1
|
Patova A, Ribeiro PA, Murillo FJ, Riesgo A, Taboada S, Pomponi SA, Rapp HT, Kenchington E, Xavier JR. Population genomics and connectivity of Vazella pourtalesii sponge grounds of the northwest Atlantic with conservation implications of deep sea vulnerable marine ecosystems. Sci Rep 2025; 15:1540. [PMID: 39788986 PMCID: PMC11718047 DOI: 10.1038/s41598-024-82462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools. Here, the genetic diversity, structure, and connectivity of the deep-sea glass sponge, Vazella pourtalesii (Schmidt, 1870), was investigated using 1,102 neutral SNPs obtained in RADseq. This species is distributed across the northwest Atlantic from Florida, USA to Nova Scotia, Canada and we sequenced samples covering this full distribution and provided evidence of strong genetic structure with two distinct clusters: Florida together with the Carolina Shelves and the Scotian Shelf. We estimated moderate levels of diversity with low migration across large distances (> 1000 kms) and high connectivity at smaller scales (< 300 kms). Further, fishing pressure on genetic diversity was evaluated, within two Sponge Conservation Areas (SCAs) on the Scotian Shelf. Those areas have different disturbance histories, and cumulative fishing pressure. Slightly lower levels of genetic diversity were found inside the SCAs, and yet they encompassed a high proportion of the diversity observed within the Scotian Shelf. We provide baseline data for future monitoring of the SCAs, discussing our findings in the light of existing area-based management tools.
Collapse
Affiliation(s)
- Anna Patova
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Pedro A Ribeiro
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Francisco J Murillo
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - Ana Riesgo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Calle de José Gutiérrez Abascal, Madrid, Spain
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Sergi Taboada
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Calle de José Gutiérrez Abascal, Madrid, Spain
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias, Universidad Complutense de Madrid, 28049, Madrid, Spain
- Marine Biodiversity Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
| | - Shirley A Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, 34946, USA
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ellen Kenchington
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, B2Y 4A2, Canada
| | - Joana R Xavier
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, 4450-208, Matosinhos, Portugal
| |
Collapse
|
2
|
Recknagel H, Močivnik L, Zakšek V, Luo Y, Kostanjšek R, Trontelj P. Generation of genome-wide SNP markers from minimally invasive sampling in endangered animals and applications in species ecology and conservation. Mol Ecol Resour 2024; 24:e13995. [PMID: 39056440 DOI: 10.1111/1755-0998.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
High-density genotyping methods have revolutionized the field of population and conservation genetics in the past decade. To exploit the technological and analytical advances in the field, access to high-quality genetic material is a key component. However, access to such samples in endangered and rare animals is often challenging or even impossible. Here, we used a minimally invasive sampling method (MIS) in the endangered cave salamander Proteus anguinus, the olm, to generate thousands of genetic markers using ddRADseq for population and conservation genomic analyses. Using tail clips and MIS skin swabs taken from the same individual, we investigated genotyping data properties of the two different sampling types. We found that sufficient DNA can be extracted from swab samples to generate up to 200,000 polymorphic SNPs in divergent Proteus lineages. Swab and tissue samples were highly reproducible exhibiting low SNP genotyping error rates. We found that SNPs were most frequently (~50%) located within genic regions, while the rest mapped to mostly flanking regions of repetitive DNA. The vast majority of DNA recovered from swabbing was host DNA. However, a fraction of DNA recovered from swabs contained additional ecological information on the species, including eDNA from the surrounding environment and bacterial skin fauna. Most exogenous DNA recovered from swabs were bacteria (~80%), followed by vertebrates (~20%). Our results demonstrate that MIS can be used to (i) generate tens of thousands of ddRADseq markers for conservation and population genomic analyses and (ii) inform on the species health status and ecology from exogenous DNA.
Collapse
Affiliation(s)
- Hans Recknagel
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Močivnik
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Zakšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | - Rok Kostanjšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Trontelj
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Sirsi S, Rodriguez D, Forstner MRJ. Using genome-wide data to ascertain taxonomic status and assess population genetic structure for Houston toads (Bufo [= Anaxyrus] houstonensis). Sci Rep 2024; 14:3306. [PMID: 38332325 PMCID: PMC10853240 DOI: 10.1038/s41598-024-53705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The Houston toad (Bufo [= Anaxyrus] houstonensis) is an endangered amphibian with a small geographic range. Land-use changes have primarily driven decline in B. houstonensis with population supplementation predominant among efforts to reduce its current extinction risk. However, there has been historic uncertainty regarding the evolutionary and conservation significance of B. houstonensis. To this end, we used 1170 genome-wide nuclear DNA markers to examine phylogenetic relationships between our focal taxon, representatives of the Nearctic B. americanus group, and B. nebulifer, a sympatric Middle American species. Phylogenetic analyses indicate B. houstonensis is a taxon that is distinct from B. americanus. We corroborated such genetic distinctiveness with an admixture analysis that provided support for recent reproductive isolation between B. americanus and B. houstonensis. However, ABBA-BABA tests for ancient admixture indicated historic gene flow between Nearctic species while no signal of historic gene flow was detected between Nearctic and Middle-American species. We used an admixture analysis to recognize four Management Units (MU) based on observed genetic differentiation within B. houstonensis and recommend captive propagation, population supplementation, and habitat restoration efforts specific to each MU. Our results re-affirm the evolutionary novelty of an endangered relict.
