1
|
Reynolds SD, Franklin CE, Norman BM, Richardson AJ, Everett JD, Schoeman DS, White CR, Lawson CL, Pierce SJ, Rohner CA, Bach SS, Comezzi FG, Diamant S, Jaidah MY, Robinson DP, Dwyer RG. Effects of climate warming on energetics and habitat of the world's largest marine ectotherm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175832. [PMID: 39197762 DOI: 10.1016/j.scitotenv.2024.175832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Responses of organisms to climate warming are variable and complex. Effects on species distributions are already evident and mean global surface ocean temperatures are likely to warm by up to 4.1 °C by 2100, substantially impacting the physiology and distributions of ectotherms. The largest marine ectotherm, the whale shark Rhincodon typus, broadly prefers sea surface temperatures (SST) ranging from 23 to 30 °C. Whole-species distribution models have projected a poleward range shift under future scenarios of climate change, but these models do not consider intraspecific variation or phenotypic plasticity in thermal limits when modelling species responses, and the impact of climate warming on the energetic requirements of whale sharks is unknown. Using a dataset of 111 whale shark movement tracks from aggregation sites in five countries across the Indian Ocean and the latest Earth-system modelling produced from Coupled Model Intercomparison Project Phase 6 for the Intergovernmental Panel on Climate Change, we examined how SST and total zooplankton biomass, their main food source, may change in the future, and what this means for the energetic balance and extent of suitable habitat for whale sharks. Earth System Models, under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP3-7.0 and SSP5-8.5), project that by 2100 mean SST in four regions where whale shark aggregations are found will increase by up to 4.9 °C relative to the present, while zooplankton biomass will decrease. This reduction in zooplankton is projected to be accompanied by an increase in the energetic requirements of whale sharks because warmer water temperatures will increase their metabolic rate. We found marked differences in projected changes in the extent of suitable habitat when comparing a whole-species distribution model to one including regional variation. This suggests that the conventional approach of combining data from different regions within a species' distribution could underestimate the amount of local adaptation in populations, although parameterising local models could also suffer from having insufficient data and lead to model mis-specification or highly uncertain estimates. Our study highlights the need for further research into whale shark thermal tolerances and energetics, the complexities involved in projecting species responses to climate change, and the potential importance of considering intraspecific variation when building species distribution models.
Collapse
Affiliation(s)
- Samantha D Reynolds
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia; ECOCEAN Inc., 162/3 Powell Rd, Coogee, WA, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, Australia.
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Bradley M Norman
- ECOCEAN Inc., 162/3 Powell Rd, Coogee, WA, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Anthony J Richardson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia; Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, AUSTRALIA
| | - Jason D Everett
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, AUSTRALIA; Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW, Australia
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology, and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia; Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - Craig R White
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, VIC, Australia
| | - Christopher L Lawson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Simon J Pierce
- Marine Megafauna Foundation, West Palm Beach, FL, USA; School of Science, Technology and Engineering, The University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | | | - Steffen S Bach
- Ramboll, Copenhagen, Denmark; Qatar Whale Shark Research Project, Doha, Qatar
| | - Francesco G Comezzi
- Department of Natural Resources and Environment Tasmania, Marine Resources, Hobart, Tasmania, Australia
| | - Stella Diamant
- Marine Megafauna Foundation, West Palm Beach, FL, USA; Madagascar Whale Shark Project, Nosy Be, Madagascar
| | | | - David P Robinson
- Qatar Whale Shark Research Project, Doha, Qatar; Sundive Research, Byron Bay, New South Wales, Australia
| | - Ross G Dwyer
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
2
|
Wosnick N, Schneider EVC. Expanding records of occurrence of the whale shark (Rhincodon typus) in The Bahamas and a call for sustainable tourism practices. JOURNAL OF FISH BIOLOGY 2024; 104:1940-1946. [PMID: 38551100 DOI: 10.1111/jfb.15740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024]
Abstract
This report updates our understanding of whale shark occurrences in The Bahamas by drawing upon a variety of data sources. Our findings reveal previously unreported sighting locations, often associated with tourism activities, underscoring the pivotal role played by nontraditional data sources in addressing knowledge gaps. These revelations emphasize the ongoing necessity for monitoring efforts. Additionally, we have found cases that raise concerns related to unregulated human-shark interactions in the region, highlighting the pressing need for sustainable tourism practices within Bahamian waters.
