1
|
Barone ML, Wilson JD, Zapata L, Soto EM, Haddad CR, Grismado C, Izquierdo M, Arias E, Pizarro-Araya J, Briones R, Barriga JE, Peralta L, Ramírez MJ. Genetic barcodes for species identification and phylogenetic estimation in ghost spiders (Araneae: Anyphaenidae: Amaurobioidinae). INVERTEBR SYST 2024; 38:IS24053. [PMID: 39514381 DOI: 10.1071/is24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The identification of spider species presents many challenges, since in most cases the characters used are from genital structures that are only fully developed in the adult stage, hence the identification of immatures is most often not possible. Additionally, these structures usually also present some intra-specific variability, which in some cases makes the identification of closely related species difficult. The genetic barcode technique (DNA barcodes), based on sequencing of the mitochondrial marker cytochrome c oxidase subunit I (COI ), has proven a useful, complementary tool to overcome these limitations. In this work, the contribution of DNA barcoding to the taxonomy of the subfamily Amaurobioidinae is explored using the refined single linkage analysis (RESL) algorithm for the delimitation of operational taxonomic units (OTUs), in comparison with the assemble species by automatic partitioning (ASAP) algorithm, and presented in conjunction with an updated molecular phylogenetic analysis of three other markers (28S rRNA, 16S rRNA, Histone H3 ), in addition to COI . Of a total of 97 included species identified by morphology, 82 species were concordant with the operational taxonomic units obtained from RESL, representing an 85% correspondence between the two methods. Similar results were obtained using the ASAP algorithm. Previous observations of morphological variation within the same species are supported, and this technique provides new information on genetic structure and potentially cryptic species. Most of the discrepancies between DNA barcoding and morphological identification are explained by low geographic sampling or by divergent or geographically structured lineages. After the addition of many specimens with only COI data, the multi-marker phylogenetic analysis is consistent with previous results and the support is improved. The markers COI , closely followed by 28S , are the most phylogenetically informative. We conclude that the barcode DNA technique is a valuable source of data for the delimitation of species of Amaurobioidinae, in conjunction with morphological and geographic data, and it is also useful for the detection of cases that require a more detailed and meticulous study.
Collapse
Affiliation(s)
- Mariana L Barone
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Ángel Gallardo 470 C1405DJR, Buenos Aires, Argentina; and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET, Departamento de Ecología, Genética y Evolución (DEGE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jeremy D Wilson
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Ángel Gallardo 470 C1405DJR, Buenos Aires, Argentina; and Present address: Collections and Research, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia
| | - Lorena Zapata
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Ángel Gallardo 470 C1405DJR, Buenos Aires, Argentina
| | - Eduardo M Soto
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET, Departamento de Ecología, Genética y Evolución (DEGE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Charles R Haddad
- Department of Zoology & Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Cristian Grismado
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Ángel Gallardo 470 C1405DJR, Buenos Aires, Argentina
| | - Matías Izquierdo
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Ángel Gallardo 470 C1405DJR, Buenos Aires, Argentina; and Present address: Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal - CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elizabeth Arias
- Essig Museum of Entomology, Valley Life Science Building, Berkeley, CA 94720, USA
| | - Jaime Pizarro-Araya
- Laboratorio de Entomología Ecológica (LEULS), Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 554, La Serena, Chile; and Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; and Instituto de Ecología y Biodiversidad (IEB), Ñuñoa, Santiago, Chile; and Grupo de Artrópodos, Sistema Integrado de Monitoreo y Evaluación de Ecosistemas Forestales Nativos (SIMEF), Santiago, Chile
| | - Raúl Briones
- Bioforest S.A. Program Wildlife Conservation, kilómetro 15, Concepción, Chile
| | - Juan Enrique Barriga
- Universidad Católica del Maule, Facultad de Ciencias Agrarias y Forestales, Departamento de Ciencias Agrarias, Casilla 139, Curicó, Chile
| | - Luciano Peralta
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET, Universidad Nacional de Mar del Plata (UNMDP), Buenos Aires, Argentina
| | - Martín J Ramírez
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Ángel Gallardo 470 C1405DJR, Buenos Aires, Argentina
| |
Collapse
|
2
|
Ortiz D, Pekár S, Dianat M. A consequential one-night stand: Episodic historical hybridization leads to mitochondrial takeover in sympatric desert ant-eating spiders. Mol Phylogenet Evol 2024; 199:108167. [PMID: 39103025 DOI: 10.1016/j.ympev.2024.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Disentangling the genomic intricacies underlying speciation and the causes of discordance between sources of evidence can offer remarkable insights into evolutionary dynamics. The ant-eating spider Zodarion nitidum, found across the Middle East and Egypt, displays yellowish and blackish morphs that co-occur sympatrically. These morphs additionally differ in behavioral and physiological features and show complete pre-mating reproductive isolation. In contrast, they possess similar sexual features and lack distinct differences in their mitochondrial DNA. We analyzed both Z. nitidum morphs and outgroups using genome-wide and additional mitochondrial DNA data. The genomic evidence indicated that Yellow and Black are reciprocally independent lineages without signs of recent admixture. Interestingly, the sister group of Yellow is not Black but Z. luctuosum, a morphologically distinct species. Genomic gene flow analyses pinpointed an asymmetric nuclear introgression event, with Yellow contributing nearly 5 % of its genome to Black roughly 320,000 years ago, intriguingly aligning with the independently estimated origin of the mitochondrial DNA of Black. We conclude that the blackish and yellowish morphs of Z. nitidum are long-diverged distinct species, and that the ancient and modest genomic introgression event registered resulted in a complete mitochondrial takeover of Black by Yellow. This investigation underscores the profound long-term effects that even modest hybridization events can have on the genome of organisms. It also exemplifies the utility of phylogenetic networks for estimating historical events and how integrating independent lines of evidence can increase the reliability of such estimations.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia.
