1
|
Nguyen TT, Yoo MS, Truong AT, Youn SY, Kim DH, Lee SJ, Yoon SS, Cho YS. Prevalence and genome features of lake sinai virus isolated from Apis mellifera in the Republic of Korea. PLoS One 2024; 19:e0299558. [PMID: 38502683 PMCID: PMC10950237 DOI: 10.1371/journal.pone.0299558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Lake Sinai Virus (LSV) is an emerging pathogen known to affect the honeybee (Apis mellifera). However, its prevalence and genomic characteristics in the Republic of Korea (ROK) remain unexplored. This study aimed to assess the prevalence of and analyze the LSVs by examining 266 honeybee samples from the ROK. Our findings revealed that LSV exhibited the highest infection rate among the pathogens observed in Korean apiaries, particularly during the reported period of severe winter loss (SWL) in A. mellifera apiaries in 2022. Three LSV genotypes- 2, 3, and 4 -were identified using RNA-dependent RNA polymerase gene analysis. Importantly, the infection rates of LSV2 (65.2%) and LSV3 (73.3%) were significantly higher in colonies experiencing SWL than in those experiencing normal winter loss (NWL) (p < 0.03). Furthermore, this study provides the first near-complete genome sequences of the Korean LSV2, LSV3, and LSV4 strains, comprising 5,759, 6,040, and 5,985 nt, respectively. Phylogenetic analysis based on these near-complete genome sequences demonstrated a close relationship between LSVs in the ROK and China. The high LSV infection rate in colonies experiencing a heightened mortality rate during winter suggests that this pathogen might contribute to SWL in ROK. Moreover, the genomic characteristic information on LSVs in this study holds immense potential for epidemiological information and the selection of specific genes suitable for preventing and treating LSV, including the promising utilization of RNA interference medicine in the future.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi, Viet Nam
| | - Mi-Sun Yoo
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - So Youn Youn
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Dong-Ho Kim
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
2
|
Cornman RS. Data mining reveals tissue-specific expression and host lineage-associated forms of Apis mellifera filamentous virus. PeerJ 2023; 11:e16455. [PMID: 38025724 PMCID: PMC10655722 DOI: 10.7717/peerj.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Apis mellifera filamentous virus (AmFV) is a large double-stranded DNA virus of uncertain phylogenetic position that infects honey bees (Apis mellifera). Little is known about AmFV evolution or molecular aspects of infection. Accurate annotation of open-reading frames (ORFs) is challenged by weak homology to other known viruses. This study was undertaken to evaluate ORFs (including coding-frame conservation, codon bias, and purifying selection), quantify genetic variation within AmFV, identify host characteristics that covary with infection rate, and examine viral expression patterns in different tissues. Methods Short-read data were accessed from the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI). Sequence reads were downloaded from accessions meeting search criteria and scanned for kmers representative of AmFV genomic sequence. Samples with kmer counts above specified thresholds were downloaded in full for mapping to reference sequences and de novo assembly. Results At least three distinct evolutionary lineages of AmFV exist. Clade 1 predominates in Europe but in the Americas and Africa it is replaced by the other clades as infection level increases in hosts. Only clade 3 was found at high relative abundance in hosts with African ancestry, whereas all clades achieved high relative abundance in bees of non-African ancestry. In Europe and Africa, clade 2 was generally detected only in low-level infections but was locally dominant in some North American samples. The geographic distribution of clade 3 was consistent with an introduction to the Americas with 'Africanized' honey bees in the 1950s. Localized genomic regions of very high nucleotide divergence in individual isolates suggest recombination with additional, as-yet unidentified AmFV lineages. A set of 155 high-confidence ORFs was annotated based on evolutionary conservation in six AmFV genome sequences representative of the three clades. Pairwise protein-level identity averaged 94.6% across ORFs (range 77.1-100%), which generally exhibited low evolutionary rates and moderate to strong codon bias. However, no robust example of positive diversifying selection on coding sequence was found in these alignments. Most of the genome was detected in RNA short-read alignments. Transcriptome assembly often yielded contigs in excess of 50 kb and containing ORFs in both orientations, and the termini of long transcripts were associated with tandem repeats. Lower levels of AmFV RNA were detected in brain tissue compared to abdominal tissue, and a distinct set of ORFs had minimal to no detectable expression in brain tissue. A scan of DNA accessions from the parasitic mite Varroa destructor was inconclusive with respect to replication in that species. Discussion Collectively, these results expand our understanding of this enigmatic virus, revealing transcriptional complexity and co-evolutionary associations with host lineage.