Collapse
Affiliation(s)
- Natascha Wosnick
- Cape Eleuthera Institute, Eleuthera, The Bahamas
- Programa de Pós-graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | | |
Collapse
|
3
|
D'Antonio B, Ferreira LC, Meekan M, Thomson PG, Lieber L, Virtue P, Power C, Pattiaratchi CB, Brierley AS, Sequeira AMM, Thums M. Links between the three-dimensional movements of whale sharks (Rhincodon typus) and the bio-physical environment off a coral reef. MOVEMENT ECOLOGY 2024; 12:10. [PMID: 38297368 PMCID: PMC10829290 DOI: 10.1186/s40462-024-00452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Measuring coastal-pelagic prey fields at scales relevant to the movements of marine predators is challenging due to the dynamic and ephemeral nature of these environments. Whale sharks (Rhincodon typus) are thought to aggregate in nearshore tropical waters due to seasonally enhanced foraging opportunities. This implies that the three-dimensional movements of these animals may be associated with bio-physical properties that enhance prey availability. To date, few studies have tested this hypothesis. METHODS Here, we conducted ship-based acoustic surveys, net tows and water column profiling (salinity, temperature, chlorophyll fluorescence) to determine the volumetric density, distribution and community composition of mesozooplankton (predominantly euphausiids and copepods) and oceanographic properties of the water column in the vicinity of whale sharks that were tracked simultaneously using satellite-linked tags at Ningaloo Reef, Western Australia. Generalised linear mixed effect models were used to explore relationships between the 3-dimensional movement behaviours of tracked sharks and surrounding prey fields at a spatial scale of ~ 1 km. RESULTS We identified prey density as a significant driver of horizontal space use, with sharks occupying areas along the reef edge where densities were highest. These areas were characterised by complex bathymetry such as reef gutters and pinnacles. Temperature and salinity profiles revealed a well-mixed water column above the height of the bathymetry (top 40 m of the water column). Regions of stronger stratification were associated with reef gutters and pinnacles that concentrated prey near the seabed, and entrained productivity at local scales (~ 1 km). We found no quantitative relationship between the depth use of sharks and vertical distributions of horizontally averaged prey density. Whale sharks repeatedly dove to depths where spatially averaged prey concentration was highest but did not extend the time spent at these depth layers. CONCLUSIONS Our work reveals previously unrecognized complexity in interactions between whale sharks and their zooplankton prey.
Collapse
Affiliation(s)
- Ben D'Antonio
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia.
| | - Luciana C Ferreira
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia
| | - Mark Meekan
- The Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Paul G Thomson
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Lilian Lieber
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Patti Virtue
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- CSIRO Environment, Battery Point, TAS, 7004, Australia
| | - Chloe Power
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Charitha B Pattiaratchi
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Andrew S Brierley
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St Andrews, KY16 8LB, Scotland, UK
| | - Ana M M Sequeira
- The Oceans Institute, University of Western Australia, Perth, WA, Australia
- Research School of Biology, Division of Ecology and Evolution, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Michele Thums
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Sudre F, Hernández-Carrasco I, Mazoyer C, Sudre J, Dewitte B, Garçon V, Rossi V. An ocean front dataset for the Mediterranean sea and southwest Indian ocean. Sci Data 2023; 10:730. [PMID: 37865643 PMCID: PMC10590416 DOI: 10.1038/s41597-023-02615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023] Open
Abstract
Fronts are ubiquitous discrete features of the global ocean often associated with enhanced vertical velocities, in turn boosting primary production. Fronts thus form dynamical and ephemeral ecosystems where numerous species meet across all trophic levels. Fronts are also targeted by fisheries. Capturing ocean fronts and studying their long-term variability in relation with climate change is thus key for marine resource management and spatial planning. The Mediterranean Sea and the Southwest Indian Ocean are natural laboratories to study front-marine life interactions due to their energetic flow at sub-to-mesoscales, high biodiversity (including endemic and endangered species) and numerous conservation initiatives. Based on remotely-sensed Sea Surface Temperature and Height, we compute thermal fronts (2003-2020) and attracting Lagrangian coherent structures (1994-2020), in both regions over several decades. We advocate for the combined use of both thermal fronts and attracting Lagrangian coherent structures to study front-marine life interactions. The resulting front dataset differs from other alternatives by its high spatio-temporal resolution, long time coverage, and relevant thresholds defined for ecological provinces.
