1
|
Merchant HN, Hart DW, Bennett NC, Janse van Vuuren AK, Freeman MT, McKechnie AE, Faulkes CG, Mordaunt ND, Portugal SJ. Evolutionary shifts in the thermal biology of a subterranean mammal: the effect of habitat aridity. J Exp Biol 2024; 227:jeb247048. [PMID: 39422120 PMCID: PMC11698034 DOI: 10.1242/jeb.247048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Subterranean mammals representing a single subspecies occurring along an aridity gradient provide an appropriate model for investigating adaptive variation in thermal physiology with varying levels of precipitation and air temperature. This study examined the thermal physiological adaptations of common mole-rats (Cryptomys hottentotus hottentotus) across five populations along an aridity gradient, challenging the expectation that increased aridity would lead to reduced metabolic rate, lower body temperatures and broader thermoneutral zones. No significant, consistent differences in metabolic rate, body temperature or thermal conductance were observed between populations, suggesting uniform thermoregulatory mechanisms across habitats. Instead, behavioural strategies such as huddling and torpor may play a more prominent role than physiological adaptations in managing temperature regulation and water balance. The study also observed osmoregulatory differences, with populations employing distinct behavioural cooling strategies in response to water availability. These results underscore the need for further research into the responses of subterranean species to climate change, particularly in understanding how increasing global temperatures and aridification might influence species distribution if they lack the physiological capacity to adapt to future climatic conditions.
Collapse
Affiliation(s)
- Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4DQ, UK
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | | | - Marc T. Freeman
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | - Andrew E. McKechnie
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | - Chris G. Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4DQ, UK
| | - Nathan D. Mordaunt
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Gauteng 0002, South Africa
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
2
|
Buffenstein R, Smith M, Amoroso VG, Patel TT, Ross M, Bassanpal S, Park TJ, Delaney MA, Adams CR, Arroyo J, Fortman J. A New Laboratory Research Model: The Damaraland Mole-rat and Its Managed Care. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:683-693. [PMID: 39179367 PMCID: PMC11645877 DOI: 10.30802/aalas-jaalas-24-052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/26/2024]
Abstract
The Damaraland mole-rat (Fukomys damarensis) is a subterranean, hypoxia-tolerant, long-lived rodent endemic to southern and central Africa that is increasingly being used in laboratory research. Its husbandry needs and characteristics differ from traditional rodent research models. Here, we provide a brief overview of this species and discuss its captive housing and husbandry requirements for managed care and good health.
Collapse
Affiliation(s)
| | - Megan Smith
- Department of Biological Sciences, University of Illinois, Chicago, Illinois
| | - Vince G Amoroso
- Department of Biological Sciences, University of Illinois, Chicago, Illinois
| | - Tanvi T Patel
- Department of Biological Sciences, University of Illinois, Chicago, Illinois
| | - Marisa Ross
- Department of Biological Sciences, University of Illinois, Chicago, Illinois
| | - Sannam Bassanpal
- Department of Biological Sciences, University of Illinois, Chicago, Illinois
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois, Chicago, Illinois
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, Illinois; and
| | - Cynthia R Adams
- Biologic Resources Laboratory, University of Illinois, Chicago, Illinois
| | - Jose Arroyo
- Biologic Resources Laboratory, University of Illinois, Chicago, Illinois
| | - Jeffrey Fortman
- Biologic Resources Laboratory, University of Illinois, Chicago, Illinois
| |
Collapse
|
3
|
Šumbera R, Uhrová M, Montoya-Sanhueza G, Bryjová A, Bennett NC, Mikula O. Genetic diversity of the largest African mole-rat genus, Bathyergus. One, two or four species? Mol Phylogenet Evol 2024; 199:108157. [PMID: 39029550 DOI: 10.1016/j.ympev.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Recent advances in sequencing technology and phylogenetic methods allow us to solve puzzling taxonomic questions using detailed analyses of genetic diversity of populations and gene flow between them. The genus of solitary-living dune mole-rat, Bathyergus, is quite unique among six genera of African mole-rats. The animals are by far the largest and the only scratch digging mole-rat genus possessing a skull less adapted to digging, grooved upper incisors, and more surface locomotor activity. Most authors recognize two species of dune mole-rats, B. suillus and B. janetta, but according to others, the genus is monotypic. In addition, recent molecular studies have revealed cryptic genetic diversity and suggested the existence of up to four species. In our study, we used mitochondrial and genome-wide nuclear data collected throughout the distribution of the genus to investigate the number of species. In agreement with previous studies, we found Bathyergus to be differentiated into several distinct lineages, but we also found evidence for a degree of gene flow between some of them. Furthermore, we confirmed that B. janetta is nested within B. suillus, making the latter paraphyletic and we documented an instance of local mitochondrial introgression between these two nominal species. Phylogeographic structure of the genus was found to be very shallow. Although traditionally dated to the Miocene, we found the first split within the genus to be much younger estimated to 0.82 Ma before present. Genealogical distinctiveness of some lineages was very low, and the coancestry matrix showed extensive sharing of closely related haplotypes throughout the genus. Accordingly, Infomap clustering on the matrix showed all populations to form a single cluster. Overall, our study tends to support the existence of only one species of Bathyergus namely, B. suillus. Environmental niche modelling confirmed its dependence on sandy soils and the preference for soils with relatively high carbon content. Bayesian skyline plots indicate recent population decline in the janetta lineage, probably related to global environmental change.