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Malahat Dianat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
3
|
Måsviken J, Dalén L, Norén K, Dalerum F. The relative importance of abiotic and biotic environmental conditions for taxonomic, phylogenetic, and functional diversity of spiders across spatial scales. Oecologia 2023; 202:261-273. [PMID: 37261510 PMCID: PMC10307692 DOI: 10.1007/s00442-023-05383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Both abiotic and biotic conditions may be important for biodiversity. However, their relative importance may vary among different diversity dimensions as well as across spatial scales. Spiders (Araneae) offer an ecologically relevant system for evaluating variation in the relative strength abiotic and biotic biodiversity regulation. We quantified the relative importance of abiotic and biotic conditions for three diversity dimensions of spider communities quantified across two spatial scales. Spiders were surveyed along elevation gradients in northern Sweden. We focused our analysis on geomorphological and climatic conditions as well as vegetation characteristics, and quantified the relative importance of these conditions for the taxonomic, phylogenetic, and functional diversity of spider communities sampled across one intermediate (500 m) and one local (25 m) scale. There were stronger relationships among diversity dimensions at the local than the intermediate scale. There were also variation in the relative influence of abiotic and biotic conditions among diversity dimensions, but this variation was not consistent across spatial scales. Across both spatial scales, vegetation was related to all diversity dimensions whereas climate was important for phylogenetic and functional diversity. Our study does not fully support stronger abiotic regulation at coarser scales, and conversely stronger abiotic regulation at more local scales. Instead, our results indicate that community assembly is shaped by interactions between abiotic constrains in species distributions and biotic conditions, and that such interactions may be both scale and context dependent.
Collapse
Affiliation(s)
- Johannes Måsviken
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Love Dalén
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, Sweden.
- Biodiversity Research Institute (University of Oviedo-Principality of Asturias-CSIC), Spanish National Research Council, Research Building, Mieres Campus, 33600, Mieres, Spain.
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa.
| |
Collapse
|
4
|
Levesque-Beaudin V, Miller ME, Dikow T, Miller SE, Prosser SW, Zakharov EV, McKeown JT, Sones JE, Redmond NE, Coddington JA, Santos BF, Bird J, deWaard JR. A workflow for expanding DNA barcode reference libraries through 'museum harvesting' of natural history collections. Biodivers Data J 2023; 11:e100677. [PMID: 38327333 PMCID: PMC10848567 DOI: 10.3897/bdj.11.e100677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 02/09/2024] Open
Abstract
Natural history collections are the physical repositories of our knowledge on species, the entities of biodiversity. Making this knowledge accessible to society - through, for example, digitisation or the construction of a validated, global DNA barcode library - is of crucial importance. To this end, we developed and streamlined a workflow for 'museum harvesting' of authoritatively identified Diptera specimens from the Smithsonian Institution's National Museum of Natural History. Our detailed workflow includes both on-site and off-site processing through specimen selection, labelling, imaging, tissue sampling, databasing and DNA barcoding. This approach was tested by harvesting and DNA barcoding 941 voucher specimens, representing 32 families, 819 genera and 695 identified species collected from 100 countries. We recovered 867 sequences (> 0 base pairs) with a sequencing success of 88.8% (727 of 819 sequenced genera gained a barcode > 300 base pairs). While Sanger-based methods were more effective for recently-collected specimens, the methods employing next-generation sequencing recovered barcodes for specimens over a century old. The utility of the newly-generated reference barcodes is demonstrated by the subsequent taxonomic assignment of nearly 5000 specimen records in the Barcode of Life Data Systems.
Collapse
Affiliation(s)
- Valerie Levesque-Beaudin
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Meredith E. Miller
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Torsten Dikow
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashington, DCUnited States of America
| | - Scott E. Miller
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashington, DCUnited States of America
| | - Sean W.J. Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Evgeny V. Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
- Department of Integrative Biology, University of Guelph, Guelph, CanadaDepartment of Integrative Biology, University of GuelphGuelphCanada
| | - Jaclyn T.A. McKeown
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Jayme E. Sones
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Niamh E Redmond
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashington, DCUnited States of America
| | - Jonathan A. Coddington
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashington, DCUnited States of America
| | - Bernardo F. Santos
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashington, DCUnited States of America
| | - Jessica Bird
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashington, DCUnited States of America
| | - Jeremy R. deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, CanadaCentre for Biodiversity Genomics, University of GuelphGuelphCanada
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of AmericaNational Museum of Natural History, Smithsonian InstitutionWashington, DCUnited States of America
- School of Environmental Sciences, University of Guelph, Guelph, CanadaSchool of Environmental Sciences, University of GuelphGuelphCanada
| |
Collapse
|
5
|
Kilian IC, Espeland M, Mey W, Wowor D, Hadiaty RK, von Rintelen T, Herder F. DNA barcoding unveils a high diversity of caddisflies (Trichoptera) in the Mount Halimun Salak National Park (West Java; Indonesia). PeerJ 2022; 10:e14182. [PMID: 36530410 PMCID: PMC9753737 DOI: 10.7717/peerj.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background Trichoptera are one of the most diverse groups of freshwater insects worldwide and one of the main bioindicators for freshwater quality. However, in many areas, caddisflies remain understudied due to lack of taxonomic expertise. Meanwhile, globally increasing anthropogenic stress on freshwater streams also threatens Trichoptera diversity. Methods To assess the Trichoptera diversity of the area within and around the Mount Halimun Salak National Park (MHSNP or Taman Nasional Gunung Halimun Salak) in West Java (Indonesia), we conducted a molecular-morphological study on Trichoptera diversity using larvae from a benthic survey and adults from hand-netting. In addition to morphological identification, we applied four different molecular taxon delimitation approaches (Generalized Mixed Yule Coalescent, Bayesian Poisson Tree Processes, Automatic Barcode Gap Discovery and Assemble Species by Automatic Partitioning) based on DNA barcoding of Cytochrome-C-Oxidase I (COI). Results The molecular delimitation detected 72 to 81 Operational Taxonomic Units (OTU). Only five OTUs could be identified to species level by comparing sequences against the BOLD database using BLAST, and four more to the genus level. Adults and larvae could be successfully associated in 18 cases across six families. The high diversity of Trichoptera in this area highlights their potential as bioindicators for water quality assessment. Conclusions This study provides an example of how molecular approaches can benefit the exploration of hidden diversity in unexplored areas and can be a valuable tool to link life stages. However, our study also highlights the need to improve DNA barcode reference libraries of Trichoptera for the Oriental region.
