1
|
Kartika AI, Dafip M, Wijayanti N, Heriyanto DS, Haryana SM, Taroeno-Hariadi KW. Research trends in microRNA profiling as a biomarker for lung adenocarcinoma via liquid biopsy: A bibliometric analysis. NARRA J 2025; 5:e1372. [PMID: 40352245 PMCID: PMC12059829 DOI: 10.52225/narra.v5i1.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 05/14/2025]
Abstract
Research related to the development of diagnostic biomarkers in lung adenocarcinoma in various countries is important. Research on microRNA as a biomarker in lung adenocarcinoma varies depending on the population, specimen, and technology used for profiling and validation. The aim of this study was to map and analyze bibliometric data of publications related to the topic of microRNA as a candidate biomarker in lung adenocarcinoma and to determine any potential research gaps. A total of 8,506 articles were collected from Crossref, Google Scholar, Semantic Scholar, PubMed, and Scopus databases using Harzing's Publish or Perish platform. A systematic search was conducted using four keywords: "profiling," "validating," "microRNA," and "lung adenocarcinoma," and synonyms of these keywords based on the MeSH on NCBI. The data extraction process followed the chart from PRISMA-P. The article's elimination was conducted using Mendeley Desktop and then was analyzed based on the authors' keywords using VOSviewer and Biblioshiny. A bibliometric analysis of 692 relevant articles identified four primary research clusters: (1) microRNA (19 keywords), which highlights its potential as a biomarker for early detection and diagnosis; (2) lung adenocarcinoma (18 keywords), reflecting advancements in lung cancer research; (3) liquid biopsy (19 keywords), emphasizing the growing interest in non-invasive diagnostic methods; and (4) bioinformatics (nine keywords), underscoring the role of computational approaches in transcriptomic analysis. As a primary topic, microRNAs have become a focal point of research for diagnosing lung cancer across various stages and as biomarkers for cancer cell proliferation, invasion, migration, and metastasis. Numerous studies have demonstrated the successful application of microRNAs in lung cancer diagnosis in the last decade, although the reported types of microRNAs are inconsistent. Therefore, further research on this topic should be continuously conducted, particularly to validate the types of microRNAs and the types of environments that influence them.
Collapse
Affiliation(s)
- Aprilia I. Kartika
- Biotechnology Doctorate Study Program, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Medical Laboratory Technology, Faculty of Health and Nursing, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Muchamad Dafip
- Biotechnology Doctorate Study Program, Graduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Didik S. Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia M. Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kartika W. Taroeno-Hariadi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Internal Medicine, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Ge Q, Lin Z, Wang X, Jiang Z, Hu Y. A seven-LncRNA signature for prognosis prediction of patients with lung squamous cell carcinoma through tumor immune escape. Front Oncol 2025; 15:1511564. [PMID: 40196739 PMCID: PMC11973350 DOI: 10.3389/fonc.2025.1511564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a malignant disease associated with poor therapeutic responses and prognosis. Preliminary studies have shown that the dysregulation of long non-coding RNAs (LncRNAs) is linked to cancer development and prognosis. However, research on the role of LncRNAs in LUSC remains limited. Methods In this study, we aimed to develop a LncRNA signature for improved prognostic prediction in LUSC and to elucidate the underlying mechanisms. We utilized expression data of LncRNAs and clinical information from 471 LUSC patients in The Cancer Genome Atlas (TCGA), randomly dividing them into a training set (n=236) and a testing set (n=235). Results A prognostic signature model comprising seven LncRNAs was constructed using multivariate Cox regression analysis based on the training set. Using a risk score cutoff value of -0.12 (log2-transformed), patients were categorized into high-risk (n=101) and low-risk (n=370) groups. The high-risk group demonstrated significantly worse overall survival (OS) compared to the low-risk group (p<0.0001). The risk score showed strong prognostic predictive ability for LUSC patients, as evidenced by the area under the ROC curve (AUC: 0.66, 0.67, and 0.67) and nomogram analysis (C-index, calibration, and decision curve analysis) for 1-, 3-, and 5-year survival predictions. Independent prognostic factors for LUSC were identified, including risk group (HR=0.3, 95% CI: 0.22-0.4), stage (HR=1.78, 95% CI: 1.28-2.48), and age (HR=1.02, 95% CI: 1.00-1.04). KEGG enrichment analysis revealed that mRNAs influenced by the seven targeted LncRNAs, associated with immune evasion, were primarily linked to pathways such as chemical carcinogenesis, Th17 cell differentiation, NF-κB signaling, and proteoglycans in cancer. Expression levels of 14 target genes related to tumor immune tolerance were significantly suppressed, with eight confirmed via real-time PCR and western blot analysis. Additionally, CIBERSORT analysis of immune cell-related gene expression between normal and LUSC tissues indicated activation of the immune system in LUSC patients. Conclusion In conclusion, our findings highlight the clinical significance of the seven LncRNA signature in predicting survival outcomes for LUSC patients.
