1
|
Bertram MG, Ågerstrand M, Thoré ES, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BB, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2025; 100:556-585. [PMID: 39394884 PMCID: PMC11885694 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- School of Biological SciencesMonash University25 Rainforest WalkMelbourne3800Australia
| | - Marlene Ågerstrand
- Department of Environmental ScienceStockholm UniversitySvante Arrhenius väg 8cStockholm114 18Sweden
| | - Eli S.J. Thoré
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and EnvironmentUniversity of NamurRue de Bruxelles 61Namur5000Belgium
- TRANSfarm, Science, Engineering, and Technology GroupKU LeuvenBijzondereweg 12Bierbeek3360Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and DevelopmentU.S. EPA26 Martin Luther King Drive WestCincinnati45268OhioUSA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & BehaviourMcMaster University1280 Main Street WestHamiltonL8S 4K1OntarioCanada
| | - Jack A. Brand
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Institute of ZoologyZoological Society of LondonOuter Circle, Regent's ParkLondonNW1, 4RYUK
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear Place #97266Waco76798‐7266TexasUSA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM)Antonie van Leeuwenhoeklaan 9Bilthoven3721 MAthe Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Alex T. Ford
- Institute of Marine Sciences, School of Biological SciencesUniversity of PortsmouthFerry RoadPortsmouthPO4 9LYUK
| | - Frauke Hoffmann
- Department of Chemical and Product SafetyThe German Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Straße 8–10Berlin10589Germany
| | - Henner Hollert
- Goethe University FrankfurtMax‐von‐Laue‐Straße 13Frankfurt am Main60438Germany
| | - Stefanie Jacob
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Werner Kloas
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ)Permoserstraße 15Leipzig04318Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and DevelopmentU.S. EPA26 Martin Luther King Drive WestCincinnati45268OhioUSA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI)Löfströms allé 5Stockholm172 66Sweden
| | - Gerd Maack
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Erin L. Macartney
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South Wales, Biological Sciences North (D26)Sydney2052Australia
- Charles Perkins Centre, School of Life and Environmental SciencesThe University of SydneyJohn Hopkins DriveSydney2006Australia
| | - Jake M. Martin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- School of Life and Environmental SciencesDeakin University75 Pigdons RoadWaurn Ponds3216Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and ScienceGriffith UniversityEdmund Rice DriveSouthport4215Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- School of Environment and ScienceGriffith University170 Kessels RoadNathan4111Australia
| | - Silvia Mohr
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and ExposureOffice of Research and DevelopmentU.S. EPA, 109 T.W. Alexander DriveDurham27711North CarolinaUSA
| | - Gregory Pyle
- Department of Biological SciencesUniversity of Lethbridge4401 University DriveLethbridgeT1K 3M4AlbertaCanada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science2 Terrace WayMacleod3085Australia
| | - René Sahm
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
- Department of Freshwater Ecology in Landscape PlanningUniversity of KasselGottschalkstraße 24Kassel34127Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM)Antonie van Leeuwenhoeklaan 9Bilthoven3721 MAthe Netherlands
| | - Jeffery A. Steevens
- Columbia Environmental Research CenterU.S. Geological Survey (USGS)4200 New Haven RoadColumbia65201MissouriUSA
| | - Sanne van den Berg
- Wageningen University and ResearchP.O. Box 47Wageningen6700 AAthe Netherlands
| | - Laura E. Vossen
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesUlls väg 26Uppsala756 51Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of ScienceRMIT University289 McKimmies RoadMelbourne3083Australia
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourne3800Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbHEutinger Strasse 24Niefern‐Öschelbronn75223Germany
- Animal Physiological EcologyUniversity of TübingenAuf der Morgenstelle 5Tübingen72076Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
| |
Collapse
|
2
|
Riedel JA, Smolina I, Donat C, Svendheim LH, Farkas J, Hansen BH, Olsvik PA. Into the deep: Exploring the molecular mechanisms of hyperactive behaviour induced by three rare earth elements in early life-stages of the deep-sea scavenging amphipod Tmetonyx cicada (Lysianassidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175968. [PMID: 39226952 DOI: 10.1016/j.scitotenv.2024.175968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 μg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 μg L-1 to <20 % in the Yb-group at ca. 2000 μg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.