Collapse
Affiliation(s)
- Isabel C. Kilian
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Marianne Espeland
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Wolfram Mey
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, Indonesia
| | - Renny K. Hadiaty
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, Indonesia
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Fabian Herder
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| |
Collapse
|
6
|
Oh JH, Kim S, Lee S. DNA barcodes reveal population-dependent cryptic diversity and various cases of sympatry of Korean leptonetid spiders (Araneae: Leptonetidae). Sci Rep 2022; 12:15528. [PMID: 36109541 PMCID: PMC9478141 DOI: 10.1038/s41598-022-18666-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Leptonetidae are tiny, rarely encountered spiders that mainly inhabit moist environments, such as caves, leaf litter, and rock piles. Because they are microhabitat specialists, most leptonetid species have short-range endemism, and rarely occur in sympatry. Their small size, relatively simple habitus features and reproductive organ structure increase the difficulty of identification. The identification of leptonetids and other spiders may also be time-consuming due to their sexual dimorphism, polymorphism, and lack of diagnostic characteristics in juveniles. DNA barcoding has been used as an effective tool for species identification to overcome these obstacles. Herein, we conducted a test of DNA barcoding based on 424 specimens of Korean Leptonetidae representing 76 morphospecies. A threshold of 4.2% based on maximum intraspecific genetic divergence was estimated to efficiently differentiate the morphospecies. The species assignments tested by five species delimitation methods (ABGD, ASAP, GMYC, PTP, and bPTP) were consistent with the morphological identifications for only 47 morphospecies (61.8%), indicating many cases of cryptic diversity among the remaining morphospecies. Furthermore, sympatry in leptonetids, which are known to be rare, was revealed to be common in South Korea, especially in epigean species. Our results showed that sympatries within families, congeners, and intraclades potentially occur throughout the entire region of Korea.
Collapse
|
7
|
Urfer K, Spasojevic T, Klopfstein S, Baur H, Lasut L, Kropf C. Incongruent molecular and morphological variation in the crab spider Synemaglobosum (Araneae, Thomisidae) in Europe. Zookeys 2021; 1078:107-134. [PMID: 35068955 PMCID: PMC8709837 DOI: 10.3897/zookeys.1078.64116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022] Open
Abstract
Establishing species boundaries is one of the challenges taxonomists around the world have been tackling for centuries. The relation between intraspecific and interspecific variability is still under discussion and in many taxa it remains understudied. Here the hypothesis of single versus multiple species of the crab spider Synemaglobosum (Fabricius) is tested. The wide distribution range as well as its high morphological variability makes this species an interesting candidate for re-evaluation using an integrative approach. This study combines information from barcoding, phylogenetic reconstruction based on mitochondrial CO1 and ITS2 of more than 60 specimens collected over a wide range of European localities, and morphology. The findings show deep clades with up to 6% mean pairwise distance in the CO1 barcode without any biogeographical pattern. The nuclear ITS2 gene did not support the CO1 clades. Morphological assessment of somatic and genital characters in males and females and a morphometric analysis of the male palp uncovered high intraspecific variation that does not match the CO1 or ITS2 phylogenies or biogeography either. Screening for endosymbiotic Wolbachia bacteria was conducted and only a single infected specimen was found. Several scenarios might explain these inconsistent patterns. While the deep divergences in the barcoding marker might suggest cryptic or ongoing speciation or geographical isolation in the past, the lack of congruent variation in the nuclear ITS2 gene or the studied morphological character systems, especially the male palp, indicates that S.globosum might simply be highly polymorphic both in terms of its mtDNA and morphology. Therefore, more data on ecology and behaviour and full genome sequences are necessary to ultimately resolve this taxonomically intriguing case.
