2019; 94:210-222. [PMID: 30387145 DOI: 10.1111/jfb.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
This study reports the results of 5 years of monitoring reef fish post-larvae using light traps in the Bay of Tamandaré, north-east Brazil. An annotated checklist of pre-settlement fish species, their frequency of occurrence and taxonomic characteristics are provided. In total, 4,422 post-larval fishes belonging to 36 families, 56 genera and 76 species were captured. The most species-rich families were Carangidae (7), Lutjanidae (6) and Pomacentridae (4), while the families Gerreidae (30.47%), Holocentridae (16.54%), Blenniidae (12.01%), Labrisomidae (8.36%), Lutjanidae (8.29%) and Acanthuridae (5.95%) were the most abundant. This is the first study of the taxonomic diversity and assemblage structure of settlement-stage reef fishes in the tropical south-west Atlantic Ocean. Although a few common species were not captured due to selectivity of light traps, the composition and taxonomic diversity of this first collection suggests that light traps are useful for studies of the early life history of a wide range of pre-settlement reef fishes.
Collapse
Affiliation(s)
- Henrique Grande
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sergio de M Rezende
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Nordeste (CEPENE), Tamandaré, Brazil
| | - Thiony E Simon
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Fabiana C Félix-Hackradt
- Centro de Formação em Ciências Ambientais - CFCAm, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
| | - José A García-Charton
- Departament of Ecology and Hydrology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Mauro Maida
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana L B Gaspar
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Thierry Fredou
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Beatrice P Ferreira
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Binning SA, Roche DG, Grutter AS, Colosio S, Sun D, Miest J, Bshary R. Cleaner wrasse indirectly affect the cognitive performance of a damselfish through ectoparasite removal. Proc Biol Sci 2019. [PMID: 29514969 DOI: 10.1098/rspb.2017.2447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cleaning organisms play a fundamental ecological role by removing ectoparasites and infected tissue from client surfaces. We used the well-studied cleaning mutualisms involving the cleaner wrasse, Labroides dimidiatus, to test how client cognition is affected by ectoparasites and whether these effects are mitigated by cleaners. Ambon damselfish (Pomacentrus amboinensis) collected from experimental reef patches without cleaner wrasse performed worse in a visual discrimination test than conspecifics from patches with cleaners. Endoparasite abundance also negatively influenced success in this test. Visual discrimination performance was also impaired in damselfish experimentally infected with gnathiid (Crustacea: Isopoda) ectoparasites. Neither cleaner absence nor gnathiid infection affected performance in spatial recognition or reversal learning tests. Injection with immune-stimulating lipopolysaccharide did not affect visual discrimination performance relative to saline-injected controls, suggesting that cognitive impairments are not due to an innate immune response. Our results highlight the complex, indirect role of cleaning organisms in promoting the health of their clients via ectoparasite removal and emphasize the negative impact of parasites on host's cognitive abilities.
Collapse
Affiliation(s)
- Sandra A Binning
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland .,School of Biological Sciences, The University of Queensland, St-Lucia, Australia.,Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | - Dominique G Roche
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,School of Biological Sciences, The University of Queensland, St-Lucia, Australia
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St-Lucia, Australia
| | - Simona Colosio
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Derek Sun
- School of Biological Sciences, The University of Queensland, St-Lucia, Australia
| | - Joanna Miest
- Department of Life and Sports Sciences, University of Greenwich, Kent, UK
| | - Redouan Bshary
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
7
|
McCormick MI, Barry RP, Allan BJM. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci Rep 2017; 7:16937. [PMID: 29208978 PMCID: PMC5717098 DOI: 10.1038/s41598-017-17197-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023] Open
Abstract
Habitat degradation alters the chemical landscape through which information about community dynamics is transmitted. Olfactory information is crucial for risk assessment in aquatic organisms as predators release odours when they capture prey that lead to an alarm response in conspecific prey. Recent studies show some coral reef fishes are unable to use alarm odours when surrounded by dead-degraded coral. Our study examines the spatial and temporal dynamics of this alarm odour-nullifying effect, and which substratum types may be responsible. Field experiments showed that settlement-stage damselfish were not able to detect alarm odours within 2 m downcurrent of degraded coral, and that the antipredator response was re-established 20-40 min after transferral to live coral. Laboratory experiments indicate that the chemicals from common components of the degraded habitats, the cyanobacteria, Okeania sp., and diatom, Pseudo-nitzschia sp.prevented an alarm odour response. The same nullifying effect was found for the common red algae, Galaxauria robusta, suggesting that the problem is of a broader nature than previously realised. Those fish species best able to compensate for a lack of olfactory risk information at key times will be those potentially most resilient to the effects of coral degradation that operate through this mechanism.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Randall P Barry