Collapse
Affiliation(s)
- Shashwat Sirsi
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - David Rodriguez
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Michael R J Forstner
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
4
|
Iwasa-Arai T, Siqueira SGL, Sobral-Souza T, Leite FPP, Andrade SCS. Continent-island boundary and environment-shaped evolution in the marine amphipod Ampithoe marcuzzii complex (Crustacea: Eumalacostraca: Ampithoidae). Sci Rep 2024; 14:608. [PMID: 38182880 PMCID: PMC10770051 DOI: 10.1038/s41598-023-51049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Marine amphipods are crustaceans that lack a larval phase and consequently have low dispersion rates. Despite that, these crustaceans present a remarkable ability to be transported by rafting on natural floating substrata, especially macroalgae, where they find shelter, food and a mating ground. The species Ampithoe marcuzzii is widely distributed throughout the western Atlantic Ocean. Here, it was used as a model to study seascape genomics and phylogeography in invertebrates with low dispersion capacities. We anticipated that the lineages would present isolation-by-distance patterns. However, surface currents and other abiotic variables could facilitate connectivity among distant sites. Based on mitochondrial and nuclear genes, SNPs, and environmental associations, we observed the presence of a species complex within A. marcuzzii, separating mainland and insular populations. Each species showed an independent evolutionary history, with a strong latitudinal population structure and evidence of isolation-by-distance and isolation-by-environment, characterizing the 'continent' species. Historical expansion and environmental variables were observed associated with the southeastern population, and ecological niche modeling corroborated the region as a paleorefuge. Conversely, populations from 'islands' presented complicated evolutionary histories, with closer localities genetically isolated and distant localities connected. These findings indicate that insular populations with low dispersion capacity might be more susceptible to spatial connectivity by floating substrata and to changes in surface currents. In contrast, mainland populations might be more vulnerable to local climate changes due to lack of gene flow.
Collapse
Affiliation(s)
- Tammy Iwasa-Arai
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Silvana G L Siqueira
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Thadeu Sobral-Souza
- Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | - Fosca P P Leite
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Lopes F, Oliveira LR, Beux Y, Kessler A, Cárdenas-Alayza S, Majluf P, Páez-Rosas D, Chaves J, Crespo E, Brownell RL, Baylis AMM, Sepúlveda M, Franco-Trecu V, Loch C, Robertson BC, Peart CR, Wolf JBW, Bonatto SL. Genomic evidence for homoploid hybrid speciation in a marine mammal apex predator. SCIENCE ADVANCES 2023; 9:eadf6601. [PMID: 37134171 PMCID: PMC10156116 DOI: 10.1126/sciadv.adf6601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hybridization is widespread and constitutes an important source of genetic variability and evolution. In animals, its role in generating novel and independent lineages (hybrid speciation) has been strongly debated, with only a few cases supported by genomic data. The South American fur seal (SAfs) Arctocephalus australis is a marine apex predator of Pacific and Atlantic waters, with a disjunct set of populations in Peru and Northern Chile [Peruvian fur seal (Pfs)] with controversial taxonomic status. We demonstrate, using complete genome and reduced representation sequencing, that the Pfs is a genetically distinct species with an admixed genome that originated from hybridization between the SAfs and the Galapagos fur seal (Arctocephalus galapagoensis) ~400,000 years ago. Our results strongly support the origin of Pfs by homoploid hybrid speciation over alternative introgression scenarios. This study highlights the role of hybridization in promoting species-level biodiversity in large vertebrates.
Collapse
Affiliation(s)
- Fernando Lopes
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Laboratório de Ecologia de Mamíferos, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Larissa R Oliveira
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS), Torres, Brazil
| | - Yago Beux
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Amanda Kessler
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Susana Cárdenas-Alayza
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Patricia Majluf
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Diego Páez-Rosas
- Colegio de Ciencias Biológicas y Ambientales, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
- Dirección del Parque Nacional Galápagos, Oficina Técnica San Cristobal, Islas Galápagos, Ecuador
| | - Jaime Chaves
- Colegio de Ciencias Biológicas y Ambientales, COCIBA, Universidad San Francisco de Quito, Quito, Ecuador
- Galapagos Science Center, Puerto Baquerizo Moreno, Ecuador
- Department of Biology, San Francisco State University, 1800 Holloway Ave, San Francisco, CA, USA
| | - Enrique Crespo
- Laboratório de Mamíferos Marinos, CESIMAR - CCT CENPAT, CONICET, Puerto Madryn, Argentina
| | - Robert L Brownell
- Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA, USA
| | | | - Maritza Sepúlveda
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentina Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | - Claire R Peart
- Division of Evolutionary Biology, LMU Munich, München, Germany
| | - Jochen B W Wolf
- Division of Evolutionary Biology, LMU Munich, München, Germany
| | - Sandro L Bonatto
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
6
|
Rivera D, Prates I, Caldwell JP, Rodrigues MT, Fujita MK. Testing assertions of widespread introgressive hybridization in a clade of neotropical toads with low mate selectivity (Rhinella granulosa species group). Heredity (Edinb) 2023; 130:14-21. [PMID: 36333595 DOI: 10.1038/s41437-022-00571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Discordance between different genomic regions, often identified through multilocus sequencing of selected markers, presents particular difficulties in identifying historical processes which drive species diversity and boundaries. Mechanisms causing discordance, such as incomplete lineage sorting or introgression due to interspecific hybridization, are better identified based on population-level genomic datasets. In the toads of the Rhinella granulosa species group, patterns of mito-nuclear discordance and potential hybridization have been reported by several studies. However, these patterns were proposed based on few loci, such that alternative mechanisms behind gene-tree heterogeneity cannot be ruled out. Using genome-wide ddRADseq loci from a subset of species within this clade, we found only partial concordance between currently recognized species-level taxon boundaries and patterns of genetic structure. While most taxa within the R. granulosa group correspond to clades, genetic clustering analyses sometimes grouped distinct taxonomic units into a single cluster. Moreover, levels of admixture between inferred clusters were limited and restricted to a single taxon pair which is best explained by incomplete lineage sorting as opposed to introgressive hybridization, according to D-statistics results. These findings contradict previous assertions of widespread cryptic diversity and gene flow within the R. granulosa clade. Lastly, our analyses suggest that diversification events within the Rhinella granulosa group mostly dated back to the early Pliocene, being generally younger than species divergences in other closely related clades that present high levels of cross-species gene flow. This finding uniquely contradicts common assertions that this young clade of toads exhibits interspecific hybridization.