Collapse
Affiliation(s)
- Juliane Annemieke Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Coline Donat
- IUT de Saint Étienne, Université Jean Monnet, 28 Av. Léon Jouhaux, 42100 Saint-Étienne, France
| | | | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
3
|
Fogliano C, Carotenuto R, Agnisola C, Simoniello P, Karam M, Manfredonia C, Avallone B, Motta CM. Benzodiazepine Delorazepam Induces Locomotory Hyperactivity and Alterations in Pedal Mucus Texture in the Freshwater Gastropod Planorbarius corneus. Int J Mol Sci 2023; 24:17070. [PMID: 38069390 PMCID: PMC10706940 DOI: 10.3390/ijms242317070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Benzodiazepines, psychotropic drugs, are ubiquitous in the aquatic environment due to over-consumption and inefficient removal by sewage treatment plants. Bioaccumulation with consequent behavioral and physiological effects has been reported in many aquatic species. However, the responses are species-specific and still poorly understood. To improve the knowledge, we exposed the freshwater snail Planorbarius corneus to 1, 5, or 10 µg/L of delorazepam, the most widely consumed benzodiazepine in Italy. Conventional behavioral tests were used to assess the effects on locomotor and feeding behavior. Histological and biochemical analyses were also performed to detect possible changes in the structure and composition of the foot mucus and glands. The results show a paradoxical response with reduced feeding activity and locomotor hyperactivity. Pedal mucus was altered in texture but not in composition, becoming particularly rich in fibrous collagen-like material, and a significant change in the protein composition was highlighted in the foot. In conclusion, exposure to delorazepam induces disinhibited behavior in Planorbarius corneus, potentially increasing the risk of predation, and an increase in mucus protein production, which, together with reduced feeding activity, would severely compromise energy resources.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80143 Naples, Italy;
| | - Myriam Karam
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudia Manfredonia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| |
Collapse
|
4
|
Soose LJ, Hügl KS, Oehlmann J, Schiwy A, Hollert H, Jourdan J. A novel approach for the assessment of invertebrate behavior and its use in behavioral ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165418. [PMID: 37433332 DOI: 10.1016/j.scitotenv.2023.165418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Sublethal effects are becoming more relevant in ecotoxicological test methods due to their higher sensitivity compared to lethal endpoints and their preventive nature. Such a promising sublethal endpoint is the movement behavior of invertebrates which is associated with the direct maintenance of various ecosystem processes, hence being of special interest for ecotoxicology. Disturbed movement behavior is often related to neurotoxicity and can affect drift, mate-finding, predator avoidance, and therefore population dynamics. We show the practical implementation of the ToxmateLab, a new device that allows monitoring the movement behavior of up to 48 organisms simultaneously, for behavioral ecotoxicology. We quantified behavioral reactions of Gammarus pulex (Amphipoda, Crustacea) after exposure to two pesticides (dichlorvos and methiocarb) and two pharmaceuticals (diazepam and ibuprofen) at sublethal, environmentally relevant concentrations. We simulated a short-term pulse contamination event that lasted 90 min. Within this short test period, we successfully identified behavioral patterns that were most pronounced upon exposure to the two pesticides: Methiocarb initially triggered hyperactivity, after which baseline behavior was restored. On the other hand, dichlorvos induced hypoactivity starting at a moderate concentration of 5 μg/L - a pattern we also found at the highest concentration of ibuprofen (10 μg/L). An additional acetylcholine esterase inhibition assay revealed no significant impact of the enzyme activity that would explain the altered movement behavior. This suggests that in environmentally realistic scenarios chemicals can induce stress - apart from mode-of-action - that affects non-target organisms' behavior. Overall, our study proves the practical applicability of empirical behavioral ecotoxicological approaches and thus represents a next step towards routine practical use.