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
8
|
Fatsini E, Rey S, Ibarra-Zatarain Z, Mackenzie S, Duncan NJ. Dominance behaviour in a non-aggressive flatfish, Senegalese sole (Solea senegalensis) and brain mRNA abundance of selected transcripts. PLoS One 2017; 12:e0184283. [PMID: 28877259 PMCID: PMC5587333 DOI: 10.1371/journal.pone.0184283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Dominance is defined as the preferential access to limited resources. The present study aimed to characterise dominance in a non-aggressive flatfish species, the Senegalese sole (Solea senegalensis) by 1) identifying dominance categories and associated behaviours and 2) linking dominance categories (dominant and subordinate) with the abundance of selected mRNA transcripts in the brain. Early juveniles (n = 74, 37 pairs) were subjected to a dyadic dominance test, related to feeding, and once behavioural phenotypes had been described the abundance of ten selected mRNAs related to dominance and aggressiveness was measured in the brain. Late juveniles were subjected to two dyadic dominance tests (n = 34, 17 pairs), related to feeding and territoriality and one group test (n = 24, 4 groups of 6 fish). Sole feeding first were categorized as dominant and sole feeding second or not feeding as subordinate. Three social behaviours (i. "Resting the head" on another fish, ii. "Approaching" another fish, iii. "Swimming above another" fish) were associated with dominance of feeding. Two other variables (i. Total time occupying the preferred area during the last 2 hours of the 24 h test, ii. Organisms occupying the preferred area when the test ended) were representative of dominance in the place preference test. In all tests, dominant fish compared to subordinate fish displayed a significantly higher number of the behaviours "Rest the head" and "Approaches". Moreover, dominant sole dominated the sand at the end of the test, and in the group test dominated the area close to the feed delivery point before feed was delivered. The mRNA abundance of the selected mRNAs related to neurogenesis (nrd2) and neuroplasticity (c-fos) in dominant sole compared to subordinate were significantly different. This is the first study to characterise dominance categories with associated behaviours and mRNA abundance in Senegalese sole and provides tools to study dominance related problems in feeding and reproduction in aquaculture.
Collapse
Affiliation(s)
| | - Sonia Rey
- Institute of Aquaculture, Pathfoot Building, University of Stirling, Stirling, Scotland, United Kingdom
| | - Zohar Ibarra-Zatarain
- IRTA, Sant Carles de la Ràpita, Tarragona, Spain.,CONACYT-UAN-CENIT, Calle 3 S/N, Ciudad industrial, Tepic, Mexico
| | - Simon Mackenzie
- Institute of Aquaculture, Pathfoot Building, University of Stirling, Stirling, Scotland, United Kingdom
| | | |
Collapse
|
9
|
Kingsford MJ, O'Callaghan MD, Liggins L, Gerlach G. The short-lived neon damsel Pomacentrus coelestis: implications for population dynamics. JOURNAL OF FISH BIOLOGY 2017; 90:2041-2059. [PMID: 28299778 DOI: 10.1111/jfb.13288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Daily increments of Pomacentrus coelestis, an abundant and well-studied fish, were validated for the life of the fish and depending on the location, age-maxima were estimated to be 127-160 days on reefs separated by tens to hundreds of kilometres on the Great Barrier Reef. This contrasts with congeners and other damselfishes that live for 5 years or more. Otoliths of P. coelestis were thinner and had different patterns of banding when compared with relatively long-lived congeners. It is suggested that banding patterns in P. coelestis may be related to patterns of maturation and spawning. The consequences of a short life would have a great influence on the population dynamics of this widespread species. Further, the demographics and habitat preferences of this species suggest rapid colonization and establishment of breeding populations that would quickly change the relative abundance of sympatric fishes.
Collapse
Affiliation(s)
- M J Kingsford
- ARC Centre of Excellence for Coral Reef Studies and Marine Biology and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - M D O'Callaghan
- ARC Centre of Excellence for Coral Reef Studies and Marine Biology and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - L Liggins
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, 0745, New Zealand
- The Auckland War Memorial Museum, Tāmaki Paenga Hira, Auckland, 1010, New Zealand
| | - G Gerlach
- Institute for Biology and Environmental Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|