Collapse
Affiliation(s)
- Karin Urfer
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum St.Gallen, Rorschacher Strasse 263, 9016 St.Gallen, SwitzerlandNatural History Museum BaselBaselSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Tamara Spasojevic
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Seraina Klopfstein
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Hannes Baur
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| | - Liana Lasut
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| | - Christian Kropf
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| |
Collapse
|
8
|
Ortiz D, Pekár S, Dianat M. Phylogenomics and loci dropout patterns of deeply diverged Zodarion ant-eating spiders suggest a high potential of RAD-seq for genus-level spider phylogenetics. Cladistics 2021; 38:320-334. [PMID: 34699083 DOI: 10.1111/cla.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/28/2022] Open
Abstract
RAD sequencing yields large amounts of genome-wide data at a relatively low cost and without requiring previous taxon-specific information, making it ideal for evolutionary studies of highly diversified and neglected organisms. However, concerns about information decay with phylogenetic distance have discouraged its use for assessing supraspecific relationships. Here, using Double Digest Restriction Associated DNA (ddRAD) data, we perform the first deep-level approach to the phylogeny of Zodarion, a highly diversified spider genus. We explore the impact of loci and taxon filtering across concatenated and multispecies coalescent reconstruction methods and investigate the patterns of information dropout in reference to both the time of divergence and the mitochondrial divergence between taxa. We found that relaxed loci-filtering and nested taxon-filtering strategies maximized the amount of molecular information and improved phylogenetic inference. As expected, there was a clear pattern of allele dropout towards deeper time and mitochondrial divergences, but the phylogenetic signal remained strong throughout the phylogeny. Therefore, we inferred topologies that were almost fully resolved, highly supported, and noticeably congruent between setups and inference methods, which highlights overall inconsistency in the taxonomy of Zodarion. Because Zodarion appears to be among the oldest and most mitochondrially diversified spider genera, our results suggest that ddRAD data show high potential for inferring intra-generic relationships across spiders and probably also in other taxonomic groups.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Malahat Dianat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
9
|
Trębicki Ł, Patoleta BM, Dabert M, Żabka M. Redescription of type species of the genus Cytaea Keyserling, 1882 (Araneae: Salticidae) – an integrative approach. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1961029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ł. Trębicki
- Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Poland
| | - B. M. Patoleta
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Poland
| | - M. Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poland
| | - M. Żabka
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Poland
| |
Collapse
|
10
|
Young MR, deWaard JR, Hebert PDN. DNA barcodes enable higher taxonomic assignments in the Acari. Sci Rep 2021; 11:15922. [PMID: 34354125 PMCID: PMC8342613 DOI: 10.1038/s41598-021-95147-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
Although mites (Acari) are abundant in many terrestrial and freshwater ecosystems, their diversity is poorly understood. Since most mite species can be distinguished by variation in the DNA barcode region of cytochrome c oxidase I, the Barcode Index Number (BIN) system provides a reliable species proxy that facilitates large-scale surveys. Such analysis reveals many new BINs that can only be identified as Acari until they are examined by a taxonomic specialist. This study demonstrates that the Barcode of Life Datasystem's identification engine (BOLD ID) generally delivers correct ordinal and family assignments from both full-length DNA barcodes and their truncated versions gathered in metabarcoding studies. This result was demonstrated by examining BOLD ID's capacity to assign 7021 mite BINs to their correct order (4) and family (189). Identification success improved with sequence length and taxon coverage but varied among orders indicating the need for lineage-specific thresholds. A strict sequence similarity threshold (86.6%) prevented all ordinal misassignments and allowed the identification of 78.6% of the 7021 BINs. However, higher thresholds were required to eliminate family misassignments for Sarcoptiformes (89.9%), and Trombidiformes (91.4%), consequently reducing the proportion of BINs identified to 68.6%. Lineages with low barcode coverage in the reference library should be prioritized for barcode library expansion to improve assignment success.
Collapse
Affiliation(s)
- Monica R Young
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Talavera G, Lukhtanov V, Pierce NE, Vila R. DNA barcodes combined with multi-locus data of representative taxa can generate reliable higher-level phylogenies. Syst Biol 2021; 71:382-395. [PMID: 34022059 PMCID: PMC8830075 DOI: 10.1093/sysbio/syab038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Taxa are frequently labeled incertae sedis when their placement is debated at ranks above the species level, such as their subgeneric, generic, or subtribal placement. This is a pervasive problem in groups with complex systematics due to difficulties in identifying suitable synapomorphies. In this study, we propose combining DNA barcodes with a multilocus backbone phylogeny in order to assign taxa to genus or other higher-level categories. This sampling strategy generates molecular matrices containing large amounts of missing data that are not distributed randomly: barcodes are sampled for all representatives, and additional markers are sampled only for a small percentage. We investigate the effects of the degree and randomness of missing data on phylogenetic accuracy using simulations for up to 100 markers in 1000-tips trees, as well as a real case: the subtribe Polyommatina (Lepidoptera: Lycaenidae), a large group including numerous species with unresolved taxonomy. Our simulation tests show that when a strategic and representative selection of species for higher-level categories has been made for multigene sequencing (approximately one per simulated genus), the addition of this multigene backbone DNA data for as few as 5–10% of the specimens in the total data set can produce high-quality phylogenies, comparable to those resulting from 100% multigene sampling. In contrast, trees based exclusively on barcodes performed poorly. This approach was applied to a 1365-specimen data set of Polyommatina (including ca. 80% of described species), with nearly 8% of representative species included in the multigene backbone and the remaining 92% included only by mitochondrial COI barcodes, a phylogeny was generated that highlighted potential misplacements, unrecognized major clades, and placement for incertae sedis taxa. We use this information to make systematic rearrangements within Polyommatina, and to describe two new genera. Finally, we propose a systematic workflow to assess higher-level taxonomy in hyperdiverse groups. This research identifies an additional, enhanced value of DNA barcodes for improvements in higher-level systematics using large data sets. [Birabiro; DNA barcoding; incertae sedis; Kipepeo; Lycaenidae; missing data; phylogenomic; phylogeny; Polyommatina; supermatrix; systematics; taxonomy]
Collapse
Affiliation(s)
- Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s/n, 08038 Barcelona, Catalonia, Spain.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| | - Vladimir Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Hill GE. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. Ecol Evol 2020; 10:9048-9059. [PMID: 32953045 PMCID: PMC7487244 DOI: 10.1002/ece3.6640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding based on mitochondrial (mt) nucleotide sequences is an enigma. Neutral models of mt evolution predict DNA barcoding cannot work for recently diverged taxa, and yet, mt DNA barcoding accurately delimits species for many bilaterian animals. Meanwhile, mt DNA barcoding often fails for plants and fungi. I propose that because mt gene products must cofunction with nuclear gene products, the evolution of mt genomes is best understood with full consideration of the two environments that impose selective pressure on mt genes: the external environment and the internal genomic environment. Moreover, it is critical to fully consider the potential for adaptive evolution of not just protein products of mt genes but also of mt transfer RNAs and mt ribosomal RNAs. The tight linkage of genes on mt genomes that do not engage in recombination could facilitate selective sweeps whenever there is positive selection on any element in the mt genome, leading to the purging of mt genetic diversity within a population and to the rapid fixation of novel mt DNA sequences. Accordingly, the most important factor determining whether or not mt DNA sequences diagnose species boundaries may be the extent to which the mt chromosomes engage in recombination.