Collapse
Affiliation(s)
- Danielle Rivera
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA.
- Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA.
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Janalee P Caldwell
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Miguel Trefaut Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Matthew K Fujita
- Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA
- Department of Biology and Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
7
|
Nickel J, Cordellier M. Cost-saving population genomic investigation of Daphnia longispina complex resting eggs using whole-genome amplification and pre-sequencing screening. Ecol Evol 2022; 12:e9682. [PMID: 36582775 PMCID: PMC9793289 DOI: 10.1002/ece3.9682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Resting stages of aquatic organisms that accumulate in the sediment over time are an exceptional resource that allows direct insights into past populations and addressing evolutionary questions. This is of particular interest in taxa that face relatively new environmental challenges, e.g., climate change and eutrophication, such as the Daphnia longispina species complex, a keystone zooplankton group in European freshwater ecosystems. However, genomic analysis might be challenging as DNA yield from many of these resting stages can be low and the material degraded. To reliably allow the resequencing of single Daphnia resting eggs from different sediment layers and characterize genomic changes through time, we performed whole-genome amplification to obtain DNA amounts suitable for genome resequencing and tested multiple protocols involving egg isolation, whole-genome amplification kits, and library preparation. A pre-sequencing contamination screening was developed, consisting of amplifying mitochondrial Daphnia and bacterial markers, to quickly assess and exclude possibly contaminated samples. In total, we successfully amplified and sequenced nine genomes from Daphnia resting eggs that could be identified as Daphnia longispina species. We analyzed the genome coverage and heterozygosity of these samples to optimize this method for future projects involving population genomic investigation of the resting egg bank.
Collapse
Affiliation(s)
- Jana Nickel
- Institute of Animal Cell and Systems BiologyUniversity of HamburgHamburgGermany
| | - Mathilde Cordellier
- Institute of Animal Cell and Systems BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
8
|
Leiva C, Riesgo A, Combosch D, Arias MB, Giribet G, Downey R, Kenny NJ, Taboada S. Guiding marine protected area network design with comparative phylogeography and population genomics: An exemplary case from the Southern Ocean. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Carlos Leiva
- Marine Laboratory University of Guam Mangilao Guam USA
- Life Sciences Department The Natural History Museum London UK
| | - Ana Riesgo
- Life Sciences Department The Natural History Museum London UK
- Department of Biodiversity and Evolutionary Biology National Museum of Natural Sciences (CSIC) Madrid Spain
| | - David Combosch
- Marine Laboratory University of Guam Mangilao Guam USA
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA
| | - María Belén Arias
- Life Sciences Department The Natural History Museum London UK
- School of Life Sciences University of Essex Colchester Campus UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA
| | - Rachel Downey
- Fenner School of Environment and Society Australian National University Acton Australian Capital Territory Australia
| | - Nathan James Kenny
- Life Sciences Department The Natural History Museum London UK
- Department of Biochemistry University of Otago Dunedin New Zealand
| | - Sergi Taboada
- Life Sciences Department The Natural History Museum London UK
- Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
- Departamento de Ciencias de la Vida, Apdo. 20 Universidad de Alcalá Alcalá de Henares Spain
| |
Collapse
|
9
|
Baumel A, Nieto Feliner G, Médail F, La Malfa S, Di Guardo M, Bou Dagher Kharrat M, Lakhal-Mirleau F, Frelon V, Ouahmane L, Diadema K, Sanguin H, Viruel J. Genome-wide footprints in the carob tree (Ceratonia siliqua) unveil a new domestication pattern of a fruit tree in the Mediterranean. Mol Ecol 2022; 31:4095-4111. [PMID: 35691023 PMCID: PMC9541536 DOI: 10.1111/mec.16563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Intense research efforts over the last two decades have renewed our understanding of plant phylogeography and domestication in the Mediterranean basin. Here we aim to investigate the evolutionary history and the origin of domestication of the carob tree (Ceratonia siliqua), which has been cultivated for millennia for food and fodder. We used >1000 microsatellite genotypes to delimit seven carob evolutionary units (CEUs). We investigated genome‐wide diversity and evolutionary patterns of the CEUs with 3557 single nucleotide polymorphisms generated by restriction‐site associated DNA sequencing (RADseq). To address the complex wild vs. cultivated status of sampled trees, we classified 56 sampled populations across the Mediterranean basin as wild, seminatural or cultivated. Nuclear and cytoplasmic loci were identified from RADseq data and separated for analyses. Phylogenetic analyses of these genomic‐wide data allowed us to resolve west‐to‐east expansions from a single long‐term refugium probably located in the foothills of the High Atlas Mountains near the Atlantic coast. Our findings support multiple origins of domestication with a low impact on the genetic diversity at range‐wide level. The carob was mostly domesticated from locally selected wild genotypes and scattered long‐distance westward dispersals of domesticated varieties by humans, concomitant with major historical migrations by Romans, Greeks and Arabs. Ex situ efforts to preserve carob genetic resources should prioritize accessions from both western and eastern populations, with emphasis on the most differentiated CEUs situated in southwest Morocco, south Spain and eastern Mediterranean. Our study highlights the relevance of wild and seminatural habitats in the conservation of genetic resources for cultivated trees.