Collapse
Affiliation(s)
- R Šumbera
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic.
| | - M Uhrová
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic
| | - G Montoya-Sanhueza
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile (UACh), Valdivia, Chile
| | - A Bryjová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - O Mikula
- Department of Zoology, Faculty of Sciences, University of South Bohemia in České Budějovice, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
4
|
Merchant HN, Portugal SJ, Bennett NC, Janse van Vuuren AK, Faulkes CG, Bowen J, Hart DW. New insights into morphological adaptation in common mole-rats ( Cryptomys hottentotus hottentotus) along an aridity gradient. Ecol Evol 2024; 14:e11301. [PMID: 38651162 PMCID: PMC11033624 DOI: 10.1002/ece3.11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Morphological adaptation is the change in the form of an organism that benefits the individual in its current habitat. Mole-rats (family Bathyergidae), despite being subterranean, are impacted by both local and broad-scale environmental conditions that occur above ground. Common mole-rats (Cryptomys hottentotus hottentotus) present an ideal mammalian model system for the study of morphological variation in response to ecology, as this species is found along an aridity gradient and thus can be sampled from geographically non-overlapping populations of the same species along an environmental longitudinal cline. Using the mass of five internal organs, ten skeletal measurements and 3D morphometric analyses of skulls, we assessed the morphology of wild non-breeding individuals from five common mole-rat populations in South Africa. We found that the body mass and mean relative mass of the spleen and kidneys in arid populations was larger, and individuals from arid regions possessed shorter legs and larger inter-shoulder widths compared to individuals from mesic regions. Additionally, arid populations demonstrated greater skull depth, and shape change of features such as angular processes of the lower jaw than mesic individuals, indicating that these distinct geographic populations show differences corresponding to the aridity gradient, potentially in response to environmental factors such as the variation in food sources found between different habitats, in addition to different soil compositions found in the different regions. Arid populations potentially require a stronger jaw and neck musculature associated with mastication to chew xeric-adapted plants and to dig through hard soil types, whereas mesic populations excavate through soft, looser soil and may make use of their front limbs to aid the movement of soils when digging. Aridity influences the morphology of this species and could indicate the impact of environmental changes on speciation and mammalian skull morphology.
Collapse
Affiliation(s)
- Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental SciencesRoyal Holloway University of LondonEgham, SurreyUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental SciencesRoyal Holloway University of LondonEgham, SurreyUK
| | - Nigel C. Bennett
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaGautengSouth Africa
| | | | - Chris G. Faulkes
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - James Bowen
- Faculty of Science, Technology, Engineering, and MathematicsOpen UniversityMilton KeynesUK
| | - Daniel W. Hart
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
5
|
Willems F, Channing A. The status of Tomopterna pulchra Boulenger, 1896 (Anura: Pyxicephalidae). Zootaxa 2023; 5374:361-389. [PMID: 38220855 DOI: 10.11646/zootaxa.5374.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 01/16/2024]
Abstract
Tomopterna pulchra (Boulenger, 1896) was described from Lake Tanganyika based on a single specimen. It was synonymised with Tomopterna tuberculosa (Boulenger, 1882) by Loveridge (1957) who noted that it did not fully agree with the description of T. tuberculosa, especially in the difference in dorsal colouration. Genetic differences show that two species are confused, although their advertisement calls and morphology are similar, except for the presence of a pale vertebral stripe mostly in eastern populations. We consider the advertisement calls, morphology, and genetic differences, and remove Tomopterna pulchra (Boulenger, 1896) from the synonymy of Tomopterna tuberculosa. Divergence dating shows that these two species separated in the mid-Miocene. Tomopterna pulchra breeds in rocky habitats, whereas T. tuberculosa breeds in sandy areas, typical of the genus. Based on genetically confirmed specimens, presently T. tuberculosa is known in the west (Angola and Namibia) while T. pulchra is only known from the east (Zambia and Tanzania). The examination of specimens for the presence or absence of a vertebral stripe infers that these species are widespread. Further work is required to determine if the two species are sympatric, and the extent of their ranges.