Collapse
Affiliation(s)
- Floriane Sudre
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - Ismael Hernández-Carrasco
- Mediterranean Institute for Advanced Studies (UIB-CSIC), Miquel Marques, 21, Esporles, 07190, Balearic Islands, Spain
| | - Camille Mazoyer
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Joel Sudre
- UAR 2013 CPST, IR DATA TERRA, Z.P. de Brégaillon - CS 20330, 83507, Montpellier, La Seyne Sur Mer, France
| | - Boris Dewitte
- Centro de Estudios Avanzados en Zonas Aridas, Facultad de Ciencias del Mar, Universidad Catolica del Norte, Coquimbo, Chile
- Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
- Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Faculty of Marine Sciences, Catholic University of the North, Coquimbo, Chile
- UMR5318 Climat, Environnement, Couplages et Incertitudes (CECI), Toulouse, France
| | | | - Vincent Rossi
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| |
Collapse
|
5
|
|
6
|
Kelchner H, Reeve-Arnold KE, Schreiner KM, Bargu S, Roques KG, Errera RM. Domoic Acid and Pseudo-nitzschia spp. Connected to Coastal Upwelling along Coastal Inhambane Province, Mozambique: A New Area of Concern. Toxins (Basel) 2021; 13:903. [PMID: 34941740 PMCID: PMC8704230 DOI: 10.3390/toxins13120903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Harmful algal blooms (HABs) are increasing globally in frequency, persistence, and geographic extent, posing a threat to ecosystem and human health. To date, no occurrences of marine phycotoxins have been recorded in Mozambique, which may be due to absence of a monitoring program and general awareness of potential threats. This study is the first documentation of neurotoxin, domoic acid (DA), produced by the diatom Pseudo-nitzschia along the east coast of Africa. Coastal Inhambane Province is a biodiversity hotspot where year-round Rhincodon typus (whale shark) sightings are among the highest globally and support an emerging ecotourism industry. Links between primary productivity and biodiversity in this area have not previously been considered or reported. During a pilot study, from January 2017 to April 2018, DA was identified year-round, peaking during Austral winter. During an intense study between May and August 2018, our research focused on identifying environmental factors influencing coastal productivity and DA concentration. Phytoplankton assemblage was diatom-dominated, with high abundances of Pseudo-nitzschia spp. Data suggest the system was influenced by nutrient pulses resulting from coastal upwelling. Continued and comprehensive monitoring along southern Mozambique would provide critical information to assess ecosystem and human health threats from marine toxins under challenges posed by global change.
Collapse
Affiliation(s)
- Holly Kelchner
- School of Renewable Natural Resources, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA 70803, USA;
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI 48108, USA
| | - Katie E. Reeve-Arnold
- All Out Africa Marine Research Centre, Praia do Tofo, Inhambane 1300, Mozambique; (K.E.R.-A.); (K.G.R.)
| | - Kathryn M. Schreiner
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MI 55812, USA;
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Sibel Bargu
- Department of Oceanography and Coastal Sciences, College of Coast and Environment, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA 70803, USA;
| | - Kim G. Roques
- All Out Africa Marine Research Centre, Praia do Tofo, Inhambane 1300, Mozambique; (K.E.R.-A.); (K.G.R.)
| | - Reagan M. Errera
- School of Renewable Natural Resources, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA 70803, USA;
- National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, USA
| |
Collapse
|
7
|
Guillaume MMM, Séret B. Observations of sharks (Elasmobranchii) at Europa Island, a remote marine protected area important for shark conservation in the southern Mozambique Channel. PLoS One 2021; 16:e0253867. [PMID: 34610033 PMCID: PMC8491881 DOI: 10.1371/journal.pone.0253867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sharks have declined worldwide and remote sanctuaries are becoming crucial for shark conservation. The southwest Indian Ocean is a hotspot of both terrestrial and marine biodiversity mostly impacted by anthropogenic damage. Sharks were observed during surveys performed from April to June 2013 in the virtually pristine coral reefs around Europa Island, a remote Marine Protected Area located in the southern Mozambique Channel. Observation events comprised 67 1-hour scientific dives between 5 – 35m depth and 7 snorkeling inspections, as well as 4 dinghy-based observations in the shallow lagoon. In a period of 24 days, 475 sharks were tallied. Carcharhinus galapagensis was most encountered and contributed 20% of the abundance during diving, followed by C. albimarginatus (10%). Both species were more abundant between 11-14h, and on the exposed sides of the island. Numbers of Sphyrna lewini were highest with 370 individuals windward and leeward, mostly schooling. S. lewini aggregations in the area are hypothesized to be attracted to the seamount archipelago offering favorable conditions for deep incursions and of which Europa Island forms part. C. amblyrhynchos, Galeocerdo cuvier and S. mokarran were uncommon, while there was an additional observation of Rhincodon typus. The lagoon of Europa was a nursery ground for C. melanopterus where it was the only species present. A total of 8 species was recorded, contributing to the shark diversity of 15 species reported from Europa since 1952 in the scientific and gray literature. Overall, with the occurrence of several species of apex predators in addition to that of R. typus, large schools of S. lewini, fair numbers of reef sharks and a nursery of C. melanopterus, Europa’s sharks constitute a significant reservoir of biodiversity, which contributes to preserve the functioning of the ecosystem. Our observations highlight the relevance of Europa Island for shark conservation and the need for shark-targeted management in the EEZ of both Europa and Bassas da India.