Collapse
Affiliation(s)
- Laura J Soose
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Kim S Hügl
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Andreas Schiwy
- Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Environmental Media-related Ecotoxicology, Frankfurt am Main, Germany
| | - Henner Hollert
- Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Environmental Media-related Ecotoxicology, Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Pile B, Warren D, Hassall C, Brown LE, Dunn AM. Biological Invasions Affect Resource Processing in Aquatic Ecosystems: The Invasive Amphipod Dikerogammarus villosus Impacts Detritus Processing through High Abundance Rather than Differential Response to Temperature. BIOLOGY 2023; 12:830. [PMID: 37372115 DOI: 10.3390/biology12060830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Anthropogenic stressors such as climate warming and invasive species and natural stressors such as parasites exert pressures that can interact to impact the function of ecosystems. This study investigated how these stressors interact to impact the vital ecosystem process of shredding by keystone species in temperate freshwater ecosystems. We compared metabolic rates and rates of shredding at a range of temperatures up to extreme levels, from 5 °C to 30 °C, between invasive and native amphipods that were unparasitised or parasitised by a common acanthocephalan, Echinorhynchus truttae. Shredding results were compared using the relative impact potential (RIP) metric to investigate how they impacted the scale with a numerical response. Although per capita shredding was higher for the native amphipod at all temperatures, the higher abundance of the invader led to higher relative impact scores; hence, the replacement of the native by the invasive amphipod is predicted to drive an increase in shredding. This could be interpreted as a positive effect on the ecosystem function, leading to a faster accumulation of amphipod biomass and a greater rate of fine particulate organic matter (FPOM) provisioning for the ecosystem. However, the high density of invaders compared with natives may lead to the exhaustion of the resource in sites with relatively low leaf detritus levels.
Collapse
Affiliation(s)
- Benjamin Pile
- School of Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| | - Daniel Warren
- Animal and Plant Health Agency (APHA), Sand Hutton YO41 1LZ, York, UK
| | | | - Lee E Brown
- School of Geography and Water@Leeds, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| | - Alison M Dunn
- School of Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
6
|
Lovin LM, Scarlett KR, Henke AN, Sims JL, Brooks BW. Experimental arena size alters larval zebrafish photolocomotor behaviors and influences bioactivity responses to a model neurostimulant. ENVIRONMENT INTERNATIONAL 2023; 177:107995. [PMID: 37329757 DOI: 10.1016/j.envint.2023.107995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Zebrafish behavior is increasingly common in biomedical and environmental studies of chemical bioactivity. Multiple experimental arena sizes have been used to measure photolocomotion in zebrafish depending on age, endpoints observed, and instrumentation, among other factors. However, the extent to which methodological parameters may influence naïve behavioral performance and detection of behavioral changes is poorly understood. Here we measured photolocomotion and behavioral profiles of naïve larval zebrafish across arena sizes. We then performed concentration response studies with the model neurostimulant caffeine, again across various arena dimensions. We found total swimming distance of unexposed fish to increase logarithmically with arena size, which as related to circumference, area, and volume. Photomotor response during light/dark transitions also increased with arena size. Following caffeine exposure, total distance travelled was significantly (p < 0.001) affected by well size, caffeine treatment (p < 0.001), and the interaction of these two experimental factors (p < 0.001). In addition, behavioral response profiles showed differences between 96 well plates and larger well sizes. Biphasic response, with stimulation at lower concentrations and refraction at the highest concentration, was observed in dark conditions for the 96 well size only, though almost no effects were identified in the light. However, swimming behavior was significantly (p < 0.1) altered in the highest studied caffeine treatment level in larger well sizes during both light and dark periods. Our results indicate zebrafish swim more in larger arenas and arena size influences behavioral response profiles to caffeine, though differences were mostly observed between very small and large arenas. Further, careful consideration should be given when choosing arena size, because small wells may lead to restriction, while larger wells may differentially reflect biologically relevant effects. These findings can improve comparability among experimental designs and demonstrates the importance of understanding confounding methodological variables.