Collapse
Affiliation(s)
- Frank Willems
- Kigelia Solutions/Frank Willems Guiding and Ecology; Chisamba Park; PO Box 12; Fringilla; Zambia.
| | - Alan Channing
- Unit for Environmental Sciences and Management; North-West University; Potchefstroom 2520; South Africa.
| |
Collapse
|
6
|
Jacobs PJ, Hart DW, Merchant HN, Voigt C, Bennett NC. The Evolution and Ecology of Oxidative and Antioxidant Status: A Comparative Approach in African Mole-Rats. Antioxidants (Basel) 2023; 12:1486. [PMID: 37627481 PMCID: PMC10451868 DOI: 10.3390/antiox12081486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The naked mole-rat of the family Bathyergidae has been the showpiece for ageing research as they contradict the traditional understanding of the oxidative stress theory of ageing. Some other bathyergids also possess increased lifespans, but there has been a remarkable lack of comparison between species within the family Bathyergidae. This study set out to investigate how plasma oxidative markers (total oxidant status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI)) differ between five species and three subspecies of bathyergids, differing in their maximum lifespan potential (MLSP), resting metabolic rate, aridity index (AI), and sociality. We also investigated how oxidative markers may differ between captive and wild-caught mole-rats. Our results reveal that increased TOS, TAC, and OSI are associated with increased MLSP. This pattern is more prevalent in the social-living species than the solitary-living species. We also found that oxidative variables decreased with an increasing AI and that wild-caught individuals typically have higher antioxidants. We speculate that the correlation between higher oxidative markers and MLSP is due to the hypoxia-tolerance of the mole-rats investigated. Hormesis (the biphasic response to oxidative stress promoting protection) is a likely mechanism behind the increased oxidative markers observed and promotes longevity in some members of the Bathyergidae family.
Collapse
Affiliation(s)
- Paul. J. Jacobs
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK;
| | - Cornelia Voigt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| |
Collapse
|
7
|
Šumbera R, Uhrová M, Begall S, Caspar KR, Jerkovičová D, Van Daele P, Chitaukali WN, Faulkes CG, Bennett NC, Johannes C, Burda H, Mikula O. The biology of an isolated Mashona mole-rat population from southern Malawi, with implications for the diversity and biogeography of the genus Fukomys. ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-023-00604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
AbstractThe Mashona mole-rat, Fukomys darlingi (Thomas, 1895), is a little studied social African mole-rat (Bathyergidae) from south-astern Africa. Here, we present an integrative study characterizing the genetic diversity of populations assigned to F. darlingi with special focus on animals from Nsanje, southern Malawi. These mole-rats show pronounced differences in body mass and general appearance compared to nominate F. darlingi from Zimbabwe and Mozambique, but their taxonomic status has so far remained unclear. A genetic analysis encompassing all major lineages of the genus Fukomys suggests that this population indeed represents a deeply nested lineage within the F. darlingi clade. The karyotype of the Nsanje mole-rats also corresponds to that of the nominate form, being 2n = 54. While both nuclear and mitochondrial data agree about the assignment of the Nsanje mole-rats to F. darlingi, our analyses revealed substantial mitonuclear discordance for other branches within the Fukomys phylogenetic tree. Nsanje mole-rats are significantly larger than nominate F. darlingi and their ontogeny and reproduction closely resemble similar-sized congeneric species rather than the nominate population. The somatic growth of the Nsanje form is the slowest of all African mole-rats. The maximum life span of F. darlingi is at least 19 years. The observed differences between nominate F. darlingi and mole-rats from Nsanje may be attributed mainly to their different body mass. Our study highlights the advantages of an integrative approach for understanding the diversity of African mole-rats and emphasizes the great intraspecific variability that may be encountered in these underground-dwelling rodents.
Collapse
|
8
|
Valkó O, Kelemen A, Kiss O, Deák B. Patch and matrix characteristics determine the outcome of ecosystem engineering by mole rats in dry grasslands. PeerJ 2022; 10:e14582. [PMID: 36540798 PMCID: PMC9760028 DOI: 10.7717/peerj.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Burrowing mammals are important ecosystem engineers, especially in open ecosystems where they create patches that differ from the surrounding matrix in their structure or ecosystem functions. Methods We evaluated the fine-scale effects of a subterranean ecosystem engineer, the Lesser blind mole rat on the vegetation composition of sandy dry grasslands in Hungary. In this model system we tested whether the characteristics of the patch (mound size) and the matrix (total vegetation cover in the undisturbed grassland) influence the structural and functional contrasts between the mounds and the undisturbed grasslands. We sampled the vegetation of 80 mounds and 80 undisturbed grassland plots in four sites, where we recorded the total vegetation cover, and the occurrence and cover of each vascular plant species. We used two proxies to characterise the patches (mounds) and the matrix (undisturbed grassland): we measured the perimeter of the mounds and estimated the total vegetation cover of the undisturbed grasslands. First, we compared the vegetation characteristics of the mounds and the surrounding grasslands with general linear models. Second, we characterised the contrasts between the mounds and the undisturbed grassland by relative response indices (RRIs) of the vegetation characteristics studied in the first step. Results Species composition of the vegetation of the mounds and undisturbed grasslands was well separated in three out of the four study sites. Mounds were characterised by lower vegetation cover, lower cover of perennial graminoids, and higher diversity, and evenness compared to undisturbed grasslands. The contrast in vegetation cover between mounds and undisturbed grasslands increased with decreasing patch size. Increasing vegetation cover in the matrix grasslands increased the contrasts between the mounds and undisturbed grasslands in terms of total cover, perennial graminoid cover, diversity, and evenness. Our results suggest that mole rat mounds provide improved establishment conditions for subordinate species, because they are larger than other types of natural gaps and are characterised by less intense belowground competition. The ecosystem engineering effect, i.e., the contrast between the patches and the matrix was the largest in the more closed grasslands.