Collapse
Affiliation(s)
- Mireille M. M. Guillaume
- Laboratoire BOrEA MNHN-SU-CNRS-IRD-UCN-UA EcoFunc, Aviv, Muséum National d’Histoire Naturelle, Paris, France
- Laboratoire d’Excellence CORAIL, Perpignan, France
- * E-mail:
| | | |
Collapse
|
8
|
Rohner CA, Bealey R, Fulanda BM, Everett JD, Richardson AJ, Pierce SJ. Movement ecology of black marlin Istiompax indica in the Western Indian Ocean. JOURNAL OF FISH BIOLOGY 2021; 99:1044-1059. [PMID: 34050533 PMCID: PMC8518400 DOI: 10.1111/jfb.14809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/06/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The black marlin Istiompax indica is an apex marine predator and is susceptible to overfishing. The movement ecology of the species remains poorly known, particularly within the Indian Ocean, which has hampered assessment of their conservation status and fisheries management requirements. Here, we used pop-up archival satellite tags to track I. indica movement and examine their dispersal. Forty-nine tags were deployed off Kenya during both the north-east (November-April) and south-west (August-September) monsoon seasons, providing locations from every month of the year. Individual I. indica were highly mobile and track distance correlated with the duration of tag attachment. Mean track duration was 38 days and mean track distance was >1800 km. Individuals dispersed in several directions: north-east into Somalian waters and up to northern Oman, east towards the Seychelles, and south into the Mozambique Channel. Their core habitat shifted seasonally and overlapped with areas of high productivity off Kenya, Somalia and Oman during the first half of the year. A second annual aggregation off the Kenyan coast, during August and September, did not coincide with high chlorophyll-a (chl-a) concentrations or thermal fronts, and the drivers of the species' presence and movement from this second aggregation was unclear. We tested their habitat preferences by comparing environmental conditions at track locations to the conditions at locations along simulated tracks based on the empirical data. Observed I. indica preferred cooler water with higher chl-a concentrations and stayed closer to the coast than simulated tracks. The rapid and extensive dispersal of I. indica from Kenya suggests that there is likely a single stock in the Western Indian Ocean, with individuals swimming between areas of high commercial catches off northern Somalia and Oman, and artisanal and recreational fisheries catches throughout East Africa and Mozambique.
Collapse
Affiliation(s)
| | - Roy Bealey
- Pelagic Fisheries Consulting LtdGranthamUK
| | | | - Jason D. Everett
- School of Mathematics and PhysicsThe University of QueenslandSt LuciaQueenslandAustralia
- Commonwealth Scientific and Industrial Research Organisation, Oceans and AtmosphereBiosciences PrecinctSt LuciaQueenslandAustralia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Anthony J. Richardson
- School of Mathematics and PhysicsThe University of QueenslandSt LuciaQueenslandAustralia
- Commonwealth Scientific and Industrial Research Organisation, Oceans and AtmosphereBiosciences PrecinctSt LuciaQueenslandAustralia
| | | |
Collapse
|
9
|
Andrzejaczek S, Vély M, Jouannet D, Rowat D, Fossette S. Regional movements of satellite-tagged whale sharks Rhincodon typus in the Gulf of Aden. Ecol Evol 2021; 11:4920-4934. [PMID: 33976859 PMCID: PMC8093710 DOI: 10.1002/ece3.7400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/06/2022] Open
Abstract
To gain insight into whale shark (Rhincodon typus) movement patterns in the Western Indian Ocean, we deployed eight pop-up satellite tags at an aggregation site in the Arta Bay region of the Gulf of Tadjoura, Djibouti in the winter months of 2012, 2016, and 2017. Tags revealed movements ranging from local-scale around the Djibouti aggregation site, regional movements along the coastline of Somaliland, movements north into the Red Sea, and a large-scale (>1,000 km) movement to the east coast of Somalia, outside of the Gulf of Aden. Vertical movement data revealed high occupation of the top ten meters of the water column, diel vertical movement patterns, and deep diving behavior. Long-distance movements recorded both here and in previous studies suggest that connectivity between the whale sharks tagged at the Djibouti aggregation and other documented aggregations in the region are likely within annual timeframes. In addition, wide-ranging movements through multiple nations, as well as the high use of surface waters recorded, likely exposes whale sharks in this region to several anthropogenic threats, including targeted and bycatch fisheries and ship-strikes. Area-based management approaches focusing on seasonal hotspots offer a way forward in the conservation of whale sharks in the Western Indian Ocean.