Collapse
Affiliation(s)
- Alex Baumel
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | | | - Frédéric Médail
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Magda Bou Dagher Kharrat
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Campus Sciences et Technologies, Beirut, Lebanon
| | - Fatma Lakhal-Mirleau
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | - Valentine Frelon
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Faculté des Sciences et Techniques St-Jérôme, Marseille, France
| | - Lahcen Ouahmane
- Faculté des Sciences Semlalia, Laboratoire de Biotechnologies Microbiennes Agrosciences et Environnement, Université Cadi Ayyad Marrakech, Marrakech, Morocco
| | - Katia Diadema
- Conservatoire Botanique National Méditerranéen de Porquerolles (CBNMed), Hyères, France
| | - Hervé Sanguin
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | |
Collapse
|
10
|
Wang Z, Pierce NE. Fine-scale genome-wide signature of Pleistocene glaciation in Thitarodes moths (Lepidoptera: Hepialidae), host of Ophiocordyceps fungus in the Hengduan Mountains. Mol Ecol 2022; 32:2695-2714. [PMID: 35377501 DOI: 10.1111/mec.16457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of inter-species divergence, the accumulation of intra-species (i.e. population level) genetic divergence across the mountain-valley landscape in this region has received less attention. We used genome-wide restriction site-associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations of Thitarodes shambalaensis (Lepidoptera: Hepialidae), the host moth of parasitic Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae) or "caterpillar fungus" endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations of T. shambalaensis. We found that moth populations separated by less than 10 km exhibited valley-based population genetic clustering and isolation-by-distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML , 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 meters apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGML glaciers. These results reveal the fine-scale, long-term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.
Collapse
Affiliation(s)
- Zhengyang Wang
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Naomi E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Blattner L, Lucek K, Beck N, Berner D, Fumetti S. Intra‐Alpine Islands: Population genomic inference reveals high degree of isolation between freshwater spring habitats. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Lucas Blattner
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, Plant Ecology and Evolution University of Basel Basel Switzerland
| | - Nathanael Beck
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| | - Daniel Berner
- Department of Environmental Sciences, Animal Diversity and Evolution University of Basel Basel Switzerland
| | - Stefanie Fumetti
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| |
Collapse
|
12
|
Rivera D, Prates I, Firneno TJ, Rodrigues MT, Caldwell JP, Fujita MK. Phylogenomics, introgression, and demographic history of South American true toads (Rhinella). Mol Ecol 2021; 31:978-992. [PMID: 34784086 DOI: 10.1111/mec.16280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/24/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
The effects of genetic introgression on species boundaries and how they affect species' integrity and persistence over evolutionary time have received increased attention. The increasing availability of genomic data has revealed contrasting patterns of gene flow across genomic regions, which impose challenges to inferences of evolutionary relationships and of patterns of genetic admixture across lineages. By characterizing patterns of variation across thousands of genomic loci in a widespread complex of true toads (Rhinella), we assess the true extent of genetic introgression across species thought to hybridize to extreme degrees based on natural history observations and multi-locus analyses. Comprehensive geographic sampling of five large-ranged Neotropical taxa revealed multiple distinct evolutionary lineages that span large geographic areas and, at times, distinct biomes. The inferred major clades and genetic clusters largely correspond to currently recognized taxa; however, we also found evidence of cryptic diversity within taxa. While previous phylogenetic studies revealed extensive mito-nuclear discordance, our genetic clustering analyses uncovered several admixed individuals within major genetic groups. Accordingly, historical demographic analyses supported that the evolutionary history of these toads involved cross-taxon gene flow both at ancient and recent times. Lastly, ABBA-BABA tests revealed widespread allele sharing across species boundaries, a pattern that can be confidently attributed to genetic introgression as opposed to incomplete lineage sorting. These results confirm previous assertions that the evolutionary history of Rhinella was characterized by various levels of hybridization even across environmentally heterogeneous regions, posing exciting questions about what factors prevent complete fusion of diverging yet highly interdependent evolutionary lineages.
Collapse
Affiliation(s)
- Danielle Rivera
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Firneno
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| | - Miguel Trefaut Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Janalee P Caldwell
- Sam Noble Museum & Department of Biology, University of Oklahoma, Norman, Oklahoma, 73072-7029, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, TX, USA
| |
Collapse
|
13
|
Thomé MTC, Carstens BC, Rodrigues MT, Galetti PM, Alexandrino J, Haddad CFB. A role of asynchrony of seasons in explaining genetic differentiation in a Neotropical toad. Heredity (Edinb) 2021; 127:363-372. [PMID: 34304245 PMCID: PMC8478927 DOI: 10.1038/s41437-021-00460-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
The process of diversification can be studied at the phylogeographic level by attempting to identify the environmental features that promote and maintain population divergence. Here we investigate diversification in Rhinella granulosa, a Neotropical toad from northeastern Brazil, by testing a range of hypotheses that encompass different putative mechanisms reducing gene flow among populations. We sequenced single nucleotide polymorphisms and examined individual predictions related to the role of geographic barriers (rivers), ecological gradients, historical habitat stability, and spatial variation in climate seasonality, also known as the asynchrony of seasons hypothesis. This hypothesis postulates that temporal asynchrony of wet and dry seasons over short distances causes parapatric populations to become isolated by time. After determining genetic structure, inferring past distributions, ranking demographic models, and estimating the power of monthly climatic variables, our results identified two populations that are not associated with geographic barriers, biome gradients, or historical refugia. Instead, they are predicted by spatial variation in monthly rainfall and minimum temperature, consistent with the asynchrony of seasons hypothesis, supported also by our comparative framework using multiple matrix regression and linear mixed effects modeling. Due to the toad's life history, climate likely mediates gene flow directly, with genetic differentiation being provoked by neutral mechanisms related to climate driven population isolation, and/or by natural selection against migrants from populations with different breeding times. The asynchrony of seasons hypothesis is seldom considered in phylogeographic studies, but our results indicate that it should be tested in systems where breeding is tightly coupled with climate.