Collapse
Affiliation(s)
- Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Abigail N Henke
- Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| | - Jaylen L Sims
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
7
|
van den Berg SJP, Rodríguez-Sánchez P, Zhao J, Olusoiji OD, Peeters ETHM, Schuijt LM. Among-individual variation in the swimming behaviour of the amphipod Gammarus pulex under dark and light conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162177. [PMID: 36775145 DOI: 10.1016/j.scitotenv.2023.162177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, considerable computational advancements have been made allowing automated analysis of behavioural endpoints using video cameras. However, the results of such analyses are often confounded by a large variation among individuals, making it problematic to derive endpoints that allow distinguishing treatment effects in behavioural studies. In this study, we quantitatively analysed the effects of light conditions on the swimming behaviour of the freshwater amphipod Gammarus pulex by high-throughput tracking, and attempted to unravel among individual variation using size and sex. For this, we developed the R-package Kinematics, allowing for the rapid and reproducible analysis of the swimming behaviour (speed, acceleration, thigmotaxis, curvature and startle response) of G. pulex, as well as any other organism. Our results show a considerable amount of variation among individuals (standard deviation ranging between 5 and 115 % of the average swimming behaviour). The factors size and sex and the interaction between the two only explained a minor part of this found variation. Additionally, our study is the first to quantify the startle response in G. pulex after the light is switched on, and study the variability of this response between individuals. To analyse this startle response, we established two metrics: 1) startle response magnitude (the drop in swimming velocity directly after the light switches on), and 2) startle response duration (the time it takes to recover from the drop in swimming velocity to average swimming speed). Almost 80 % of the individuals showed a clear startle response and, therefore, these metrics demonstrate a great potential for usage in behavioural studies. The findings of this study are important for the development of appropriate experimental set-ups for behavioural experiments with G. pulex.
Collapse
Affiliation(s)
- Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | | | - Jiayu Zhao
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands
| | | | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands
| | - Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
8
|
Hayashi T, Hayashi K, Hayashi N, Hayashi F. Optimal pit site selection in antlion larvae: the relationship between prey availability and pit maintenance costs. J ETHOL 2022. [DOI: 10.1007/s10164-022-00767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Henry J, Bai Y, Wlodkowic D. Digital Video Acquisition and Optimization Techniques for Effective Animal Tracking in Behavioral Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2342-2352. [PMID: 35848752 PMCID: PMC9826254 DOI: 10.1002/etc.5434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Behavioral phenotypic analysis is an emerging and increasingly important toolbox in aquatic ecotoxicology. In this regard digital video recording has recently become a standard in obtaining behavioral data. Subsequent analysis requires applications of specialized software for detecting and reconstructing animal locomotory trajectories as well as extracting quantitative biometric endpoints associated with specific behavioral traits. Despite some profound advantages for behavioral ecotoxicology, there is a notable lack of standardization of procedures and guidelines that would aid in consistently acquiring high-quality digital videos. The latter are fundamental for using animal tracking software successfully and to avoid issues such as identification switching, incorrect interpolation, and low tracking visibility. Achieving an optimized tracking not only saves user time and effort to analyze the results but also provides high-fidelity data with minimal artifacts. In the present study we, for the first time, provide an easily accessible guide on how to set up and optimize digital video acquisition while minimizing pitfalls in obtaining the highest-quality data for subsequent animal tracking. We also discuss straightforward digital video postprocessing techniques that can be employed to further enhance tracking consistency or improve the videos that were acquired in otherwise suboptimal settings. The present study provides an essential guidebook for any aquatic ecotoxicology studies that utilize digital video acquisition systems for evaluation of behavioral endpoints. Environ Toxicol Chem 2022;41:2342-2352. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Yutao Bai
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Donald Wlodkowic
- The Neurotox Lab, School of ScienceRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
10
|
Bai Y, Henry J, Karpiński TM, Wlodkowic D. High-Throughput Phototactic Ecotoxicity Biotests with Nauplii of Artemia franciscana. TOXICS 2022; 10:508. [PMID: 36136473 PMCID: PMC9501151 DOI: 10.3390/toxics10090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Analysis of sensorimotor behavioral responses to stimuli such as light can provide an enhanced relevance during rapid prioritisation of chemical risk. Due to technical limitations, there have been, however, only minimal studies on using invertebrate phototactic behaviors in aquatic ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built analytical system for a high-throughput phototactic biotest with nauplii of euryhaline brine shrimp Artemia franciscana. We also, for the first time, present a novel and dedicated bioinformatic approach that facilitates high-throughput analysis of phototactic behaviors at scale with great fidelity. The nauplii exhibited consistent light-seeking behaviors upon extinguishing a brief programmable light stimulus (5500K, 400 lux) without habituation. A proof-of-concept validation involving the short-term exposure of eggs (24 h) and instar I larval stages (6 h) to sub-lethal concentrations of insecticides organophosphate chlorpyrifos (10 µg/L) and neonicotinoid imidacloprid (50 µg/L) showed perturbation in light seeking behaviors in the absence of or minimal alteration in general mobility. Our preliminary data further support the notion that phototactic bioassays can represent an attractive new avenue in behavioral ecotoxicology because of their potential sensitivity, responsiveness, and low cost.
Collapse
Affiliation(s)
- Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| |
Collapse
|
11
|
The Influence of the Recording Time in Modelling the Swimming Behaviour of the Freshwater Inbenthic Copepod Bryocamptus pygmaeus. WATER 2022. [DOI: 10.3390/w14131996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis of copepod behaviour gained an increasing impetus over the past decade thanks to the advent of computer-assisted video analysis tools. Since the automated tracking consists in detecting the animal’s position frame by frame and improving signals corrupted by strong background noise, a crucial role is played by the length of the video recording. The aim of this study is to: (i) assess whether the recording time influences the analysis of a suite of movement descriptive parameters; (ii) understand if the recording time influences the outcome of the statistical analyses when hypotheses on the effect of toxicants/chemicals on the freshwater invertebrate behaviour are tested. We investigated trajectory parameters commonly used in behavioural studies—swimming speed, percentage of activity and trajectory convex hull—derived from the trajectories described by the inbenthic–interstitial freshwater copepod Bryocamptus pygmaeus exposed to a sub-lethal concentration of diclofenac. The analyses presented in this work indicate that the recording time did not influence the outcome of the results for the swimming speed and the percentage of activity. For the trajectory convex hull area, our results showed that a recording session lasting at least 3 min provided robust results. However, further investigations are needed to disentangle the role of concurrent factors, such as the behavioural analysis of multiple individuals simultaneously, whether they are of the same or opposite sex and the implications on sexual behaviour, competition for resources and predation.