Collapse
Affiliation(s)
| | | | | | - David Rowat
- Marine Conservation Society SeychellesMaheSeychelles
| | - Sabrina Fossette
- MegapteraParisFrance
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsKensingtonWAAustralia
| |
Collapse
|
10
|
Changes in diving behaviour and habitat use of provisioned whale sharks: implications for management. Sci Rep 2020; 10:16951. [PMID: 33046780 PMCID: PMC7550605 DOI: 10.1038/s41598-020-73416-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Whale shark (Rhincodon typus) tourism is increasingly popular at predictable aggregations around the world, but only a few use provisioning to ensure close interactions. Understanding the effects of provisioning on the behaviour of this endangered species is critical to manage this growing industry. We recorded the diving behaviour and habitat use of juvenile whale sharks (n = 4) for a mean of 49.5 provisioned and 33.8 non-provisioned days using temperature-depth-recorders. We found that time spent at the surface (< 2 m) between 6 am and 1 pm increased ~ sixfold, while timing of deep dives shifted from 4–10 am to 10 am–2 pm, i.e. near or at the end of the provisioning activities. The shift might be related to a need to thermoregulate following a prolonged period of time in warmer water. These changes could have fitness implications for individuals frequently visiting the provisioning site. Based on recorded amount of time spent in warm waters and published Q10 values for ectotherms, we estimate a 7.2 ± 3.7% (range 1.3–17.8%) higher metabolic rate when sharks frequent the provisioning site. The observed behavioural, habitat use, and potential fitness shifts should be considered when developing guidelines for sustainable tourism, particularly in light of new provisioning sites developing elsewhere.
Collapse
|
11
|
Armstrong AJ, Armstrong AO, McGregor F, Richardson AJ, Bennett MB, Townsend KA, Hays GC, van Keulen M, Smith J, Dudgeon CL. Satellite Tagging and Photographic Identification Reveal Connectivity Between Two UNESCO World Heritage Areas for Reef Manta Rays. FRONTIERS IN MARINE SCIENCE 2020; 7. [PMID: 0 DOI: 10.3389/fmars.2020.00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
12
|
Dolton HR, Gell FR, Hall J, Hall G, Hawkes LA, Witt MJ. Assessing the importance of Isle of Man waters for the basking shark Cetorhinus maximus. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Satellite tracking of endangered or threatened animals can facilitate informed conservation by revealing priority areas for their protection. Basking sharks Cetorhinus maximus (n = 11) were tagged during the summers of 2013, 2015, 2016 and 2017 in the Isle of Man (IoM; median tracking duration 378 d, range: 89-804 d; median minimum straight-line distance travelled 541 km, range: 170-10406 km). Tracking revealed 3 movement patterns: (1) coastal movements within IoM and Irish waters, (2) summer northward movements to Scotland and (3) international movements to Morocco and Norway. One tagged shark was bycaught and released alive in the Celtic Sea. Basking sharks displayed inter-annual site fidelity to the Irish Sea (n = 3), a Marine Nature Reserve (MNR) in IoM waters (n = 1), and Moroccan waters (n = 1). Core distribution areas (50% kernel density estimation) of 5 satellite tracked sharks in IoM waters were compared with 3902 public sightings between 2005 and 2017, highlighting west and south coast hotspots. Location data gathered from satellite tagging broadly correspond to the current boundaries of MNRs in IoM waters. However, minor modifications of some MNR boundaries would incorporate ~20% more satellite tracking location data from this study, and protective measures for basking sharks in IoM waters could further aid conservation of the species at local, regional and international scales. We also show the first documented movement of a basking shark from the British Isles to Norway, and the longest ever track for a tagged basking shark (2 yr and 2 mo, 804 d).