Collapse
Affiliation(s)
- Maria Tereza C Thomé
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil.
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Miguel Trefaut Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Manoel Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - João Alexandrino
- Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| |
Collapse
|
14
|
Christiansen H, Heindler FM, Hellemans B, Jossart Q, Pasotti F, Robert H, Verheye M, Danis B, Kochzius M, Leliaert F, Moreau C, Patel T, Van de Putte AP, Vanreusel A, Volckaert FAM, Schön I. Facilitating population genomics of non-model organisms through optimized experimental design for reduced representation sequencing. BMC Genomics 2021; 22:625. [PMID: 34418978 PMCID: PMC8380342 DOI: 10.1186/s12864-021-07917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genome-wide data are invaluable to characterize differentiation and adaptation of natural populations. Reduced representation sequencing (RRS) subsamples a genome repeatedly across many individuals. However, RRS requires careful optimization and fine-tuning to deliver high marker density while being cost-efficient. The number of genomic fragments created through restriction enzyme digestion and the sequencing library setup must match to achieve sufficient sequencing coverage per locus. Here, we present a workflow based on published information and computational and experimental procedures to investigate and streamline the applicability of RRS. RESULTS In an iterative process genome size estimates, restriction enzymes and size selection windows were tested and scaled in six classes of Antarctic animals (Ostracoda, Malacostraca, Bivalvia, Asteroidea, Actinopterygii, Aves). Achieving high marker density would be expensive in amphipods, the malacostracan target taxon, due to the large genome size. We propose alternative approaches such as mitogenome or target capture sequencing for this group. Pilot libraries were sequenced for all other target taxa. Ostracods, bivalves, sea stars, and fish showed overall good coverage and marker numbers for downstream population genomic analyses. In contrast, the bird test library produced low coverage and few polymorphic loci, likely due to degraded DNA. CONCLUSIONS Prior testing and optimization are important to identify which groups are amenable for RRS and where alternative methods may currently offer better cost-benefit ratios. The steps outlined here are easy to follow for other non-model taxa with little genomic resources, thus stimulating efficient resource use for the many pressing research questions in molecular ecology.
Collapse
Affiliation(s)
- Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.
| | - Franz M Heindler
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Quentin Jossart
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Henri Robert
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Marie Verheye
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Bruno Danis
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Kochzius
- Marine Biology Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederik Leliaert
- Marine Biology Research Group, Ghent University, Ghent, Belgium.,Meise Botanic Garden, Meise, Belgium
| | - Camille Moreau
- Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Université de Bourgogne Franche-Comté (UBFC) UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Tasnim Patel
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Anton P Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium.,OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Marine Biology Laboratory, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Ghent University, Ghent, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Isa Schön
- OD Nature, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
15
|
Cortez T, Amaral RV, Sobral-Souza T, Andrade SCS. Genome-wide assessment elucidates connectivity and the evolutionary history of the highly dispersive marine invertebrate Littoraria flava (Littorinidae: Gastropoda). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
An important goal of marine population genetics is to understand how spatial connectivity patterns are influenced by historical and evolutionary factors. In this study, we evaluate the demographic history and population structure of Littoraria flava, a highly dispersive marine gastropod in the Brazilian intertidal zone. To test the hypotheses that the species has (1) historically high levels of gene flow on a macrogeographical spatial scale and (2) a distribution in rocky shores that consists of subpopulations, we collected specimens along the Brazilian coastline and combined different sets of genetic markers (mitochondrial DNA, ITS-2 and single nucleotide polymorphisms) with niche-based modelling to predict its palaeodistribution. Low genetic structure was observed, as well as high gene flow over long distances. The demographic analyses suggest that L. flava has had periods of population bottlenecks followed by expansion. According to both palaeodistribution and coalescent simulations, these expansion events occurred during the Pleistocene interglacial cycles (21 kya) and the associated climatic changes were the probable drivers of the distribution of the species. This is the first phylogeographical study of a marine gastropod on the South American coast based on genomic markers associated with niche modelling.