Collapse
|
13
|
Domènech M, Crespo LC, Enguídanos A, Arnedo MA. Mitochondrial discordance in closely related Theridion spiders (Araneae, Theridiidae), with description of a new species of the T. melanurum group. ZOOSYST EVOL 2020. [DOI: 10.3897/zse.96.49946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incorporation of molecular data into current taxonomic practise has unravelled instances of incongruence among different data sets. Here we report a case of mitochondrial discordance in cobweb spiders of the genus Theridion Walckenaer, 1805 from the Iberian Peninsula. Morphological examination of samples from a country-wide bioinventory initiative revealed the existence of a putative new species and two nominal species belonging to the Theridion melanurum species group. The morphological delineation was supported by the molecular analysis of a nuclear marker but was at odds with the groups circumscribed by a mitochondrial marker. The causes of this discordance remained uncertain, once sample and sequencing errors and the existence of pseudogenes were discarded. The full sorting observed in the alleles of the more slowly evolving nuclear marker ruled out incomplete lineage sorting, while the geographic patterns recovered were difficult to reconciliate with ongoing hybridization. We propose that the apparent incongruence observed is most likely the result of old introgression events in a group with high dispersal abilities. We further speculate that endosymbiont-driven cytoplasmatic incompatibility could be involved in the fixation of mitochondrial haplotypes across species barriers. Additionally, we describe the new species T. promiscuumsp. nov., based on the presence of diagnostic morphological traits, backed up by the nuclear data delimitation. Our study contributes yet another example of the perils of relying on single methods or data sources to summarise the variation generated by multiple processes acting through thousands of years of evolution and supports the key role of biological inventories in improving our knowledge of invertebrate biodiversity.
Collapse
|
14
|
Crews SC, Esposito LA. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evol Biol 2020; 20:12. [PMID: 31980017 PMCID: PMC6979080 DOI: 10.1186/s12862-019-1576-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The immense geologic and ecological complexity of the Caribbean has created a natural laboratory for interpreting when and how organisms disperse through time and space. However, competing hypotheses compounded with this complexity have resulted in a lack of unifying principles of biogeography for the region. Though new data concerning the timing of geologic events and dispersal events are emerging, powerful new analytical tools now allow for explicit hypothesis testing. Arthropods, with varying dispersal ability and high levels of endemism in the Caribbean, are an important, albeit understudied, biogeographic model system. Herein, we include a comprehensive analysis of every publicly available genetic dataset (at the time of writing) of terrestrial Caribbean arthropod groups using a statistically robust pipeline to explicitly test the current extent of biogeographic hypotheses for the region. RESULTS Our findings indicate several important biogeographic generalizations for the region: the South American continent is the predominant origin of Caribbean arthropod fauna; GAARlandia played a role for some taxa in aiding dispersal from South America to the Greater Antilles; founder event dispersal explains the majority of dispersal events by terrestrial arthropods, and distance between landmasses is important for dispersal; most dispersal events occurred via island hopping; there is evidence of 'reverse' dispersal from islands to the mainland; dispersal across the present-day Isthmus of Panama generally occurred prior to 3 mya; the Greater Antilles harbor more lineage diversity than the Lesser Antilles, and the larger Greater Antilles typically have greater lineage diversity than the smaller islands; basal Caribbean taxa are primarily distributed in the Greater Antilles, the basal-most being from Cuba, and derived taxa are mostly distributed in the Lesser Antilles; Jamaican taxa are usually endemic and monophyletic. CONCLUSIONS Given the diversity and deep history of terrestrial arthropods, incongruence of biogeographic patterns is expected, but focusing on both similarities and differences among divergent taxa with disparate life histories emphasizes the importance of particular qualities responsible for resulting diversification patterns. Furthermore, this study provides an analytical toolkit that can be used to guide researchers interested in answering questions pertaining to Caribbean biogeography using explicit hypothesis testing.