Collapse
Affiliation(s)
- HR Dolton
- University of Exeter College of Life and Environmental Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
- University of Exeter, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, UK
| | - FR Gell
- Department of Environment, Food and Agriculture, Thie Slieau Whallian, Foxdale Road, St John’s IM4 3AS, Isle of Man
| | - J Hall
- Manx Basking Shark Watch, Glenchass Farmhouse, Port St Mary IM9 5PJ, Isle of Man
| | - G Hall
- Manx Basking Shark Watch, Glenchass Farmhouse, Port St Mary IM9 5PJ, Isle of Man
| | - LA Hawkes
- University of Exeter College of Life and Environmental Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| | - MJ Witt
- University of Exeter College of Life and Environmental Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
- University of Exeter, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
13
|
Araujo G, Agustines A, Tracey B, Snow S, Labaja J, Ponzo A. Photo-ID and telemetry highlight a global whale shark hotspot in Palawan, Philippines. Sci Rep 2019; 9:17209. [PMID: 31748588 PMCID: PMC6868279 DOI: 10.1038/s41598-019-53718-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
The Philippines is home to the second largest known population of whale sharks in the world. The species is listed as endangered due to continued population declines in the Indo-Pacific. Knowledge about the connectivity within Southeast Asia remains poor, and thus international management is difficult. Here, we employed pop-up archival tags, data mining and dedicated effort to understand an aggregation of whale sharks at Honda Bay, Palawan, Philippines, and its role in the species' conservation. Between Apr and Oct 2018, we conducted 159 surveys identifying 117 individual whale sharks through their unique spot patterns (96.5% male, mean 4.5 m). A further 66 individual whale sharks were identified from local operators, and data mined on social media platforms. The satellite telemetry data showed that the whale sharks moved broadly, with one individual moving to Sabah, Malaysia, before returning to the site <1 year later. Similarly, another tagged whale shark returned to the site at a similar periodicity after reaching the Malay-Filipino border. One individual whale shark first identified in East Kalimantan, Indonesia by a citizen scientist was resighted in Honda Bay ~3.5 years later. Honda Bay is a globally important site for the endangered whale shark with connectivity to two neighbouring countries, highlighting the need for international cooperation to manage the species.
Collapse
Affiliation(s)
- Gonzalo Araujo
- Large Marine Vertebrates Research Institute Philippines, Cagulada Compound, Jagna, 6308, Bohol, Philippines.
| | - Ariana Agustines
- Large Marine Vertebrates Research Institute Philippines, Cagulada Compound, Jagna, 6308, Bohol, Philippines
| | - Brian Tracey
- Large Marine Vertebrates Research Institute Philippines, Cagulada Compound, Jagna, 6308, Bohol, Philippines
| | - Sally Snow
- Large Marine Vertebrates Research Institute Philippines, Cagulada Compound, Jagna, 6308, Bohol, Philippines
| | - Jessica Labaja
- Large Marine Vertebrates Research Institute Philippines, Cagulada Compound, Jagna, 6308, Bohol, Philippines
| | - Alessandro Ponzo
- Large Marine Vertebrates Research Institute Philippines, Cagulada Compound, Jagna, 6308, Bohol, Philippines
| |
Collapse
|
14
|
Cochran JEM, Braun CD, Cagua EF, Campbell MF, Hardenstine RS, Kattan A, Priest MA, Sinclair-Taylor TH, Skomal GB, Sultan S, Sun L, Thorrold SR, Berumen ML. Multi-method assessment of whale shark (Rhincodon typus) residency, distribution, and dispersal behavior at an aggregation site in the Red Sea. PLoS One 2019; 14:e0222285. [PMID: 31498848 PMCID: PMC6733483 DOI: 10.1371/journal.pone.0222285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/25/2019] [Indexed: 11/29/2022] Open
Abstract
Whale sharks (Rhincodon typus) are typically dispersed throughout their circumtropical range, but the species is also known to aggregate in specific coastal areas. Accurate site descriptions associated with these aggregations are essential for the conservation of R. typus, an Endangered species. Although aggregations have become valuable hubs for research, most site descriptions rely heavily on sightings data. In the present study, visual census, passive acoustic monitoring, and long range satellite telemetry were combined to track the movements of R. typus from Shib Habil, a reef-associated aggregation site in the Red Sea. An array of 63 receiver stations was used to record the presence of 84 acoustically tagged sharks (35 females, 37 males, 12 undetermined) from April 2010 to May 2016. Over the same period, identification photos were taken for 76 of these tagged individuals and 38 were fitted with satellite transmitters. In total of 37,461 acoustic detections, 210 visual encounters, and 33 satellite tracks were analyzed to describe the sharks’ movement ecology. The results demonstrate that the aggregation is seasonal, mostly concentrated on the exposed side of Shib Habil, and seems to attract sharks of both sexes in roughly equal numbers. The combined methodologies also tracked 15 interannual homing-migrations, demonstrating that many sharks leave the area before returning in later years. When compared to acoustic studies from other aggregations, these results demonstrate that R. typus exhibits diverse, site-specific ecologies across its range. Sightings-independent data from acoustic telemetry and other sources are an effective means of validating more common visual surveys.