Collapse
|
3
|
Li N, Li C, Hu T, Li J, Zhou H, Ji J, Wu J, Kang W, Holmes EC, Shi W, Xu S. Nationwide genomic surveillance reveals the prevalence and evolution of honeybee viruses in China. MICROBIOME 2023; 11:6. [PMID: 36631833 PMCID: PMC9832778 DOI: 10.1186/s40168-022-01446-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The economic and environmental value of honeybees has been severely challenged in recent years by the collapse of their colonies worldwide, often caused by outbreaks of infectious diseases. However, our understanding of the diversity, prevalence, and transmission of honeybee viruses is largely obscure due to a lack of large-scale and longitudinal genomic surveillance on a global scale. RESULTS We report the meta-transcriptomic sequencing of nearly 2000 samples of the two most important economic and widely maintained honeybee species, as well as an associated ectoparasite mite, collected across China during 2016-2019. We document the natural diversity and evolution of honeybee viruses in China, providing evidence that multiple viruses commonly co-circulate within individual bee colonies. We also expanded the genomic data for 12 important honeybee viruses and revealed novel genetic variants and lineages associated with China. We identified more than 23 novel viruses from the honeybee and mite viromes, with some exhibiting ongoing replication in their respective hosts. Together, these data provide additional support to the idea that mites are an important reservoir and spill-over host for honeybee viruses. CONCLUSIONS Our data show that honeybee viruses are more widespread, prevalent, and genetically diverse than previously realized. The information provided is important in mitigating viral infectious diseases in honeybees, in turn helping to maintain sustainable productive agriculture on a global scale. Video Abstract.
Collapse
Affiliation(s)
- Nannan Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cixiu Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Juan Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Hong Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Jingkai Ji
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Jiangli Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Edward C Holmes
- Sydeny Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Weifeng Shi
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| | - Shufa Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Čukanová E, Moutelíková R, Prodělalová J. First detection of Lake Sinai virus in the Czech Republic: a potential member of a new species. Arch Virol 2022; 167:2213-2222. [PMID: 35925396 DOI: 10.1007/s00705-022-05548-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Lake Sinai virus (LSV) is one of over 20 honey bee viruses. Variants of LSV have been classified as members of two officially recognised species, Lake Sinai virus 1 and Lake Sinai virus 2. However, there are currently a limited number of whole-genome sequences, and the genetic variability of the virus indicates that additional species may need to be established. Extracted nucleic acid of 209 honey bee samples was screened by PCR for 11 honey bee viruses. LSV was the third most abundant virus (36.9% of positive samples), after Apis mellifera filamentous virus (72.2%) and deformed wing virus (52.5%). LSV-positive samples were analyzed further by PCR with primers targeting the region encoding the viral RNA-dependent RNA polymerase. Subsequently, the PCR products were sequenced, and the resulting sequences were used for a first round of phylogenetic analysis. Based on those results, several isolates were selected for whole-genome sequencing, and the complete genome sequences were used for additional phylogenetic analysis. The results indicated the presence of at least three genetically distinct groups of LSV in the Czech Republic, the most prevalent one being related to LSV 2 but too dissimilar to be considered a member of the same species. Two sequences of a major LSV strain cluster native to the Czech Republic were determined, representing the first Czech LSV strains published to date.
Collapse
Affiliation(s)
- Eliška Čukanová
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
- Department of Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.
| | | | - Jana Prodělalová
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| |
Collapse
|
5
|
The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations. mSystems 2022; 7:e0007222. [PMID: 35532210 PMCID: PMC9239248 DOI: 10.1128/msystems.00072-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Western honey bee,
Apis mellifera
, is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping.