Collapse
Affiliation(s)
- Sarah C Crews
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Lauren A Esposito
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| |
Collapse
|
15
|
deWaard JR, Ratnasingham S, Zakharov EV, Borisenko AV, Steinke D, Telfer AC, Perez KHJ, Sones JE, Young MR, Levesque-Beaudin V, Sobel CN, Abrahamyan A, Bessonov K, Blagoev G, deWaard SL, Ho C, Ivanova NV, Layton KKS, Lu L, Manjunath R, McKeown JTA, Milton MA, Miskie R, Monkhouse N, Naik S, Nikolova N, Pentinsaari M, Prosser SWJ, Radulovici AE, Steinke C, Warne CP, Hebert PDN. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci Data 2019; 6:308. [PMID: 31811161 PMCID: PMC6897906 DOI: 10.1038/s41597-019-0320-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/11/2019] [Indexed: 01/08/2023] Open
Abstract
The reliable taxonomic identification of organisms through DNA sequence data requires a well parameterized library of curated reference sequences. However, it is estimated that just 15% of described animal species are represented in public sequence repositories. To begin to address this deficiency, we provide DNA barcodes for 1,500,003 animal specimens collected from 23 terrestrial and aquatic ecozones at sites across Canada, a nation that comprises 7% of the planet's land surface. In total, 14 phyla, 43 classes, 163 orders, 1123 families, 6186 genera, and 64,264 Barcode Index Numbers (BINs; a proxy for species) are represented. Species-level taxonomy was available for 38% of the specimens, but higher proportions were assigned to a genus (69.5%) and a family (99.9%). Voucher specimens and DNA extracts are archived at the Centre for Biodiversity Genomics where they are available for further research. The corresponding sequence and taxonomic data can be accessed through the Barcode of Life Data System, GenBank, the Global Biodiversity Information Facility, and the Global Genome Biodiversity Network Data Portal.
Collapse
Affiliation(s)
- Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | | | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Alex V Borisenko
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Dirk Steinke
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Angela C Telfer
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Kate H J Perez
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Jayme E Sones
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Monica R Young
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | | | - Crystal N Sobel
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Arusyak Abrahamyan
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Kyrylo Bessonov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Gergin Blagoev
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie L deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Chris Ho
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Natalia V Ivanova
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Kara K S Layton
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- Ocean Frontier Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liuqiong Lu
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Ramya Manjunath
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Jaclyn T A McKeown
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Megan A Milton
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Renee Miskie
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Norm Monkhouse
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Suresh Naik
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Nadya Nikolova
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Mikko Pentinsaari
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Sean W J Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | | | - Claudia Steinke
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Connor P Warne
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
16
|
Tyagi K, Kumar V, Kundu S, Pakrashi A, Prasad P, Caleb JTD, Chandra K. Identification of Indian Spiders through DNA barcoding: Cryptic species and species complex. Sci Rep 2019; 9:14033. [PMID: 31575965 PMCID: PMC6773733 DOI: 10.1038/s41598-019-50510-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
Spiders are mega diverse arthropods and play an important role in the ecosystem. Identification of this group is challenging due to their cryptic behavior, sexual dimorphism, and unavailability of taxonomic keys for juveniles. To overcome these obstacles, DNA barcoding plays a pivotal role in spider identification throughout the globe. This study is the first large scale attempt on DNA barcoding of spiders from India with 101 morphospecies of 72 genera under 21 families, including five endemic species and holotypes of three species. A total of 489 barcodes was generated and analyzed, among them 85 novel barcodes of 22 morphospecies were contributed to the global database. The estimated delimitation threshold of the Indian spiders was 2.6% to 3.7% K2P corrected pairwise distance. The multiple species delimitation methods (BIN, ABGD, GMYC and PTP) revealed a total of 107 molecular operational taxonomic units (MOTUs) for 101 morphospecies. We detected more than one MOTU in 11 morphospecies with discrepancies in genetic distances and tree topologies. Cryptic diversity was detected in Pardosa pusiola, Cyclosa spirifera, and Heteropoda venatoria. The intraspecies distances which were as large as our proposed delimitation threshold were observed in Pardosa sumatrana, Thiania bhamoensis, and Cheiracanthium triviale. Further, shallow genetic distances were detected in Cyrtophora cicatrosa, Hersilia savignyi, Argiope versicolor, Phintella vittata, and Oxyopes birmanicus. Two morphologically distinguished species (Plexippus paykulli and Plexippus petersi) showed intra-individual variation within their DNA barcode data. Additionally, we reinstate the original combination for Linyphia sikkimensis based on both morphology and DNA barcoding. These data show that DNA barcoding is a valuable tool for specimen identification and species discovery of Indian spiders.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India.
| | - Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Avas Pakrashi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Priya Prasad
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - John T D Caleb
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| |
Collapse
|
17
|
Conti E, Mulder C, Pappalardo AM, Ferrito V, Costa G. How soil granulometry, temperature, and water predict genetic differentiation in Namibian spiders ( Ariadna: Segestriidae) and explain their behavior. Ecol Evol 2019; 9:4382-4391. [PMID: 31031913 PMCID: PMC6476775 DOI: 10.1002/ece3.4929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 12/25/2022] Open
Abstract
The Namib Desert is a biodiversity hotspot for many invertebrates, including spiders. Tube-dwelling spiders belonging to the Ariadna genus are widespread in gravel plains. These sit-and-wait predators share a particular behavior, as they spend their life in tunnels in the soil, surrounding the entrance of their burrow with stone rings. We investigated five spider populations taking into account environmental parameters, functional traits, and molecular data. We have chosen the temperature at the soil surface and at the bottom of the burrow, the air humidity, and the soil granulometry to define the environment. The chosen functional traits were the diameter and depth of the burrows, the ratio between weight and length, the thermal properties of their silks, and the number of ring elements. The molecular branch lengths and the evolutionary distance emerging from cytochrome oxidase I gene sequences summarized the molecular analysis. Our study highlights a strong coherence between the resulting evolutionary lineages and the respective geographical distribution. Multivariate analyses of both environmental and molecular data provide the same phylogenetic interpretation. Low intrapopulation sequence divergence and the high values between population sequence divergence (between 4.9% and 26.1%) might even suggest novel taxa which deserve further investigation. We conclude that both the Kimura distance and the branch lengths are strengthening the environmental clustering of these peculiar sites in Namibia.