Collapse
Affiliation(s)
- Thainá Cortez
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, SPBrazil
| | - Rafael V Amaral
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, SPBrazil
| | - Thadeu Sobral-Souza
- Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Cuiabá, MTBrazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, SPBrazil
| |
Collapse
|
16
|
O'Connell KA, Mulder KP, Wynn A, de Queiroz K, Bell RC. Genomic library preparation and hybridization capture of formalin-fixed tissues and allozyme supernatant for population genomics and considerations for combining capture- and RADseq-based single nucleotide polymorphism data sets. Mol Ecol Resour 2021; 22:487-502. [PMID: 34329532 DOI: 10.1111/1755-0998.13481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022]
Abstract
Until recently many historical museum specimens were largely inaccessible to genomic inquiry, but high-throughput sequencing (HTS) approaches have allowed researchers to successfully sequence genomic DNA from dried and fluid-preserved museum specimens. In addition to preserved specimens, many museums contain large series of allozyme supernatant samples, but the amenability of these samples to HTS has not yet been assessed. Here, we compared the performance of a target-capture approach using alternative sources of genomic DNA from 10 specimens of spring salamanders (Plethodontidae: Gyrinophilus porphyriticus) collected between 1985 and 1990: allozyme supernatants, allozyme homogenate pellets and formalin-fixed tissues. We designed capture probes based on double-digest restriction-site associated sequencing (RADseq) derived loci from frozen blood samples available for seven of the specimens and assessed the success and consistency of capture and RADseq approaches. This study design enabled direct comparisons of data quality and potential biases among the different data sets for phylogenomic and population genomic analyses. We found that in phylogenetic analyses, all enrichment types for a given specimen clustered together. In principal component space all capture-based samples clustered together, but RADseq samples did not cluster with corresponding capture-based samples. Single nucleotide polymorphism calls were on average 18.3% different between enrichment types for a given individual, but these discrepancies were primarily due to differences in heterozygous/homozygous single nucleotide polymorphism calls. We demonstrate that both allozyme supernatant and formalin-fixed samples can be successfully used for population genomic analyses and we discuss ways to identify and reduce biases associated with combining capture and RADseq data.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA.,Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, Virginia, USA
| | - Kevin P Mulder
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Addison Wynn
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
17
|
Prates I, D'Angiolella AB, Rodrigues MT, Melo-Sampaio PR, de Queiroz K, Bell RC. Evolutionary drivers of sexual signal variation in Amazon Slender Anoles. Evolution 2021; 75:1361-1376. [PMID: 33860933 DOI: 10.1111/evo.14230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/29/2023]
Abstract
Phenotypic variation among populations, as seen in the signaling traits of many species, provides an opportunity to test whether similar factors generate repeated phenotypic patterns in different parts of a species' range. We investigated whether genetic divergence, abiotic gradients, and sympatry with closely related species explain variation in the dewlap colors of Amazon Slender Anoles, Anolis fuscoauratus. To this aim, we characterized dewlap diversity in the field with respect to population genetic structure and evolutionary relationships, assessed whether dewlap phenotypes are associated with climate or landscape variables, and tested for nonrandom associations in the distributions of A. fuscoauratus phenotypes and sympatric Anolis species. We found that dewlap colors vary among but not within sites in A. fuscoauratus. Regional genetic clusters included multiple phenotypes, while populations with similar dewlaps were often distantly related. Phenotypes did not segregate in environmental space, providing no support for optimized signal transmission at a local scale. Instead, we found a negative association between certain phenotypes and sympatric Anolis species with similar dewlap color attributes, suggesting that interactions with closely related species promoted dewlap divergence among A. fuscoauratus populations. Amazon Slender Anoles emerge as a promising system to address questions about parallel trait evolution and the contribution of signaling traits to speciation.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109
| | | | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Paulo R Melo-Sampaio
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20560.,Herpetology Department, California Academy of Sciences, San Francisco, California, 94118
| |
Collapse
|
18
|
Cerca J, Maurstad MF, Rochette NC, Rivera‐Colón AG, Rayamajhi N, Catchen JM, Struck TH. Removing the bad apples: A simple bioinformatic method to improve loci‐recovery in de novo RADseq data for non‐model organisms. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- José Cerca
- Frontiers in Evolutionary Zoology Natural History MuseumUniversity of Oslo Oslo Norway
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
- Department of Natural History NTNU University MuseumNorwegian University of Science and Technology Trondheim Norway
| | - Marius F. Maurstad
- Frontiers in Evolutionary Zoology Natural History MuseumUniversity of Oslo Oslo Norway
- Centre for Ecological and Evolutionary Synthesis University of Oslo Oslo Norway
| | - Nicolas C. Rochette
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐ChampaignUrbana‐Champaign IL USA
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Angel G. Rivera‐Colón
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐ChampaignUrbana‐Champaign IL USA
| | - Niraj Rayamajhi
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐ChampaignUrbana‐Champaign IL USA
| | - Julian M. Catchen
- Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐ChampaignUrbana‐Champaign IL USA
| | - Torsten H. Struck
- Frontiers in Evolutionary Zoology Natural History MuseumUniversity of Oslo Oslo Norway
| |
Collapse
|
19
|
Cerca J, Rivera-Colón AG, Ferreira MS, Ravinet M, Nowak MD, Catchen JM, Struck TH. Incomplete lineage sorting and ancient admixture, and speciation without morphological change in ghost-worm cryptic species. PeerJ 2021; 9:e10896. [PMID: 33614296 PMCID: PMC7879940 DOI: 10.7717/peerj.10896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Morphologically similar species, that is cryptic species, may be similar or quasi-similar owing to the deceleration of morphological evolution and stasis. While the factors underlying the deceleration of morphological evolution or stasis in cryptic species remain unknown, decades of research in the field of paleontology on punctuated equilibrium have originated clear hypotheses. Species are expected to remain morphologically identical in scenarios of shared genetic variation, such as hybridization and incomplete lineage sorting, or in scenarios where bottlenecks reduce genetic variation and constrain the evolution of morphology. Here, focusing on three morphologically similar Stygocapitella species, we employ a whole-genome amplification method (WGA) coupled with double-digestion restriction-site associated DNA sequencing (ddRAD) to reconstruct the evolutionary history of the species complex. We explore population structure, use population-level statistics to determine the degree of connectivity between populations and species, and determine the most likely demographic scenarios which generally reject for recent hybridization. We find that the combination of WGA and ddRAD allowed us to obtain genomic-level data from microscopic eukaryotes (∼1 millimetre) opening up opportunities for those working with population genomics and phylogenomics in such taxa. The three species share genetic variance, likely from incomplete lineage sorting and ancient admixture. We speculate that the degree of shared variation might underlie morphological similarity in the Atlantic species complex.