Collapse
|
6
|
Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses 2022; 14:v14020227. [PMID: 35215821 PMCID: PMC8877953 DOI: 10.3390/v14020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Insect pollinators provide major pollination services for wild plants and crops. Honeybee viruses can cause serious damage to honeybee colonies. However, viruses of other wild pollinating insects have yet to be fully explored. In the present study, we used RNA sequencing to investigate the viral diversity of 50 species of wild pollinating insects. A total of 3 pathogenic honeybee viruses, 8 previously reported viruses, and 26 novel viruses were identified in sequenced samples. Among these, 7 novel viruses were shown to be closely related to honeybee pathogenic viruses, and 4 were determined to have potential pathogenicity for their hosts. The viruses detected in wild insect pollinators were mainly from the order Picornavirales and the families Orthomyxoviridae, Sinhaliviridae, Rhabdoviridae, and Flaviviridae. Our study expanded the species range of known insect pollinator viruses, contributing to future efforts to protect economic honeybees and wild pollinating insects.
Collapse
|
7
|
Thaduri S, Marupakula S, Terenius O, Onorati P, Tellgren-Roth C, Locke B, de Miranda JR. Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees. Sci Rep 2021; 11:23214. [PMID: 34853367 PMCID: PMC8636477 DOI: 10.1038/s41598-021-02652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.
Collapse
Affiliation(s)
- Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Srisailam Marupakula
- Department of Forestry Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Olle Terenius
- Department of Cellular and Molecular Biology, BioMedical Centre, Uppsala University, Husargatan 3, 751-24, Uppsala, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | | | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| |
Collapse
|
8
|
Šimenc L, Knific T, Toplak I. The Comparison of Honeybee Viral Loads for Six Honeybee Viruses (ABPV, BQCV, CBPV, DWV, LSV3 and SBV) in Healthy and Clinically Affected Honeybees with TaqMan Quantitative Real-Time RT-PCR Assays. Viruses 2021; 13:v13071340. [PMID: 34372546 PMCID: PMC8310196 DOI: 10.3390/v13071340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/17/2023] Open
Abstract
The viral loads of acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Lake Sinai virus 3 (LSV3), and sacbrood bee virus (SBV) were determined in samples with the use of quantitative TaqMan real-time reverse transcription and polymerase chain reaction (RT-qPCR). A total of 108 samples of healthy adult honeybees from four differently located apiaries and samples of honeybees showing different clinical signs of viral infections from 89 apiaries were collected throughout Slovenia. The aim of this study was to discover correlations between viral loads and clinical signs in adult honeybees and confirm previously set threshold viral load levels between healthy and clinically affected honeybees. Within this study, two new RT-qPCR assays for quantification of LSV3 and SBV were developed. Statistically significant differences in viral loads of positive samples were identified between healthy and clinically affected honeybees for ABPV, CBPV, DWV, and SBV, while for BQCV and LSV3, no statistical differences were observed between both groups. Despite high detected LSV3 prevalence and viral loads around 6.00 log10 viral copies/bee, this lineage probably has a limited impact on the health status of honeybee colonies. The determined viral loads between 3.94 log10 and 13.17 log10 in positive samples for six viruses, collected over 10 consecutive months, including winter, present additional information of high viral load variations in healthy honeybee colonies.
Collapse
Affiliation(s)
- Laura Šimenc
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
- Correspondence:
| | - Tanja Knific
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Ivan Toplak
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Daughenbaugh KF, Kahnonitch I, Carey CC, McMenamin AJ, Wiegand T, Erez T, Arkin N, Ross B, Wiedenheft B, Sadeh A, Chejanovsky N, Mandelik Y, Flenniken ML. Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1. Viruses 2021; 13:291. [PMID: 33673324 PMCID: PMC7917660 DOI: 10.3390/v13020291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Bees are important plant pollinators in agricultural and natural ecosystems. High average annual losses of honey bee (Apis mellifera) colonies in some parts of the world, and regional population declines of some mining bee species (Andrena spp.), are attributed to multiple factors including habitat loss, lack of quality forage, insecticide exposure, and pathogens, including viruses. While research has primarily focused on viruses in honey bees, many of these viruses have a broad host range. It is therefore important to apply a community level approach in studying the epidemiology of bee viruses. We utilized high-throughput sequencing to evaluate viral diversity and viral sharing in sympatric, co-foraging bees in the context of habitat type. Variants of four common viruses (i.e., black queen cell virus, deformed wing virus, Lake Sinai virus 2, and Lake Sinai virus NE) were identified in honey bee and mining bee samples, and the high degree of nucleotide identity in the virus consensus sequences obtained from both taxa indicates virus sharing. We discovered a unique bipartite + ssRNA Tombo-like virus, Andrena-associated bee virus-1 (AnBV-1). AnBV-1 infects mining bees, honey bees, and primary honey bee pupal cells maintained in culture. AnBV-1 prevalence and abundance was greater in mining bees than in honey bees. Statistical modeling that examined the roles of ecological factors, including floral diversity and abundance, indicated that AnBV-1 infection prevalence in honey bees was greater in habitats with low floral diversity and abundance, and that interspecific virus transmission is strongly modulated by the floral community in the habitat. These results suggest that land management strategies that aim to enhance floral diversity and abundance may reduce AnBV-1 spread between co-foraging bees.