Collapse
Affiliation(s)
- Orsolya Valkó
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - András Kelemen
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary,Department of Ecology, University of Szeged, Szeged, Hungary
| | - Orsolya Kiss
- Institute of Animal Sciences and Wildlife Management, Faculty of Agriculture, University of Szeged, Hódmezővásárhely, Hungary
| | - Balázs Deák
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| |
Collapse
|
9
|
Montoya-Sanhueza G, Bennett NC, Chinsamy A, Šumbera R. Functional anatomy and disparity of the postcranial skeleton of African mole-rats (Bathyergidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.857474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The burrowing adaptations of the appendicular system of African mole-rats (Bathyergidae) have been comparatively less investigated than their cranial adaptations. Because bathyergids exhibit different digging modes (scratch-digging and chisel-tooth digging) and social systems (from solitary to highly social), they are a unique group to assess the effects of distinct biomechanical regimes and social organization on morphology. We investigated the morphological diversity and intraspecific variation of the appendicular system of a large dataset of mole-rats (n = 244) including seven species and all six bathyergid genera. Seventeen morpho-functional indices from stylopodial (femur, humerus) and zeugopodial (ulna, tibia-fibula) elements were analyzed with multivariate analysis. We hypothesized that scratch-diggers (i.e., Bathyergus) would exhibit a more specialized skeletal phenotype favoring powerful forelimb digging as compared to the chisel-tooth diggers, and that among chisel-tooth diggers, the social taxa will exhibit decreased limb bone specializations as compared to solitary taxa due to colony members sharing the costs of digging. Our results show that most bathyergids have highly specialized fossorial traits, although such specializations were not more developed in Bathyergus (or solitary species), as predicted. Most chisel tooth-diggers are equally, or more specialized than scratch-diggers. Heterocephalus glaber contrasted significantly from other bathyergids, presenting a surprisingly less specialized fossorial morphology. Our data suggests that despite our expectations, chisel-tooth diggers have a suite of appendicular adaptations that have allowed them to maximize different aspects of burrowing, including shoulder and neck support for forward force production, transport and removal of soils out of the burrow, and bidirectional locomotion. It is probably that both postcranial and cranial adaptations in bathyergids have played an important role in the successful colonization of a wide range of habitats and soil conditions within their present distribution.
Collapse
|
10
|
Zöttl M, Bensch HM, Finn KT, Hart DW, Thorley J, Bennett NC, Braude S. Capture Order Across Social Bathyergids Indicates Similarities in Division of Labour and Spatial Organisation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.877221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The social mole-rats of the family Bathyergidae show elaborate social organisation that may include division of labour between breeders and non-breeders as well as across non-breeders within their groups. However, comparative behavioural data across the taxa are rare and contrasts and similarities between species are poorly understood. Field studies of social bathyergids usually involve capturing all group members until the entire group is captured. Because each animal is only captured once and traps are typically placed in close proximity to active foraging areas, the order in which animals are captured provides an indication of the foraging activity of different individuals and of the spatial organisation of the group within the burrow system. Here, we compare the association of capture order with breeding status, sex, and body mass in four species and subspecies of social bathyergids, which vary in group size and represent all three social genera within the family Bathyergidae. We show that in naked and Damaraland mole-rats (Heterocephalus glaber and Fukomys damarensis), male and female breeders are captured later than non-breeders, whereas in two different subspecies of the genus Cryptomys only female breeders are captured later than non-breeders. The effect sizes vary largely and are 10 times larger in naked mole-rats as compared to Fukomys and 3–4 times larger than in Cryptomys. Among non-breeders, sex effects are notably absent in all species and body mass predicted capture order in both naked and Damaraland mole-rats. In naked mole-rats, larger non-breeders were captured earlier than smaller ones, whereas in Damaraland mole-rats intermediate-sized non-breeders were captured first. Our data suggest that there are similarities in behavioural structure and spatial organisation across all social bathyergid species, though the most pronounced differences within groups are found in naked mole-rats.