Collapse
Affiliation(s)
- Erminia Conti
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Christian Mulder
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Anna Maria Pappalardo
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Venera Ferrito
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Giovanni Costa
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
| |
Collapse
|
18
|
deWaard JR, Levesque-Beaudin V, deWaard SL, Ivanova NV, McKeown JTA, Miskie R, Naik S, Perez KHJ, Ratnasingham S, Sobel CN, Sones JE, Steinke C, Telfer AC, Young AD, Young MR, Zakharov EV, Hebert PDN. Expedited assessment of terrestrial arthropod diversity by coupling Malaise traps with DNA barcoding 1. Genome 2018; 62:85-95. [PMID: 30257096 DOI: 10.1139/gen-2018-0093] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monitoring changes in terrestrial arthropod communities over space and time requires a dramatic increase in the speed and accuracy of processing samples that cannot be achieved with morphological approaches. The combination of DNA barcoding and Malaise traps allows expedited, comprehensive inventories of species abundance whose cost will rapidly decline as high-throughput sequencing technologies advance. Aside from detailing protocols from specimen sorting to data release, this paper describes their use in a survey of arthropod diversity in a national park that examined 21 194 specimens representing 2255 species. These protocols can support arthropod monitoring programs at regional, national, and continental scales.
Collapse
Affiliation(s)
- Jeremy R deWaard
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Valerie Levesque-Beaudin
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie L deWaard
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Natalia V Ivanova
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Jaclyn T A McKeown
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Renee Miskie
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Suresh Naik
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Kate H J Perez
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Sujeevan Ratnasingham
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Crystal N Sobel
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Jayme E Sones
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Claudia Steinke
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Angela C Telfer
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Andrew D Young
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada.,b Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Monica R Young
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Evgeny V Zakharov
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Paul D N Hebert
- a Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Havemann N, Gossner MM, Hendrich L, Morinière J, Niedringhaus R, Schäfer P, Raupach MJ. From water striders to water bugs: the molecular diversity of aquatic Heteroptera (Gerromorpha, Nepomorpha) of Germany based on DNA barcodes. PeerJ 2018; 6:e4577. [PMID: 29736329 PMCID: PMC5936072 DOI: 10.7717/peerj.4577] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
With about 5,000 species worldwide, the Heteroptera or true bugs are the most diverse taxon among the hemimetabolous insects in aquatic and semi-aquatic ecosystems. Species may be found in almost every freshwater environment and have very specific habitat requirements, making them excellent bioindicator organisms for water quality. However, a correct determination by morphology is challenging in many species groups due to high morphological variability and polymorphisms within, but low variability between species. Furthermore, it is very difficult or even impossible to identify the immature life stages or females of some species, e.g., of the corixid genus Sigara. In this study we tested the effectiveness of a DNA barcode library to discriminate species of the Gerromorpha and Nepomorpha of Germany. We analyzed about 700 specimens of 67 species, with 63 species sampled in Germany, covering more than 90% of all recorded species. Our library included various morphological similar taxa, e.g., species within the genera Sigara and Notonecta as well as water striders of the genus Gerris. Fifty-five species (82%) were unambiguously assigned to a single Barcode Index Number (BIN) by their barcode sequences, whereas BIN sharing was observed for 10 species. Furthermore, we found monophyletic lineages for 52 analyzed species. Our data revealed interspecific K2P distances with below 2.2% for 18 species. Intraspecific distances above 2.2% were shown for 11 species. We found evidence for hybridization between various corixid species (Sigara, Callicorixa), but our molecular data also revealed exceptionally high intraspecific distances as a consequence of distinct mitochondrial lineages for Cymatia coleoptrata and the pygmy backswimmer Plea minutissima. Our study clearly demonstrates the usefulness of DNA barcodes for the identification of the aquatic Heteroptera of Germany and adjacent regions. In this context, our data set represents an essential baseline for a reference library for bioassessment studies of freshwater habitats using modern high-throughput technologies in the near future. The existing data also opens new questions regarding the causes of observed low inter- and high intraspecific genetic variation and furthermore highlight the necessity of taxonomic revisions for various taxa, combining both molecular and morphological data.