Collapse
Affiliation(s)
- Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Idan Kahnonitch
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Charles C. Carey
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Alexander J. McMenamin
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Tanner Wiegand
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Tal Erez
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Naama Arkin
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Brian Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Asaf Sadeh
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Nor Chejanovsky
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Yael Mandelik
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
10
|
Tauber JP, Tozkar CÖ, Schwarz RS, Lopez D, Irwin RE, Adler LS, Evans JD. Colony-Level Effects of Amygdalin on Honeybees and Their Microbes. INSECTS 2020; 11:E783. [PMID: 33187240 PMCID: PMC7698215 DOI: 10.3390/insects11110783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022]
Abstract
Amygdalin, a cyanogenic glycoside, is found in the nectar and pollen of almond trees, as well as in a variety of other crops, such as cherries, nectarines, apples and others. It is inevitable that western honeybees (Apis mellifera) consistently consume amygdalin during almond pollination season because almond crops are almost exclusively pollinated by honeybees. This study tests the effects of a field-relevant concentration of amygdalin on honeybee microbes and the activities of key honeybee genes. We executed a two-month field trial providing sucrose solutions with or without amygdalin ad libitum to free-flying honeybee colonies. We collected adult worker bees at four time points and used RNA sequencing technology and our HoloBee database to assess global changes in microbes and honeybee transcripts. Our hypothesis was that amygdalin will negatively affect bee microbes and possibly immune gene regulation. Using a log2 fold-change cutoff at two and intraday comparisons, we show no large change of bacterial counts, fungal counts or key bee immune gene transcripts, due to amygdalin treatment in relation to the control. However, relatively large titer decreases in the amygdalin treatment relative to the control were found for several viruses. Chronic bee paralysis virus levels had a sharp decrease (-14.4) with titers then remaining less than the control, Black queen cell virus titers were lower at three time points (<-2) and Deformed wing virus titers were lower at two time points (<-6) in amygdalin-fed compared to sucrose-fed colonies. Titers of Lotmaria passim were lower in the treatment group at three of the four dates (<-4). In contrast, Sacbrood virus had two dates with relative increases in its titers (>2). Overall, viral titers appeared to fluctuate more so than bacteria, as observed by highly inconstant patterns between treatment and control and throughout the season. Our results suggest that amygdalin consumption may reduce several honeybee viruses without affecting other microbes or colony-level expression of immune genes.
Collapse
Affiliation(s)
- James P. Tauber
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| | - Cansu Ö. Tozkar
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
- Department of Agricultural Biotechnology, Faculty of Agriculture, Yüzüncü Yıl University, Van 65000, Turkey
| | - Ryan S. Schwarz
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA
| | - Dawn Lopez
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Jay D. Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| |
Collapse
|
11
|
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS One 2020; 15:e0237544. [PMID: 32898160 PMCID: PMC7478651 DOI: 10.1371/journal.pone.0237544] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023] Open
Abstract
Honey bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been associated with multiple abiotic and biotic factors, including pathogens, but the impact of virus infections on honey bee colony population size and survival are not well understood. To further investigate seasonal patterns of pathogen presence and abundance and the impact of viruses on honey bee colony health, commercially managed colonies involved in the 2016 California almond pollination event were monitored for one year. At each sample date, colony health and pathogen burden were assessed. Data from this 50-colony cohort study illustrate the dynamic nature of honey bee colony health and the temporal patterns of virus infection. Black queen cell virus, deformed wing virus, sacbrood virus, and the Lake Sinai viruses were the most readily detected viruses in honey bee samples obtained throughout the year. Analyses of virus prevalence and abundance revealed pathogen-specific trends including the overall increase in deformed wing virus abundance from summer to fall, while the levels of Lake Sinai virus 2 (LSV2) decreased over the same time period. Though virus prevalence and abundance varied in individual colonies, analyses of the overall trends reveal correlation with sample date. Total virus abundance increased from November 2015 (post-honey harvest) to the end of the almond pollination event in March 2016, which coincides with spring increase in colony population size. Peak total virus abundance occurred in late fall (August and October 2016), which correlated with the time period when the majority of colonies died. Honey bee colonies with larger populations harbored less LSV2 than weaker colonies with smaller populations, suggesting an inverse relationship between colony health and LSV2 abundance. Together, data from this and other longitudinal studies at the colony level are forming a better understanding of the impact of viruses on honey bee colony losses.
