1
|
Cabrerizo MJ, Villafañe VE, Helbling EW, Blum R, Vizzo JI, Gadda A, Valiñas MS. Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106952. [PMID: 39799851 DOI: 10.1016/j.marenvres.2025.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Plankton communities are subjected to multiple global change drivers; however, it is unknown how the interplay between them deviates from predictions based on single-driver studies, in particular when trophic interactions are explicitly considered. We investigated how simultaneous manipulation of temperature, pH, nutrient availability and solar radiation quality affects the carbon transfer from phytoplankton to herbivorous protists and their potential consequences for ecosystem functioning. Our results showed that multiple interacting global-change drivers reduced the photosynthetic (gross primary production-to-electron transport rates ratios, from 0.2 to 0.6-0.8) and resource use efficiencies (from 9 to 1 μg chlorophyll a (Chl a) μmol nitrogen-1) and prompted uncoupling between microzooplankton grazing (m) and phytoplankton growth (μ) rates (μ > m). The altered trophic interaction could be due to enhanced intra-guild predation or to microzooplankton growing at suboptimal temperatures compared to their prey. Because phytoplankton-specific loss rates to consumers grazing are the most significant uncertainty in marine biogeochemical models, we stress the need for experimental approaches quantifying it accurately to avoid bias in predicting the impacts of global change on marine ecosystems.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Departamento de Ecología, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina.
| | - Virginia E Villafañe
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - E Walter Helbling
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina
| | - Ricarda Blum
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Juan I Vizzo
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Gadda
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Macarena S Valiñas
- Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
2
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Chen B. Thermal diversity affects community responses to warming. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Protistan-Bacterial Microbiota Exhibit Stronger Species Sorting and Greater Network Connectivity Offshore than Nearshore across a Coast-to-Basin Continuum. mSystems 2021; 6:e0010021. [PMID: 34636671 PMCID: PMC8510552 DOI: 10.1128/msystems.00100-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known regarding how community assembly and species association vary with habitat and depth. Here, we examined the assembly and association of protistan and bacterial communities across a coast-shelf-slope-basin gradient of the South China Sea using high-throughput sequencing of the V3 and V4 regions of the rRNA gene transcript. Our study revealed that homogenizing dispersal and drift exerted an influence on protistan communities comparable to that on bacterial communities. In contrast, selection and dispersal limitation exerted contrasting effects on the two microbial communities. Community assembly was governed to a greater degree by selection than by dispersal limitation in the bacterial community, and this was much lower in the protistan community. Moreover, this organismal assembly pattern was robust with habitat and depth. However, the relative importance of selection to dispersal limitation varied with habitat and depth in both communities, where horizontally it was higher offshore than nearshore and vertically it was lower in the bottom or deep chlorophyll maximum (DCM) than on the surface. The offshore possessed more microbial network complexity and more associations among microbial taxa than the nearshore, and vertically, the bottom possessed more complexity than the surface and the DCM. Moreover, temperature is strongly associated with the composition and co-occurrence of microbial communities, implying that temperature plays a dominant role in the selection of the protistan-bacterial microbiome across a coast-to-basin continuum. This study contributes to our understanding of the assembly mechanism and species association of protistan-bacterial microbiota across multiple habitats and depths. IMPORTANCE Microbial organisms play a crucial role in global nutrient cycling. Few studies have attempted to simultaneously investigate the community assembly of microeukaryotes and prokaryotes and their association patterns in oceanic waters. This is especially true regarding how they vary with habitats and depths despite the fact that they are essential for developing a more holistic understanding of marine ecosystems. This study revealed the differential actions of selection and dispersal limitation and species association across a coast-to-basin continuum on the marine protistan-bacterial microbiome. Moreover, temperature was identified as a crucial factor driving the structure and co-occurrence of protistan and bacterial communities. The results emphasize that the differences in community assembly and association patterns between nearshore and offshore of the main constituents of the ocean microbiota should be considered to understand their current and future configurations. This is especially crucial in the context of climate change, as the response of ocean microbiota to nearshore and offshore temperature changes remains unknown.