Collapse
Affiliation(s)
- Nadine Havemann
- Fakultät V, Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany.,German Centre of Marine Biodiversity, Senckenberg Nature Research Society, Wilhelmshaven, Lower Saxony, Germany
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Lars Hendrich
- Sektion Insecta varia, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany
| | - Jèrôme Morinière
- Taxonomic coordinator-German Barcode of Life (GBOL), SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany
| | - Rolf Niedringhaus
- Department of Biology, Earth and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Peter Schäfer
- B.U.G.S. (Biologische Umwelt-Gutachten Schäfer), Telgte, North-Rhine Westphalia, Germany
| | - Michael J Raupach
- Fakultät V, Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany.,German Centre of Marine Biodiversity, Senckenberg Nature Research Society, Wilhelmshaven, Lower Saxony, Germany
| |
Collapse
|
20
|
Xu X, Liu F, Ono H, Chen J, Kuntner M, Li D. Targeted sampling in Ryukyus facilitates species delimitation of the primitively segmented spider genus Ryuthela (Araneae: Mesothelae: Liphistiidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Yusseff-Vanegas SZ, Agnarsson I. DNA-barcoding of forensically important blow flies (Diptera: Calliphoridae) in the Caribbean Region. PeerJ 2017; 5:e3516. [PMID: 28761780 PMCID: PMC5531032 DOI: 10.7717/peerj.3516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
Correct identification of forensically important insects, such as flies in the family Calliphoridae, is a crucial step for them to be used as evidence in legal investigations. Traditional identification based on morphology has been effective, but has some limitations when it comes to identifying immature stages of certain species. DNA-barcoding, using COI, has demonstrated potential for rapid and accurate identification of Calliphoridae, however, this gene does not reliably distinguish among some recently diverged species, raising questions about its use for delimitation of species of forensic importance. To facilitate DNA based identification of Calliphoridae in the Caribbean we developed a vouchered reference collection from across the region, and a DNA sequence database, and further added the nuclear ITS2 as a second marker to increase accuracy of identification through barcoding. We morphologically identified freshly collected specimens, did phylogenetic analyses and employed several species delimitation methods for a total of 468 individuals representing 19 described species. Our results show that combination of COI + ITS2 genes yields more accurate identification and diagnoses, and better agreement with morphological data, than the mitochondrial barcodes alone. All of our results from independent and concatenated trees and most of the species delimitation methods yield considerably higher diversity estimates than the distance based approach and morphology. Molecular data support at least 24 distinct clades within Calliphoridae in this study, recovering substantial geographic variation for Lucilia eximia, Lucilia retroversa, Lucilia rica and Chloroprocta idioidea, probably indicating several cryptic species. In sum, our study demonstrates the importance of employing a second nuclear marker for barcoding analyses and species delimitation of calliphorids, and the power of molecular data in combination with a complete reference database to enable identification of taxonomically and geographically diverse insects of forensic importance.
Collapse
Affiliation(s)
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
22
|
Wang ZL, Yang XQ, Wang TZ, Yu X. Assessing the effectiveness of mitochondrial COI and 16S rRNA genes for DNA barcoding of farmland spiders in China. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:695-702. [PMID: 28712321 DOI: 10.1080/24701394.2017.1350949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA barcoding has been widely used to identify and discover new species in a wide range of taxa. In order to assess the effectiveness of COI (cytochrome C oxidase subunit I) and 16S (16S ribosomal RNA) in the discrimination of spiders, we have generated 289 barcodes for a total of 56 farmland spider species from 14 different families for the first time in China. Our results reveal that the standard barcoding marker COI can be used to distinguish the farmland spiders both in species and family level by NJ tree-based method, despite the absence of a barcode gap between the intra- and inter-specific genetic divergences. 16S has a lower species identification success as compared with COI. However, almost 98% of the species can be correctly distinguished for both COI and 16S when a threshold of 3% nucleotide divergence was used for species discrimination. Our study significantly improves the barcode reference sequence library for Chinese farmland spiders, and will be very useful in pest management and eco-environmental monitoring and protection.
Collapse
Affiliation(s)
- Zheng Liang Wang
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| | - Xiao Qing Yang
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| | - Tian Zhao Wang
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| | - Xiaoping Yu
- a Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang , People's Republic of China
| |
Collapse
|
23
|
Astrin JJ, Höfer H, Spelda J, Holstein J, Bayer S, Hendrich L, Huber BA, Kielhorn KH, Krammer HJ, Lemke M, Monje JC, Morinière J, Rulik B, Petersen M, Janssen H, Muster C. Towards a DNA Barcode Reference Database for Spiders and Harvestmen of Germany. PLoS One 2016; 11:e0162624. [PMID: 27681175 PMCID: PMC5040438 DOI: 10.1371/journal.pone.0162624] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/25/2016] [Indexed: 01/05/2023] Open
Abstract
As part of the German Barcode of Life campaign, over 3500 arachnid specimens have been collected and analyzed: ca. 3300 Araneae and 200 Opiliones, belonging to almost 600 species (median: 4 individuals/species). This covers about 60% of the spider fauna and more than 70% of the harvestmen fauna recorded for Germany. The overwhelming majority of species could be readily identified through DNA barcoding: median distances between closest species lay around 9% in spiders and 13% in harvestmen, while in 95% of the cases, intraspecific distances were below 2.5% and 8% respectively, with intraspecific medians at 0.3% and 0.2%. However, almost 20 spider species, most notably in the family Lycosidae, could not be separated through DNA barcoding (although many of them present discrete morphological differences). Conspicuously high interspecific distances were found in even more cases, hinting at cryptic species in some instances. A new program is presented: DiStats calculates the statistics needed to meet DNA barcode release criteria. Furthermore, new generic COI primers useful for a wide range of taxa (also other than arachnids) are introduced.
Collapse
Affiliation(s)
- Jonas J. Astrin
- ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
- * E-mail: (JJA); (HH); (JS); (JH)
| | - Hubert Höfer
- SMNK: Staatliches Museum für Naturkunde Karlsruhe, Karlsruhe, Germany
- * E-mail: (JJA); (HH); (JS); (JH)
| | - Jörg Spelda
- ZSM: Zoologische Staatssammlung München, München, Germany
- * E-mail: (JJA); (HH); (JS); (JH)
| | - Joachim Holstein
- SMNS: Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
- * E-mail: (JJA); (HH); (JS); (JH)
| | - Steffen Bayer
- SMNK: Staatliches Museum für Naturkunde Karlsruhe, Karlsruhe, Germany
| | - Lars Hendrich
- ZSM: Zoologische Staatssammlung München, München, Germany
| | | | | | | | | | - Juan Carlos Monje
- SMNS: Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | | | - Björn Rulik
- ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Malte Petersen
- ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Hannah Janssen
- ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Christoph Muster
- Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| |
Collapse
|