Collapse
|
12
|
Henry J, Bai Y, Williams D, Logozzo A, Ford A, Wlodkowic D. Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana. Lab Anim (NY) 2022; 51:81-88. [PMID: 35115724 DOI: 10.1038/s41684-021-00908-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
The use of small aquatic model organisms to investigate the behavioral effects of chemical exposure is becoming an integral component of aquatic ecotoxicology research and neuroactive drug discovery. Despite the increasing use of invertebrates for behavioral phenotyping in toxicological studies and chemical risk assessments, little is known regarding the potential for environmental factors-such as geometry, size, opacity and depth of test chambers-to modulate common behavioral responses. In this work, we demonstrate that test chamber geometry, size, opacity and depth can affect spontaneous, unstimulated behavioral responses of euryhaline crustacean Artemia franciscana first instar larval stages. We found that in the absence of any obvious directional cues, A. franciscana exhibited a strong innate wall preference behavior. Using different test chamber sizes and geometries, we found both increased wall preference and lowered overall distance traveled by the test shrimp in a smaller chamber with sharper-angled vertices. It was also determined through quantifiable changes in the chambers' color that the A. franciscana early larval stages can perceive, differentiate and react to differences in color or perhaps rather to light transmittance of the test chambers. The interaction between innate edge preference and positive phototaxis could be consistently altered with a novel photic stimulus system. We also observed a strong initial preference for depth in A. franciscana first instar larval stages, which diminished through the acclimatization. We postulate that the impact of test chamber designs on neurobehavioral baseline responses warrants further investigation, in particular considering the increased interest in behavioral eco-neurotoxicology applications.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Yutao Bai
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Daniel Williams
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Adrian Logozzo
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Alex Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Di Cicco M, Di Lorenzo T, Fiasca B, Ruggieri F, Cimini A, Panella G, Benedetti E, Galassi DMP. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149461. [PMID: 34426329 DOI: 10.1016/j.scitotenv.2021.149461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is one of the most widespread pharmaceutical compounds found in freshwaters as a pseudo-persistent pollutant due to its continuous release from point and diffuse sources, being its removal in Wastewater Treatment Plants incomplete. Moreover, DCF is particularly persistent in interstitial habitats and potentially toxic for the species that spend their whole life cycle among the same sediment grains. This study is aimed at offering a first contribution to the assessment of DCF effects on freshwater invertebrate species living in the interstitial habitats of springs, rivers, lakes and groundwaters. The Crustacea Copepoda are one of the main components of the freshwater interstitial communities, with the primacy taken by the worm-like and small-sized harpacticoids. A sub-lethal concentration of 50 μg L-1 DCF significantly affected six out of the eight behavior parameters of the burrower/interstitial crustacean harpacticoid Bryocamptus pygmaeus recorded by video tracking analysis. DCF exposure reduced swimming speed, swimming activity, exploration ability and thigmotaxis, and increased swimming path tortuosity. The biochemical approach revealed a reduced level of the mitochondrial superoxide dismutase 2 in individuals exposed to DCF. It could be explained by a decline in mitochondrial performance or by a reduced number of functional mitochondria. Since mitochondrial dysfunction may determine ATP reduction, it comes that less energy is produced for maintaining the cell functions of the DCF-exposed individuals. In addition, the increasing energy demand for the detoxification process further contributes to decrease the total energetic budget allocated for other physiological activities. These observations can explain the changes we have observed in the swimming behavior of the copepod B. pygmaeus.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy; "Emil Racovita" Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca 400006, Romania
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Fabrizio Ruggieri
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
14
|
Thoré ESJ, Brendonck L, Pinceel T. Neurochemical exposure disrupts sex-specific trade-offs between body length and behaviour in a freshwater crustacean. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105877. [PMID: 34090246 DOI: 10.1016/j.aquatox.2021.105877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Ongoing pollution of aquatic ecosystems with neurochemical compounds warrants an improved understanding of how this affects key organisms. Neurochemicals are shown to alter the behaviour of common study species but it remains difficult to translate these results to biologically meaningful predictions across taxa. This is partly because studies on species with non-generic life-history strategies such as many freshwater crustaceans are currently underrepresented. Here, we use a laboratory experiment to assess baseline behavioural variation (spontaneous activity level and geotaxic behaviour) in the freshwater fairy shrimp Branchipodopsis wolfi and how this is affected by chronic exposure to an environmentally-relevant concentration of the anxiolytic pharmaceutical fluoxetine. The more conspicuously coloured and larger females of the species were overall less active and more benthic than males. Moreover, amongst females, vertical activity was negatively associated with size, while an opposite relationship was found for males. These trade-offs are likely part of an antipredator strategy to reduce the probability of being detected by visual hunters, but disappeared after exposure to fluoxetine. This is of particular interest since it is an effective proof of principle that neurochemicals may impact ecologically-relevant trade-offs between conspicuous morphology and antipredator behaviour. In natural ecosystems, such disturbed antipredator behavioural responses could have far-reaching fitness consequences.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