Collapse
|
11
|
Montoya-Sanhueza G, Šaffa G, Šumbera R, Chinsamy A, Jarvis JUM, Bennett NC. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats. Commun Biol 2022; 5:526. [PMID: 35650336 PMCID: PMC9159980 DOI: 10.1038/s42003-022-03480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic.
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa.
| | - Gabriel Šaffa
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Jennifer U M Jarvis
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Geographic Mosaic of Extensive Genetic Variations in Subterranean Mole Voles Ellobius alaicus as a Consequence of Habitat Fragmentation and Hybridization. Life (Basel) 2022; 12:life12050728. [PMID: 35629395 PMCID: PMC9146075 DOI: 10.3390/life12050728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Restricted mobility, sociality, and high inbreeding—characteristic for subterranean mammals—lead to rapid changes in their genome structure. Up to now, the Alay mole vole Ellobius alaicus was a data-deficient species; its spatial and phylogenetic relationships with a sibling species, E. tancrei, were not clarified. We carried out a genetic analysis including differential G-banding of chromosomes and mitochondrial (cytb) and nuclear gene (XIST and IRBP) sequencing. The phylogenetic reconstruction based on cytb represented the expected phylogenetic relationships of two species. Using the XIST, we revealed two new lineages among E. alaicus from the Alay Valley (Southern Kyrgyzstan). Analysis of IRBP demonstrated presence of the specific genotype in most of E. alaicus specimens, but also revealed the haplotype, typical for E. tancrei, in some Alay mole voles. The results may be explained as persistence of ancestral gene polymorphism in E. alaicus or limited interspecific hybridization with E. tancrei. Several chromosomal forms were revealed in E. alaicus in the Alay Valley. We propose that ‘mosaic’ genetic polymorphism might appear in E. alaicus due to fragmentation of their habitats in highlands of the Alay Valley, Tien Shan, and Pamir-Alay as well as due to hybridization with E. tancrei or persistence of ancestral polymorphisms.
Collapse
|
13
|
Developmental Plasticity in the Ossification of the Proximal Femur of Heterocephalus glaber (Bathyergidae, Rodentia). J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09602-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Buffenstein R, Amoroso V, Andziak B, Avdieiev S, Azpurua J, Barker AJ, Bennett NC, Brieño‐Enríquez MA, Bronner GN, Coen C, Delaney MA, Dengler‐Crish CM, Edrey YH, Faulkes CG, Frankel D, Friedlander G, Gibney PA, Gorbunova V, Hine C, Holmes MM, Jarvis JUM, Kawamura Y, Kutsukake N, Kenyon C, Khaled WT, Kikusui T, Kissil J, Lagestee S, Larson J, Lauer A, Lavrenchenko LA, Lee A, Levitt JB, Lewin GR, Lewis Hardell KN, Lin TD, Mason MJ, McCloskey D, McMahon M, Miura K, Mogi K, Narayan V, O'Connor TP, Okanoya K, O'Riain MJ, Park TJ, Place NJ, Podshivalova K, Pamenter ME, Pyott SJ, Reznick J, Ruby JG, Salmon AB, Santos‐Sacchi J, Sarko DK, Seluanov A, Shepard A, Smith M, Storey KB, Tian X, Vice EN, Viltard M, Watarai A, Wywial E, Yamakawa M, Zemlemerova ED, Zions M, Smith ESJ. The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology. Biol Rev Camb Philos Soc 2022; 97:115-140. [PMID: 34476892 PMCID: PMC9277573 DOI: 10.1111/brv.12791] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Collapse
Affiliation(s)
| | - Vincent Amoroso
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Blazej Andziak
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | | | - Jorge Azpurua
- Department of AnesthesiologyStony Brook University101 Nicolls RoadStony BrookNY11794U.S.A.
| | - Alison J. Barker
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoria0002South Africa
| | - Miguel A. Brieño‐Enríquez
- Department of Obstetrics, Gynecology & Reproductive MedicineMagee‐Womens Research Institute204 Craft AvenuePittsburghPA15213U.S.A.
| | - Gary N. Bronner
- Department Biological SciencesRondeboschCape Town7701South Africa
| | - Clive Coen
- Reproductive Neurobiology, Division of Women's HealthSchool of Medicine, King's College LondonWestminster Bridge RoadLondonSE1 7EHU.K.
| | - Martha A. Delaney
- Zoological Pathology ProgramUniversity of Illinois3505 Veterinary Medicine Basic Sciences Building, 2001 S Lincoln AvenueUrbanaIL6180U.S.A.
| | - Christine M. Dengler‐Crish
- Department of Pharmaceutical SciencesNortheast Ohio Medical University4209 State Route 44RootstownOH44272U.S.A.
| | - Yael H. Edrey
- Northwest Vista College3535 N. Ellison DriveSan AntonioTX78251U.S.A.
| | - Chris G. Faulkes
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSU.K.
| | - Daniel Frankel
- School of EngineeringNewcastle UniversityMerz CourtNewcastle Upon TyneNE1 7RUU.K.