Collapse
|
5
|
Cabrerizo MJ, Marañón E. Geographical and Seasonal Thermal Sensitivity of Grazing Pressure by Microzooplankton in Contrasting Marine Ecosystems. Front Microbiol 2021; 12:679863. [PMID: 34290682 PMCID: PMC8287633 DOI: 10.3389/fmicb.2021.679863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Grazing pressure, estimated as the ratio between microzooplankton grazing and phytoplankton growth rates (g:μ), is a strong determinant of microbial food-web structure and element cycling in the upper ocean. It is generally accepted that g is more sensitive to temperature than μ, but it remains unknown how the thermal dependence (activation energy, Ea) of g:μ varies over spatial and temporal scales. To tackle this uncertainty, we used an extensive literature analysis obtaining 751 paired rate estimates of μ and g from dilution experiments performed throughout the world’s marine environments. On a geographical scale, we found a stimulatory effect of temperature in polar open-ocean (∼0.5 eV) and tropical coastal (∼0.2 eV) regions, and an inhibitory one in the remaining biomes (values between −0.1 and −0.4 eV). On a seasonal scale, the temperature effect on g:μ ratios was stimulatory, particularly in polar environments; however, the large variability existing between estimates resulted in non-significant differences among biomes. We observed that increases in nitrate availability stimulated the temperature dependence of grazing pressure (i.e., led to more positive Ea of g:μ) in open-ocean ecosystems and inhibited it in coastal ones, particularly in polar environments. The percentage of primary production grazed by microzooplankton (∼56%) was similar in all regions. Our results suggest that warming of surface ocean waters could exert a highly variable impact, in terms of both magnitude and direction (stimulation or inhibition), on microzooplankton grazing pressure in different ocean regions.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain.,Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain
| | - Emilio Marañón
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain.,Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
6
|
Cabrerizo MJ, Marañón E. Grazing Pressure Is Independent of Prey Size in a Generalist Herbivorous Protist: Insights from Experimental Temperature Gradients. MICROBIAL ECOLOGY 2021; 81:553-562. [PMID: 32829442 DOI: 10.1007/s00248-020-01578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Grazing by herbivorous protists contributes to structuring plankton communities through its effect on the growth, biomass, and competitiveness of prey organisms and also impacts the transfer of primary production towards higher trophic levels. Previous evidence shows that heterotrophic processes (grazing rates, g) are more sensitive to temperature than autotrophic ones (phytoplankton growth rates, μ) and also that small cells tend to be more heavily predated than larger ones; however, it remains unresolved how the interplay between changes in temperature and cell size modulates grazing pressure (i.e., g:μ ratio). We addressed this problem by conducting an experiment with four phytoplankton populations, from pico- to microphytoplankton, over a 12 °C gradient and in the presence/absence of a generalist herbivorous protist, Oxyrrhis marina. We found that highest g rates coincided with highest μ rates, which corresponded to intermediate cell sizes. There were no significant differences in either μ or g between the smallest and largest cell sizes considered. The g:μ ratio was largely independent of cell size and C:N ratios, and its thermal dependence was low although species-specific differences were large. We suggest that the similar g:μ found could be the consequence that the energetic demand imposed by rising temperatures would be a more important issue than the mechanical constriction to ingestion derived from prey cell size. Despite the difficulty of quantifying μ and g in natural planktonic communities, we suggest that the g:μ ratio is a key response variable to evaluate thermal sensitivity of food webs because it gives a more integrative view of trophic functioning than both rates separately.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain.
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain.
| | - Emilio Marañón
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Campus Lagoas Marcosende s/n, 36310, Vigo, Spain
| |
Collapse
|
7
|
Radchenko I, Smirnov V, Ilyash L, Sukhotin A. Phytoplankton dynamics in a subarctic fjord during the under-ice - open water transition. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105242. [PMID: 33429216 DOI: 10.1016/j.marenvres.2020.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The spring blooms of phytoplankton play a key role in the functioning of marine ecosystems in the polar regions. A spring bloom in the Subarctic White Sea was observed in order to determine the effect of ice cover on the distribution, composition, and temporal changes of phytoplankton communities. The obtained results clearly show that in the White Sea, as in other freezing Arctic seas, ice melting and ice removal both play an essential role in the onset and development of spring phytoplankton blooms. This facilitates the release of ice algae and ice-pelagic algae into the water, as well as the rapid development of true planktonic taxa within the euphotic zone. One major peak of algal biomass is associated with ice removal while the other is recorded in the early summer. Comparison of our results with earlier data from 1960s to 1990s indicated strong year-to-year variation in terms of ice removal, the onset of the spring bloom, and the abundance and composition of the dominant phytoplankton taxa.
Collapse
Affiliation(s)
| | - Vyacheslav Smirnov
- White Sea Biological Station, Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia
| | | | - Alexey Sukhotin
- White Sea Biological Station, Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
8
|
Morison F, Pierson JJ, Oikonomou A, Menden-Deuer S. Mesozooplankton grazing minimally impacts phytoplankton abundance during spring in the western North Atlantic. PeerJ 2020; 8:e9430. [PMID: 32742776 PMCID: PMC7370934 DOI: 10.7717/peerj.9430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/06/2020] [Indexed: 11/20/2022] Open
Abstract
The impacts of grazing by meso- and microzooplankton on phytoplankton primary production (PP) was investigated in the surface layer of the western North Atlantic during spring. Shipboard experiments were performed on a latitudinal transect at three stations that differed in mixed layer depth, temperature, and mesozooplankton taxonomic composition. The mesozooplankton community was numerically dominated by Calanus finmarchicus at the northern and central station, with Calanus hyperboreus also present at the northern station. The southern station was >10 °C warmer than the other stations and had the most diverse mesozooplankton assemblage, dominated by small copepods including Paracalanus spp. Microzooplankton grazing was detected only at the northern station, where it removed 97% of PP. Estimated clearance rates by C. hyperboreus and C. finmarchicus suggested that at in-situ abundance these mesozooplankton were not likely to have a major impact on phytoplankton abundance, unless locally aggregated. Although mesozooplankton grazing impact on total phytoplankton was minimal, these grazers completely removed the numerically scarce > 10 µm particles, altering the particle-size spectrum. At the southern station, grazing by the whole mesozooplankton assemblage resulted in a removal of 14% of PP, and its effect on net phytoplankton growth rate was similar irrespective of ambient light. In contrast, reduction in light availability had an approximately 3-fold greater impact on net phytoplankton growth rate than mesozooplankton grazing pressure. The low mesozooplankton grazing impact across stations suggests limited mesozooplankton-mediated vertical export of phytoplankton production. The constraints provided here on trophic transfer, as well as quantitative estimates of the relative contribution of light and grazer controls of PP and of grazer-induced shifts in particle size spectra, illuminate food web dynamics and aid in parameterizing modeling-frameworks assessing global elemental fluxes and carbon export.
Collapse
Affiliation(s)
- Francoise Morison
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States of America
| | | | - Andreas Oikonomou
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States of America.,Institute of Balances of internal water, Hellenic Centre for Marine Research, Athens, Greece
| | - Susanne Menden-Deuer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States of America
| |
Collapse
|