Collapse
Affiliation(s)
- Jesse E. M. Cochran
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- * E-mail:
| | - Camrin D. Braun
- Massachusetts Institute of Technology–Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA, United States of America
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - E. Fernando Cagua
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag, Christchurch, New Zealand
| | - Michael F. Campbell
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Royale S. Hardenstine
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Alexander Kattan
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Mark A. Priest
- Marine Spatial Ecology Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Tane H. Sinclair-Taylor
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Gregory B. Skomal
- Massachusetts Division of Marine Fisheries, New Bedford, MA, United States of America
| | - Sahar Sultan
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- School of Biology, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Lu Sun
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Simon R. Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Barkley AN, Gollock M, Samoilys M, Llewellyn F, Shivji M, Wetherbee B, Hussey NE. Complex transboundary movements of marine megafauna in the Western Indian Ocean. Anim Conserv 2019. [DOI: 10.1111/acv.12493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. N. Barkley
- Biological Sciences University of Windsor Windsor ON Canada
| | - M. Gollock
- Zoological Society of London Regent's Park London England
| | - M. Samoilys
- Coastal Oceans Research and Development – Indian Ocean Mombasa Kenya
| | - F. Llewellyn
- Zoological Society of London Regent's Park London England
| | - M. Shivji
- Guy Harvey Research Institute Department of Biological Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - B. Wetherbee
- Guy Harvey Research Institute Department of Biological Sciences Nova Southeastern University Fort Lauderdale FL USA
- Biological Sciences College of Environment and Life Sciences University of Rhode Island Kingston RI USA
| | - N. E. Hussey
- Biological Sciences University of Windsor Windsor ON Canada
| |
Collapse
|
16
|
Wilson RP, Holton M, Wilson VL, Gunner R, Tysse B, Wilson GI, Quintana F, Duarte C, Scantlebury DM. Towards informed metrics for examining the role of human-induced animal responses in tag studies on wild animals. Integr Zool 2019; 14:17-29. [PMID: 29851254 DOI: 10.1111/1749-4877.12328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Two prime issues can detrimentally affect animals that have been equipped with tags: (i) the effect of the capture and restraint process; and (ii) the effect of the tag itself. This work examines some of the issues surrounding quantification of tag effects on wild animals for both restrained and free-living animals. A new method to quantify stress effects based on monitoring ventilation rates in relation to activity is suggested for restrained animals which may help improve the practice of handling animals. It is also suggested that various metrics, many derived from accelerometers, can be examined in tagged wild animals to examine the change in behaviors over time with a view to having a better understanding of welfare issues, assuring the quality of recorded data and informing best practice.
Collapse
Affiliation(s)
- Rory P Wilson
- Biosciences, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Mark Holton
- Biosciences, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Vianney L Wilson
- Biosciences, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Richard Gunner
- Biosciences, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Brenda Tysse
- Biosciences, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Gwendoline I Wilson
- Department of Geography, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Puerto Madryn, Chubut, Argentina
| | - Carlos Duarte
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - D Michael Scantlebury
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
17
|
Araujo G, Rohner CA, Labaja J, Conales SJ, Snow SJ, Murray R, Pierce SJ, Ponzo A. Satellite tracking of juvenile whale sharks in the Sulu and Bohol Seas, Philippines. PeerJ 2018; 6:e5231. [PMID: 30065862 PMCID: PMC6063259 DOI: 10.7717/peerj.5231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
The whale shark Rhincodon typus was uplisted to ‘Endangered’ in the 2016 IUCN Red List due to >50% population decline, largely caused by continued exploitation in the Indo-Pacific. Though the Philippines protected the whale shark in 1998, concerns remain due to continued take in regional waters. In light of this, understanding the movements of whale sharks in the Philippines, one of the most important hotspots for the species, is vital. We tagged 17 juvenile whale sharks with towed SPOT5 tags from three general areas in the Sulu and Bohol Seas: Panaon Island in Southern Leyte, northern Mindanao, and Tubbataha Reefs Natural Park (TRNP). The sharks all remained in Philippine waters for the duration of tracking (6–126 days, mean 64). Individuals travelled 86–2,580 km (mean 887 km) at a mean horizontal speed of 15.5 ± 13.0 SD km day−1. Whale sharks tagged in Panaon Island and Mindanao remained close to shore but still spent significant time off the shelf (>200 m). Sharks tagged at TRNP spent most of their time offshore in the Sulu Sea. Three of twelve whale sharks tagged in the Bohol Sea moved through to the Sulu Sea, whilst two others moved east through the Surigao Strait to the eastern coast of Leyte. One individual tagged at TRNP moved to northern Palawan, and subsequently to the eastern coast of Mindanao in the Pacific Ocean. Based on inferred relationships with temperature histograms, whale sharks performed most deep dives (>200 m) during the night, in contrast to results from whale sharks elsewhere. While all sharks stayed in national waters, our results highlight the high mobility of juvenile whale sharks and demonstrate their connectivity across the Sulu and Bohol Seas, highlighting the importance of the area for this endangered species.