| | - Gerard Friedlander
- Université Paris DescartesFaculté de Médecine12 Rue de l'École de MédecineParis5006France
| | - Patrick A. Gibney
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Vera Gorbunova
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Christopher Hine
- Cleveland ClinicLerner Research Institute9500 Euclid AvenueClevelandOH44195U.S.A.
| | - Melissa M. Holmes
- Department of PsychologyUniversity of Toronto Mississauga3359 Mississauga Road NorthMississaugaONL5L 1C6Canada
| | | | - Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Cynthia Kenyon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Walid T. Khaled
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Joseph Kissil
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Samantha Lagestee
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - John Larson
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Amanda Lauer
- Department of OtolaryngologyJohns Hopkins School of MedicineBaltimoreMD21205U.S.A.
| | - Leonid A. Lavrenchenko
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Angela Lee
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Jonathan B. Levitt
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Gary R. Lewin
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | | | - TzuHua D. Lin
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Matthew J. Mason
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Dan McCloskey
- College of Staten Island in the City University of New York2800 Victory BlvdStaten IslandNY10314U.S.A.
| | - Mary McMahon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Vikram Narayan
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Kazuo Okanoya
- Department of Life SciencesThe University of Tokyo7‐3‐1 HongoTokyo153‐8902Japan
| | | | - Thomas J. Park
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Ned J. Place
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Katie Podshivalova
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Sonja J. Pyott
- Groningen Department of OtorhinolaryngologyUniversity Medical CenterPostbus 30.001GroningenRB9700The Netherlands
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University Hospital CologneJoseph‐Stelzmann‐Street 26Cologne50931Germany
| | - J. Graham Ruby
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center4939 Charles Katz Dr.San AntonioTX78229U.S.A.
| | - Joseph Santos‐Sacchi
- Department of NeuroscienceYale University School of Medicine200 South Frontage Road, SHM C‐303New HavenCT06510U.S.A.
| | - Diana K. Sarko
- Department of AnatomySchool of Medicine, Southern Illinois University975 S. NormalCarbondaleIL62901U.S.A.
| | - Andrei Seluanov
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Alyssa Shepard
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Megan Smith
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kenneth B. Storey
- Department of BiologyCarleton University1125 Colonel By DriveOttawaONK1S 5B6Canada
| | - Xiao Tian
- Department of Genetics – Blavatnik InstituteHarvard Medical School77 Avenue Louis PasteurBostonMA02115U.S.A.
| | - Emily N. Vice
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Mélanie Viltard
- Fondation pour la recherche en PhysiologieUniversité Catholique de LouvainClos Chapelle‐aux‐Champs 30Woluwe‐saint Lambert1200Belgium
| | - Akiyuki Watarai
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Ewa Wywial
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Masanori Yamakawa
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Elena D. Zemlemerova
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Michael Zions
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Ewan St. John Smith
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| |
Collapse
|
15
|
Uhrová M, Mikula O, Bennett NC, Van Daele P, Piálek L, Bryja J, Visser JH, Jansen van Vuuren B, Šumbera R. Species limits and phylogeographic structure in two genera of solitary African mole-rats Georychus and Heliophobius. Mol Phylogenet Evol 2021; 167:107337. [PMID: 34757170 DOI: 10.1016/j.ympev.2021.107337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
African mole-rats (Bathyergidae) are an intensively studied family of subterranean rodents including three highly social and three solitary genera. Although their phylogenetic interrelations are clear, genetic diversity and the number of species within each genus is much less certain. Among the solitary genera, Heliophobius and Georychus were for a long time considered as monotypic, but molecular studies demonstrated strong phylogeographic structure within each genus and proposed that they represent complexes of cryptic species. The present study re-evaluates their internal genetic/phylogenetic structure using a combination of methodological approaches. We generated datasets of one mitochondrial and six specifically selected nuclear markers as well as of a large number of double digest restriction site associated (ddRAD) loci and then applied species delimitation analyses based on the multispecies coalescent model or clustering on co-ancestry matrices. The population structure was largely congruent across all analyses, but the methods differed in their resolution scale when determining distinct gene pools. While the multispecies coalescent model distinguished five Georychus and between eleven to thirteen Heliophobius gene pools in both Sanger sequenced and ddRAD loci, two clustering algorithms revealed significantly finer or coarser structure in ddRAD based co-ancestry matrices. Tens of clusters were distinguished by fineRADstructure and one (in Georychus) or two clusters (in Heliophobius) by Infomap. The divergence dating of the bathyergid phylogeny estimated that diversification within both genera coincided with the onset of the Pleistocene and was likely driven by repeated large-scale climatic changes. Based on this updated genetic evidence, we suggest recognizing one species of Georychus and two species of Heliophobius, corresponding to a northern and southern major lineage, separated by the Eastern Arc Mountains. Yet, the final taxonomic revision should await integrated evidence stemming from e.g.. morphological, ecological, or behavioral datasets.