Collapse
Affiliation(s)
- José Cerca
- Department of Environmental Science, Policy, and Management, University of California, University of California, Berkeley, Berkeley, CA, United States of America
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Angel G. Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana Champaign, IL, United States of America
| | - Mafalda S. Ferreira
- Division of Biological Sciences, University of Montana, Missoula, MT, United States of America
- Departamento de Biologia, Universidade do Porto, Porto, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Porto, Porto, Portugal
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | | | - Julian M. Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana Champaign, IL, United States of America
| | | |
Collapse
|
20
|
Mendes CB, Norenburg JL, Andrade SCS. Species delimitation integrative approach reveals three new species in the Nemertopsis bivittata complex. INVERTEBR SYST 2021. [DOI: 10.1071/is20048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The presence of cryptic species is fairly frequent in many invertebrate groups and even more so among invertebrates with simple morphology, such as nemerteans. Consequently, the use of molecular methods for species delimitation has become a needed tool to complement morphological analyses to better recognise such species. Nemertopsis bivittata is one example of species with subtle morphological variation, but ample geographic distribution, being a good candidate for a species complex study. Here we applied two mitochondrial genes, and 2903 single nucleotide polymorphism (SNP) variants in addition to morphological characters to investigate the presence of cryptic species among specimens previously identified as N. bivittata along the Brazilian Coast. To do so, specimens were collected at 15 different sites in the north-east, south-east and southern regions. Three new species of Nemertopsis are described based on morphological and molecular analyses: Nemertopsis caete sp. nov., Nemertopsis pamelaroeae sp. nov. and Nemertopsis berthalutzae sp. nov. The species N. pamelaroeae and N. berthalutzae present broad distributions from north-east to south-east; N. caete, however, is restricted to the north-east coast. This is the first study to use this combined approach in nemerteans and shows the advantages of integrating genomic markers with classical taxonomy, and applying objective approaches to delimiting species as independently evolving entities.
Collapse
|
21
|
de Medeiros BAS, Farrell BD. Evaluating insect-host interactions as a driver of species divergence in palm flower weevils. Commun Biol 2020; 3:749. [PMID: 33299067 PMCID: PMC7726107 DOI: 10.1038/s42003-020-01482-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
Plants and their specialized flower visitors provide valuable insights into the evolutionary consequences of species interactions. In particular, antagonistic interactions between insects and plants have often been invoked as a major driver of diversification. Here we use a tropical community of palms and their specialized insect flower visitors to test whether antagonisms lead to higher population divergence. Interactions between palms and the insects visiting their flowers range from brood pollination to florivory and commensalism, with the latter being species that feed on decaying-and presumably undefended-plant tissues. We test the role of insect-host interactions in the early stages of diversification of nine species of beetles sharing host plants and geographical ranges by first delimiting cryptic species and then using models of genetic isolation by environment. The degree to which insect populations are structured by the genetic divergence of plant populations varies. A hierarchical model reveals that this variation is largely uncorrelated with the kind of interaction, showing that antagonistic interactions are not associated with higher genetic differentiation. Other aspects of host use that affect plant-associated insects regardless of the outcomes of their interactions, such as sensory biases, are likely more general drivers of insect population divergence.
Collapse
Affiliation(s)
- Bruno A S de Medeiros
- Smithsonian Tropical Research Institute, Panama City, Panama.
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Brian D Farrell
- Museum of Comparative Zoology, Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Campbell EO, Dupuis JR, Holowachuk J, Hladun S, Vankosky MA, Mori BA. Disjunction between canola distribution and the genetic structure of its recently described pest, the canola flower midge ( Contarinia brassicola). Ecol Evol 2020; 10:13284-13296. [PMID: 33304537 PMCID: PMC7713945 DOI: 10.1002/ece3.6927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Population genomics is a useful tool to support integrated pest management as it can elucidate population dynamics, demography, and histories of invasion. Here, we use a restriction site-associated DNA sequencing approach combined with whole-genome amplification (WGA) to assess genomic population structure of a newly described pest of canola, the diminutive canola flower midge, Contarinia brassicola. Clustering analyses recovered little geographic structure across the main canola production region but differentiated several geographically disparate populations at edges of the agricultural zone. Given a lack of alternative hypotheses for this pattern, we suggest these data support alternative hosts for this species and thus our canola-centric view of this midge as a pest has limited our understanding of its biology. These results speak to the need for increased surveying efforts across multiple habitats and other potential hosts within Brassicaceae to improve both our ecological and evolutionary knowledge of this species and contribute to effective management strategies. We additionally found that use of WGA prior to library preparation was an effective method for increasing DNA quantity of these small insects prior to restriction site-associated DNA sequencing and had no discernible impact on genotyping consistency for population genetic analysis; WGA is therefore likely to be tractable for other similar studies that seek to randomly sample markers across the genome in small organisms.