Collapse
Affiliation(s)
- Gonzalo Araujo
- Large Marine Vertebrates Research Institute Philippines, Jagna, Bohol, Philippines
| | | | - Jessica Labaja
- Large Marine Vertebrates Research Institute Philippines, Jagna, Bohol, Philippines
| | - Segundo J Conales
- Tubbataha Management Office, Puerto Princesa City, Palawan, Philippines
| | - Sally J Snow
- Large Marine Vertebrates Research Institute Philippines, Jagna, Bohol, Philippines
| | - Ryan Murray
- Large Marine Vertebrates Research Institute Philippines, Jagna, Bohol, Philippines
| | - Simon J Pierce
- Marine Megafauna Foundation, Truckee, CA, United States of America
| | - Alessandro Ponzo
- Large Marine Vertebrates Research Institute Philippines, Jagna, Bohol, Philippines
| |
Collapse
|
18
|
Copping JP, Stewart BD, McClean CJ, Hancock J, Rees R. Does bathymetry drive coastal whale shark ( Rhincodon typus) aggregations? PeerJ 2018; 6:e4904. [PMID: 29900072 PMCID: PMC5995094 DOI: 10.7717/peerj.4904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/13/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The whale shark (Rhincodon typus) is known to aggregate in a number of coastal locations globally, however what causes these aggregations to form where they do is largely unknown. This study examines whether bathymetry is an important driver of coastal aggregation locations for R. typus through bathymetry's effect on primary productivity and prey availability. This is a global study taking into account all coastal areas within R. typus' range. METHODS R. typus aggregation locations were identified through an extensive literature review. Global bathymetric data were compared at R. typus aggregation locations and a large random selection of non-aggregation areas. Generalised linear models were used to assess which bathymetric characteristic had the biggest influence on aggregation presence. RESULTS Aggregation sites were significantly shallower than non-aggregation sites and in closer proximity to deep water (the mesopelagic zone) by two orders of magnitude. Slope at aggregation sites was significantly steeper than non-aggregation sites. These three bathymetric variables were shown to have the biggest association with aggregation sites, with up to 88% of deviation explained by the GLMs. DISCUSSION The three key bathymetric characteristics similar at the aggregation sites are known to induce upwelling events, increase primary productivity and consequently attract numerous other filter feeding species. The location of aggregation sites in these key areas can be attributed to this increased prey availability, thought to be the main reason R. typus aggregations occur, extensively outlined in the literature. The proximity of aggregations to shallow areas such as reefs could also be an important factor why whale sharks thermoregulate after deep dives to feed. These findings increase our understanding of whale shark behaviour and may help guide the identification and conservation of further aggregation sites.
Collapse
Affiliation(s)
- Joshua P. Copping
- School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Bryce D. Stewart
- Environment Department, University of York, York, United Kingdom
| | - Colin J. McClean
- Environment Department, University of York, York, United Kingdom
| | - James Hancock
- Maldives Whale Shark Research Programme, York, United Kingdom
| | - Richard Rees
- Maldives Whale Shark Research Programme, York, United Kingdom
| |
Collapse
|
19
|
Diamant S, Rohner CA, Kiszka JJ, Guillemain d’Echon A, Guillemain d’Echon T, Sourisseau E, Pierce SJ. Movements and habitat use of satellite-tagged whale sharks off western Madagascar. ENDANGER SPECIES RES 2018. [DOI: 10.3354/esr00889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|