Collapse
Affiliation(s)
- M Uhrová
- Department of Zoology, Faculty of Sciences, University of South Bohemia
| | - O Mikula
- Department of Zoology, Faculty of Sciences, University of South Bohemia; Institute of Vertebrate Biology, Czech Academy of Sciences
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, 0002, South Africa
| | - P Van Daele
- Department of Zoology, Faculty of Sciences, University of South Bohemia
| | - L Piálek
- Department of Zoology, Faculty of Sciences, University of South Bohemia
| | - J Bryja
- Institute of Vertebrate Biology, Czech Academy of Sciences
| | - J H Visser
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, South Africa; Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa
| | - B Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - R Šumbera
- Department of Zoology, Faculty of Sciences, University of South Bohemia
| |
Collapse
|
16
|
Siegmann S, Feitsch R, Hart DW, Bennett NC, Penn DJ, Zöttl M. Naked mole‐rats (
Heterocephalus glaber
) do not specialise in cooperative tasks. Ethology 2021. [DOI: 10.1111/eth.13160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Susanne Siegmann
- Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Austria
| | - Romana Feitsch
- Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Austria
| | - Daniel W. Hart
- Department of Zoology and Entomology Mammal Research Institute University of Pretoria Pretoria South Africa
| | - Nigel C. Bennett
- Department of Zoology and Entomology Mammal Research Institute University of Pretoria Pretoria South Africa
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Austria
| | - Markus Zöttl
- Ecology and Evolution in Microbial Model Systems EEMiS Department of Biology and Environmental Science Linnaeus University Kalmar Sweden
| |
Collapse
|
17
|
Caspar KR, Müller J, Begall S. Effects of Sex and Breeding Status on Skull Morphology in Cooperatively Breeding Ansell’s Mole-Rats and an Appraisal of Sexual Dimorphism in the Bathyergidae. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.638754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
African mole-rats of the genus Fukomys (Northern common mole-rats) combine a monogamous mating system and pronounced sexual size dimorphism; a pattern highly untypical for mammals. At the same time, they live in cooperatively breeding groups composed of reproductive and non-reproductive members of both sexes. How and to which degree sex and breeding status influence morphofunctional characters in eusocial mole-rats is not well characterized but essential to come to a comprehensive understanding of their peculiar social system. Here, we explore patterns of morphological differentiation in skulls of Ansell’s mole-rats (Fukomys anselli) by means of multivariate analysis of linear skull measurements combined with a 2D shape analysis of cranium and mandible. Compared to females, males display larger skulls relative to body size and show an expansion of the facial portion of the cranium, while reproductive status did not have an effect on any of the traits studied. We also show that species of Fukomys mole-rats display a scaling of relative sexual body size dimorphism in compliance to Rensch’s rule, which is deemed indicative of intense male intrasexual competition. For the bathyergid family as a whole, results of scaling analyses were more ambiguous, but also indicative of Rensch’s rule conformity. In line with genetic field data, our results point to a greater role of male-male conflicts in Fukomys than is traditionally assumed and support the notion that reproductive status does not correlate with morphofunctional segregation in these unusual rodents.
Collapse
|
18
|
Evolution Towards Fossoriality and Morphological Convergence in the Skull of Spalacidae and Bathyergidae (Rodentia). J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09550-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Voigt C, Medger K, Bennett NC. The oestrous cycle of the Damaraland mole‐rat revisited: evidence for induced ovulation. J Zool (1987) 2021. [DOI: 10.1111/jzo.12860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Voigt
- Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - K. Medger
- Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| |
Collapse
|
20
|
Doubell NS, Sahd L, Kotzé SH. Comparative forelimb morphology of scratch-digging and chisel-tooth digging African mole-rat species. J Morphol 2020; 281:1029-1046. [PMID: 32589809 DOI: 10.1002/jmor.21229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023]
Abstract
Bathyergus suillus (Cape dune mole-rat) and Heterocephalus glaber (naked mole-rat) are two species of subterranean burrowing rodents. Bathyergus suillus occurs in soft sandy soils and is regarded as a scratch-digger, while H. glaber is found in hard, compact soils and is a chisel-tooth digging species. The present study aimed to determine musculoskeletal differences in the forelimb of these two species. The muscles of the forelimb, back and neck were dissected to the points of origin and insertion in the left and right forelimbs, B. suillus (n = 7) and H. glaber (n = 5). Dissected muscles were photographed before maceration to demonstrate muscle attachments. The scapular spine, acromion process and clavicle were relatively straight in B. suillus. In comparison a curved scapular spine, acromion process and clavicle were observed in H. glaber. In both species, the clavicle rested on the greater tuberosity of the humerus. In B. suillus, the deltoid tuberosity was prominent and situated more distally on the humeral shaft compared to the indistinct, more proximally situated deltoid tuberosity in H. glaber. A prominent bony structure underlying the thenar pad as well as a cartilaginous protrusion beneath the hypothenar pad were observed on the palmar surface of the manus in B. suillus. Prominent claws were observed in B. suillus. A robust m. sternohyoideus was observed in H. glaber while mm. tensor fasciae antebrachii and coracobrachialis were absent. The flexors of the antebrachium of B. suillus had additional and enlarged attachment sites. The forelimb of B. suillus may be morphologically adapted for scratch-digging with relatively large and additional forelimb muscles and robust bones. In comparison, H. glaber had a reduction in the relative size, amount of muscles as well as number of attachment sites in the forelimb muscles, while the well-developed ventral neck muscles may facilitate neck and head stabilisation during chisel-tooth digging.