15
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
16
|
Shokri M, Cozzoli F, Ciotti M, Gjoni V, Marrocco V, Vignes F, Basset A. A new approach to assessing the space use behavior of macroinvertebrates by automated video tracking. Ecol Evol 2021; 11:3004-3014. [PMID: 33841762 PMCID: PMC8019041 DOI: 10.1002/ece3.7129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
Individual space and resource use are central issues in ecology and conservation. Recent technological advances such as automated tracking techniques are boosting ecological research in this field. However, the development of a robust method to track space and resource use is still challenging for at least one important ecosystem component: motile aquatic macroinvertebrates. The challenges are mostly related to the small body size and rapid movement of many macroinvertebrate species and to light scattering and wave signal interference in aquatic habitats.We developed a video tracking method designed to reliably assess space use behavior among individual aquatic macroinvertebrates under laboratory (microcosm) conditions. The approach involves the use of experimental apparatus integrating a near infrared backlight source, a Plexiglas multi-patch maze, multiple infrared cameras, and automated video analysis. It allows detection of the position of fast-moving (~ 3 cm/s) and translucent individuals of small size (~ 5 mm in length, ~1 mg in dry weight) on simulated resource patches distributed over an experimental microcosm (0.08 m2).To illustrate the adequacy of the proposed method, we present a case study regarding the size dependency of space use behavior in the model organism Gammarus insensibilis, focusing on individual patch selection, giving-up times, and cumulative space used.In the case study, primary data were collected on individual body size and individual locomotory behavior, for example, mean speed, acceleration, and step length. Individual entrance and departure times were recorded for each simulated resource patch in the experimental maze. Individual giving-up times were found to be characterized by negative size dependency, with patch departure occurring sooner in larger individuals than smaller ones, and individual cumulative space used (treated as the overall surface area of resource patches that individuals visited) was found to scale positively with body size.This approach to studying space use behavior can deepen our understanding of species coexistence, yielding insights into mechanistic models on larger spatial scales, for example, home range, with implications for ecological and evolutionary processes, as well as for the management and conservation of populations and ecosystems. Despite being specifically developed for aquatic macroinvertebrates, this method can also be applied to other small aquatic organisms such as juvenile fish and amphibians.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Francesco Cozzoli
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
- Research Institute on Terrestrial Ecosystems (IRET) ‐ National Research Council of Italy (CNR) via SalariaRomaItaly
| | - Mario Ciotti
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Vojsava Gjoni
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Vanessa Marrocco
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Fabio Vignes
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Alberto Basset
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| |
Collapse
|
17
|
High-Throughput Screening of Psychotropic Compounds: Impacts on Swimming Behaviours in Artemia franciscana. TOXICS 2021; 9:toxics9030064. [PMID: 33803064 PMCID: PMC8003060 DOI: 10.3390/toxics9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Animal behaviour is becoming increasingly popular as an endpoint in ecotoxicology due to its increased sensitivity and speed compared to traditional endpoints. However, the widespread use of animal behaviours in environmental risk assessment is currently hindered by a lack of optimisation and standardisation of behavioural assays for model species. In this study, assays to assess swimming speed were developed for a model crustacean species, the brine shrimp Artemia franciscana. Preliminary works were performed to determine optimal arena size for this species, and weather lux used in the experiments had an impact on the animals phototactic response. Swimming speed was significantly lower in the smallest arena, whilst no difference was observed between the two larger arenas, suggesting that the small arena was limiting swimming ability. No significant difference was observed in attraction to light between high and low light intensities. Arena size had a significant impact on phototaxis behaviours. Large arenas resulted in animals spending more time in the light side of the arena compared to medium and small, irrespective of light intensity. The swimming speed assay was then used to expose specimens to a range of psychotropic compounds with varying modes of action. Results indicate that swimming speed provides a valid measure of the impacts of behaviour modulating compounds on A. franciscana. The psychotropic compounds tested varied in their impacts on animal behaviour. Fluoxetine resulted in increased swimming speed as has been found in other crustacean species, whilst oxazepam, venlafaxine and amitriptyline had no significant impacts on the behaviours measured. The results from this study suggest a simple, fast, high throughput assay for A. franciscana and gains insight on the impacts of a range of psychotropic compounds on the swimming behaviours of a model crustacean species used in ecotoxicology studies.