Collapse
|
12
|
Iwanowicz DD, Wu-Smart JY, Olgun T, Smart AH, Otto CRV, Lopez D, Evans JD, Cornman R. An updated genetic marker for detection of Lake Sinai Virus and metagenetic applications. PeerJ 2020; 8:e9424. [PMID: 32742773 PMCID: PMC7370930 DOI: 10.7717/peerj.9424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
Background Lake Sinai Viruses (LSV) are common RNA viruses of honey bees (Apis mellifera) that frequently reach high abundance but are not linked to overt disease. LSVs are genetically heterogeneous and collectively widespread, but despite frequent detection in surveys, the ecological and geographic factors structuring their distribution in A. mellifera are not understood. Even less is known about their distribution in other species. Better understanding of LSV prevalence and ecology have been hampered by high sequence diversity within the LSV clade. Methods Here we report a new polymerase chain reaction (PCR) assay that is compatible with currently known lineages with minimal primer degeneracy, producing an expected 365 bp amplicon suitable for end-point PCR and metagenetic sequencing. Using the Illumina MiSeq platform, we performed pilot metagenetic assessments of three sample sets, each representing a distinct variable that might structure LSV diversity (geography, tissue, and species). Results The first sample set in our pilot assessment compared cDNA pools from managed A. mellifera hives in California (n = 8) and Maryland (n = 6) that had previously been evaluated for LSV2, confirming that the primers co-amplify divergent lineages in real-world samples. The second sample set included cDNA pools derived from different tissues (thorax vs. abdomen, n = 24 paired samples), collected from managed A. mellifera hives in North Dakota. End-point detection of LSV frequently differed between the two tissue types; LSV metagenetic composition was similar in one pair of sequenced samples but divergent in a second pair. Overall, LSV1 and intermediate lineages were common in these samples whereas variants clustering with LSV2 were rare. The third sample set included cDNA from individual pollinator specimens collected from diverse landscapes in the vicinity of Lincoln, Nebraska. We detected LSV in the bee Halictus ligatus (four of 63 specimens tested, 6.3%) at a similar rate as A. mellifera (nine of 115 specimens, 7.8%), but only one H. ligatus sequencing library yielded sufficient data for compositional analysis. Sequenced samples often contained multiple divergent LSV lineages, including individual specimens. While these studies were exploratory rather than statistically powerful tests of hypotheses, they illustrate the utility of high-throughput sequencing for understanding LSV transmission within and among species.
Collapse
Affiliation(s)
- Deborah D Iwanowicz
- Leetown Science Center, U.S. Geological Survey, Kearneysville, WV, United States of America
| | - Judy Y Wu-Smart
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Tugce Olgun
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Autumn H Smart
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Clint R V Otto
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, ND, United States of America
| | - Dawn Lopez
- Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States of America
| | - Jay D Evans
- Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States of America
| | - Robert Cornman
- Fort Collins Science Center, United States Geological Survey, Fort Collins, CO, United States of America
| |
Collapse
|
13
|
Šimenc L, Kuhar U, Jamnikar-Ciglenečki U, Toplak I. First Complete Genome of Lake Sinai Virus Lineage 3 and Genetic Diversity of Lake Sinai Virus Strains From Honey Bees and Bumble Bees. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1055-1061. [PMID: 32207825 DOI: 10.1093/jee/toaa049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages: LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory.
Collapse
Affiliation(s)
- Laura Šimenc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| | - Urška Jamnikar-Ciglenečki
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| |
Collapse
|
14
|
McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses 2020; 12:E245. [PMID: 32098425 PMCID: PMC7077298 DOI: 10.3390/v12020245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Honey bees (Apismellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus-host interactions are involved in triggering antiviral stress response pathways.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|