Collapse
Affiliation(s)
- Narusa S Doubell
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lauren Sahd
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sanet H Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
21
|
Cox PG, Faulkes CG, Bennett NC. Masticatory musculature of the African mole-rats (Rodentia: Bathyergidae). PeerJ 2020; 8:e8847. [PMID: 32231887 PMCID: PMC7100595 DOI: 10.7717/peerj.8847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
The Bathyergidae, commonly known as blesmols or African mole-rats, is a family of rodents well-known for their subterranean lifestyle and tunnelling behaviour. Four of the five extant bathyergid genera (Cryptomys, Fukomys, Georychus and Heliophobius) are chisel-tooth diggers, that is they dig through soil with their enlarged incisors, whereas the remaining genus (Bathyergus) is a scratch-digger, only using its forelimbs for burrowing. Heterocephalus glaber, the naked mole-rat, is also a chisel-tooth digger and was until recently included within the Bathyergidae (as the most basally branching genus), but has now been placed by some researchers into its own family, the Heterocephalidae. Given the importance of the masticatory apparatus in habitat construction in this group, knowledge and understanding of the morphology and arrangement of the jaw-closing muscles in Bathyergidae is vital for future functional analyses. Here, we use diffusible iodine-based contrast-enhanced microCT to reveal and describe the muscles of mastication in representative specimens of each genus of bathyergid mole-rat and to compare them to the previously described musculature of the naked mole-rat. In all bathyergids, as in all rodents, the masseter muscle is the most dominant component of the masticatory musculature. However, the temporalis is also a relatively large muscle, a condition normally associated with sciuromorphous rodents. Unlike their hystricomorphous relatives, the bathyergids do not show an extension of the masseter through the infraorbital foramen on to the rostrum (other than a very slight protrusion in Cryptomys and Fukomys). Thus, morphologically, bathyergids are protrogomorphous, although this is thought to be secondarily derived rather than retained from ancestral rodents. Overall, the relative proportions of the jaw-closing muscles were found to be fairly consistent between genera except in Bathyergus, which was found to have an enlarged superficial masseter and relatively smaller pterygoid muscles. It is concluded that these differences may be a reflection of the behaviour of Bathyergus which, uniquely in the family, does not use its incisors for digging.
Collapse
Affiliation(s)
- Philip G Cox
- Department of Archaeology and Hull York Medical School, University of York, York, UK
| | - Chris G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
22
|
Thermoregulatory differences in African mole-rat species from disparate habitats: Responses and limitations. J Therm Biol 2019; 88:102495. [PMID: 32125983 DOI: 10.1016/j.jtherbio.2019.102495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022]
Abstract
Individuals and populations possess physiological adaptations to survive local environmental conditions. To occur in different regions where ambient temperature varies, animals must adopt appropriate thermoregulatory mechanisms. Failure to adjust to environmental challenges may result in species distributional range shifts or decreased viability. African mole-rats (Bathyergidae) occupy various habitats in sub-Saharan Africa from deserts to montane regions to mesic coastal areas. We examined thermoregulatory characteristics of three African mole-rat species originating from disparate (montane, savannah, and arid/semi-arid) habitats. Animals were exposed to various ambient temperatures, whilst core body temperature and the surface temperature of different body parts were measured. Oxygen consumption was determined as a measure of heat production. Core body temperatures of Natal (montane) mole-rats (Cryptomys hottentotus natalensis) increased significantly at ambient temperatures >24.5 °C, while those of the highveld (Cryptomys hottentotus pretoriae) (savannah) and Damaraland (Fukomys damarensis) (arid/semi-arid) mole-rats remained within narrower ranges. In terms of surface temperature variation, while pedal surfaces were important in regulating heat loss in Natal and Damaraland mole-rats at high ambient temperatures, the ventral surface was important for heat dissipation in Damaraland and highveld mole-rats. This study provides evidence of the variation and limitations of thermo-physiological mechanisms for three mole-rat species relative to their habitats. Information on physiological adaptations to particular habitats may inform predictive modelling of species movements, declines, and extinctions in response to a changing environment, such as climate change.
Collapse
|