Collapse
|
18
|
Love AC, Crooks N, Ford AT. The effects of wastewater effluent on multiple behaviours in the amphipod, Gammarus pulex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115386. [PMID: 33254653 DOI: 10.1016/j.envpol.2020.115386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 06/24/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of pharmaceuticals and personal care products (PPCPs) in lotic habitats is increasing, with the main source of these contaminants being effluent from waste water treatment works (WwTW). There is still much uncertainty about the impacts of these PPCPs at environmentally relevant concentrations and their potential effects on aquatic ecology. Behaviour is a sensitive endpoint which can help evaluate possible population level effects from changes in physiology. This paper evaluates the effects of WwTW effluent on a range of behaviours in the freshwater invertebrate, Gammarus pulex. Effluent taken from the outflow of two WwTW in southern England was used in the study. Behavioural analyses, namely feeding rate, phototaxis, activity, velocity and precopula pairing, were measured in G. pulex following a period of one and three weeks after exposure to a 50% or 100% effluent and a control. Mortality remained very low throughout the 3 week experiment (0-10%, n = 20) and no significant changes in moulting frequency were observed (p > 0.05). No significant effects on feeding or velocity or phototaxis following 3 weeks of effluent exposures were observed (p > 0.05). However, significant reductions were observed in the overall activity over 3 weeks across which appeared to be exacerbated by exposure to effluents. Interestingly, males exposed for 3 weeks to WwTW effluent re-paired with unexposed females significantly faster (4-6x) than control animals. This result was consistent between the effluents taken from the two WwTW. The implications of these behavioural changes are currently unknown but highlight the need for a varied set of tools to study the behavioural changes in wildlife.
Collapse
Affiliation(s)
- Adrian C Love
- Fisheries Department, Sparsholt College, Westley Lane, Hampshire, SO21 2NF, UK; Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| | - Neil Crooks
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4HP, UK
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK.
| |
Collapse
|
19
|
Vannuci-Silva M, Kohler S, Umbuzeiro GDA, Ford AT. Behavioural effects on marine amphipods exposed to silver ions and silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1051-1058. [PMID: 31252102 DOI: 10.1016/j.envpol.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Behavioural responses to contaminants are an important endpoint in ecotoxicology because they link effects at biochemical or cellular levels to impacts on individual fitness. Due to the increasing use of silver in nanomaterials, studies of its effects on the behaviour of aquatic organisms are important to assess the risks of silver nanoparticles (AgNP) released into the environment. The aim of this work was to evaluate the behavioural effects of silver on the marine amphipod Echinogammarus marinus after exposure to AgNO3 via water and AgCl or AgNP via food. Swimming activity of the amphipods was tracked during 6 min alternating dark and light conditions. Animals swam slower and responded less to light at higher concentrations of silver in the water. No differences were found in the behaviour of animals exposed via feeding up to 28 days, hence, longer exposure times may be required for the observation of effects. This is the first work to appraise behaviour effects of silver ions and AgNP on marine amphipods. Although the protocol has been successfully developed for this purpose, specimens appeared to habituate to test conditions during the experiments. Therefore, the need for further understanding of baseline behaviours in these model organisms is discussed.
Collapse
Affiliation(s)
- Monizze Vannuci-Silva
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil.
| | - Shanelle Kohler
- Institute of Marine Sciences, University of Portsmouth, United Kingdom
| | - Gisela de A Umbuzeiro
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil.
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|