Collapse
Affiliation(s)
- Erin O. Campbell
- Department of Agriculture, Food, and Nutrition Sciences4‐10 Agriculture/Forestry CentreUniversity of AlbertaEdmontonABCanada
| | | | - Jennifer Holowachuk
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Shane Hladun
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Meghan A. Vankosky
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Boyd A. Mori
- Department of Agriculture, Food, and Nutrition Sciences4‐10 Agriculture/Forestry CentreUniversity of AlbertaEdmontonABCanada
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| |
Collapse
|
23
|
Graham MR, Santibáñez‐López CE, Derkarabetian S, Hendrixson BE. Pleistocene persistence and expansion in tarantulas on the Colorado Plateau and the effects of missing data on phylogeographical inferences from RADseq. Mol Ecol 2020; 29:3684-3701. [DOI: 10.1111/mec.15588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew R. Graham
- Department of Biology Eastern Connecticut State University Willimantic CT USA
| | | | - Shahan Derkarabetian
- Department of Organismic and Evolutionary Biology Museum of Comparative Zoology Harvard University Cambridge MA USA
| | | |
Collapse
|
24
|
O'Connell KA, Oaks JR, Hamidy A, Shaney KJ, Kurniawan N, Smith EN, Fujita MK. Impacts of the Toba eruption and montane forest expansion on diversification in Sumatran parachuting frogs (Rhacophorus). Mol Ecol 2020; 29:2994-3009. [PMID: 32633832 DOI: 10.1111/mec.15541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023]
Abstract
Catastrophic events, such as volcanic eruptions, can have profound impacts on the demographic histories of resident taxa. Due to its presumed effect on biodiversity, the Pleistocene eruption of super-volcano Toba has received abundant attention. We test the effects of the Toba eruption on the diversification, genetic diversity, and demography of three co-distributed species of parachuting frogs (Genus Rhacophorus) on Sumatra. We generate target-capture data (~950 loci and ~440,000 bp) for three species of parachuting frogs and use these data paired with previously generated double digest restriction-site associated DNA (ddRADseq) data to estimate population structure and genetic diversity, to test for population size changes using demographic modelling, and to estimate the temporal clustering of size change events using a full-likelihood Bayesian method. We find that populations around Toba exhibit reduced genetic diversity compared with southern populations, and that northern populations exhibit a shift in effective population size around the time of the eruption (~80 kya). However, we infer a stronger signal of expansion in southern populations around ~400 kya, and at least two of the northern populations may have also expanded at this time. Taken together, these findings suggest that the Toba eruption precipitated population declines in northern populations, but that the demographic history of these three species was also strongly impacted by mid-Pleistocene forest expansion during glacial periods. We propose local rather than regional effects of the Toba eruption, and emphasize the dynamic nature of diversification on the Sunda Shelf.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institute, Washington, DC, USA.,Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institute, Washington, DC, USA.,Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA.,Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Jamie R Oaks
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, Alabama, USA
| | - Amir Hamidy
- Zoology Division, Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences. Gd, Bogor, West Java, Indonesia
| | - Kyle J Shaney
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nia Kurniawan
- Department of Biology, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Eric N Smith
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Matthew K Fujita
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
25
|
Wang Z, Zhuang H, Wang M, Pierce NE. Thitarodes shambalaensis sp. nov. (Lepidoptera, Hepialidae): a new host of the caterpillar fungus Ophiocordyceps sinensis supported by genome-wide SNP data. Zookeys 2019; 885:89-113. [PMID: 31736619 PMCID: PMC6848235 DOI: 10.3897/zookeys.885.34638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/08/2019] [Indexed: 11/25/2022] Open
Abstract
A new species of ghost moth, Thitarodesshambalaensissp. nov., is described from Yanzigou glacier, Mt. Gongga, Sichuan, China. The species is a host of the economically important caterpillar fungus Ophiocordycepssinensis. Establishment of this new species is supported by morphology and genetic differentiation measured in a CO1 phylogeny and in genome-wide SNP coverage. A summary tree from 538 sequences of different genetic markers from Thitarodes (including sequences extracted from caterpillar fungus sclerotium samples) support the genus Thitarodes as a monophyletic group, and indicate that Thitarodes is the host genus for O.sinensis. Sampling efforts so far have centered on half of the known phylogenetic diversity of Thitarodes, with some species-level clusters (separated by < 2.5% genetic distance) containing 17 described species. Fifteen clusters are known from either a single “orphan taxon” or a single sequence from a caterpillar fungus sclerotium sample. We provide suggestions for building a more robust phylogeny of the genus Thitarodes and highlight some of the conservation threats that species from this genus face due to unprecedented habitat exploitation.
Collapse
Affiliation(s)
- Zhengyang Wang
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Harvard University Cambridge United States of America
| | - Hailing Zhuang
- Department of Entomology, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China South China Agricultural University Guangzhou China
| | - Min Wang
- Department of Entomology, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China South China Agricultural University Guangzhou China
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Harvard University Cambridge United States of America
| |
Collapse
|
26
|
Morphological and Molecular Perspectives on the Phylogeny, Evolution, and Classification of Weevils (Coleoptera: Curculionoidea): Proceedings from the 2016 International Weevil Meeting. DIVERSITY 2018. [DOI: 10.3390/d10030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 2016 International Weevil Meeting was held immediately after the International Congress of Entomology (ICE). It built on the topics and content of the 2016 ICE weevil symposium Phylogeny and Evolution of Weevils (Coleoptera: Curculionoidea): A Symposium in Honor of Dr. Guillermo "Willy” Kuschel. Beyond catalyzing research and collaboration, the meeting was intended to serve as a forum for identifying priorities and goals for those who study weevils. The meeting consisted of 46 invited and contributed lectures, discussion sessions and introductory remarks presented by 23 speakers along with eight contributed research posters. These were organized into three convened sessions, each lasting one day: (1) weevil morphology; (2) weevil fossils, biogeography and host/habitat associations; and (3) molecular phylogenetics and classification of weevils. Some of the topics covered included the 1K Weevils Project, major morphological character systems of adult and larval weevils, weevil morphological terminology, prospects for future morphological character discovery, phylogenetic analysis of morphological character data, the current status of weevil molecular phylogenetics and evolution, resources available for phylogenetic and comparative genomic studies of weevils, the weevil fossil record, weevil biogeography and evolution, weevil host plants, evolutionary development of the weevil rostrum, resources available for weevil identification and the current status of and challenges in weevil classification.
Collapse
|