Collapse
Affiliation(s)
- Qiangqiang Ge
- Clinical Laboratory, Shangyu People’s Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Zhong Lin
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuequan Wang
- Department of Radiotherapy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhengli Jiang
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Yan Hu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Liu F, Wang G, Zhao L, Chen G, Dong L, Li Q, Zhu D. Toosendanin Induces Lung Squamous Cell Carcinoma Cell Apoptosis and Inhibits Tumor Progression via the BNIP3/AMPK Signaling Pathway. Adv Biol (Weinh) 2024; 8:e2300610. [PMID: 38773915 DOI: 10.1002/adbi.202300610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/28/2024] [Indexed: 05/24/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common type of non-small cell lung cancer. Toosendanin can target critical cancer cell survival and proliferation. However, the function of toosendanin in LUSC is limited. Cancer cell proliferative capacity is detected using cell morphology, colony formation, and flow cytometry. The invasiveness of the cells is detected by a Transwell assay, western blotting, and RT-qPCR. Nude mice are injected with H226 (1×106) and received an intraperitoneal injection of toosendanin every 2 days for 21 days. RNA sequence transcriptome analysis is performed on toosendanin-treated cells to identify target genes and signaling pathways. With increasing concentrations of toosendanin, the rate of cell proliferation decreases and apoptotic cells increases. The number of migrated cells significantly reduces and epithelial-mesenchymal transition is reversed. Injection of toosendanin in nude mice leads to a reduction in tumor volume, weight, and the number of metastatic tumors. Furthermore, KEGG shows that genes related to the AMPK pathway are highly enriched. BNIP3 is the most differentially expressed gene, and its expression along with phosphorylated-AMPK significantly increases in toosendanin-treated cells. Toosendanin exerts anticancer effects, induces apoptosis in LUSC cells, and inhibits tumor progression via the BNIP3/AMPK signaling pathway.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- AMP-Activated Protein Kinases/metabolism
- Apoptosis/drug effects
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Progression
- Drugs, Chinese Herbal/pharmacology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Fabing Liu
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiothoracic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Liming Zhao
- Department of Emergency, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Guohan Chen
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lin Dong
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qinchuan Li
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dongyi Zhu
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| |
Collapse
|
4
|
Chen P, Sharma A, Weiher H, Schmidt-Wolf IGH. Biological mechanisms and clinical significance of endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) in human cancer. J Exp Clin Cancer Res 2024; 43:71. [PMID: 38454454 PMCID: PMC10921667 DOI: 10.1186/s13046-024-02990-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
A firm link between endoplasmic reticulum (ER) stress and tumors has been wildly reported. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α), an ER-resident thiol oxidoreductase, is confirmed to be highly upregulated in various cancer types and associated with a significantly worse prognosis. Of importance, under ER stress, the functional interplay of ERO1α/PDI axis plays a pivotal role to orchestrate proper protein folding and other key processes. Multiple lines of evidence propose ERO1α as an attractive potential target for cancer treatment. However, the unavailability of specific inhibitor for ERO1α, its molecular inter-relatedness with closely related paralog ERO1β and the tightly regulated processes with other members of flavoenzyme family of enzymes, raises several concerns about its clinical translation. Herein, we have provided a detailed description of ERO1α in human cancers and its vulnerability towards the aforementioned concerns. Besides, we have discussed a few key considerations that may improve our understanding about ERO1α in tumors.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359, Rheinbach, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 3127, Bonn, Germany.
| |
Collapse
|
5
|
Yang S, Hui TL, Wang HQ, Zhang X, Mi YZ, Cheng M, Gao W, Geng CZ, Li SN. High expression of autophagy-related gene EIF4EBP1 could promote tamoxifen resistance and predict poor prognosis in breast cancer. World J Clin Cases 2023; 11:4788-4799. [PMID: 37583983 PMCID: PMC10424051 DOI: 10.12998/wjcc.v11.i20.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) remains a public health problem. Tamoxifen (TAM) resistance has caused great difficulties for treatment of BC patients. Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) plays critical roles in the tumorigenesis and progression of BC. However, the expression and mechanism of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients are still unclear. AIM To investigate the expression and functions of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients. METHODS High-throughput sequencing data of breast tumors were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis identified EIF4EBP1 to be significantly upregulated in cancer tissues. Its prognostic value was analyzed. The biological function and related pathways of EIF4EBP1 was analyzed. Subsequently, the expression of EIF4EBP1 was determined by real-time reverse transcription polymerase chain reaction and western blotting. Cell Counting Kit-8 assays, colony formation assay and wound healing assay were used to understand the phenotypes of function of EIF4EBP1. RESULTS EIF4EBP1 was upregulated in the TAM-resistant cells, and EIF4EBP1 was related to the prognosis of BC patients. Gene Set Enrichment Analysis showed that EIF4EBP1 might be involved in Hedgehog signaling pathways. Decreasing the expression of EIF4EBP1 could reverse TAM resistance, whereas overexpression of EIF4EBP1 promoted TAM resistance. CONCLUSION This study indicated that EIF4EBP1 was overexpressed in the BC and TAM-resistant cell line, which increased cell proliferation, invasion, migration and TAM resistance in BC cells.
Collapse
Affiliation(s)
- Shan Yang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Tian-Li Hui
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hao-Qi Wang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xi Zhang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yun-Zhe Mi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Meng Cheng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Wei Gao
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Cui-Zhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Sai-Nan Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
6
|
Mao G, Yang D, Liu B, Zhang Y, Ma S, Dai S, Wang G, Tang W, Lu H, Cai S, Zhu J, Yang H. Deciphering a cell death-associated signature for predicting prognosis and response to immunotherapy in lung squamous cell carcinoma. Respir Res 2023; 24:176. [PMID: 37415224 DOI: 10.1186/s12931-023-02402-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/18/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell carcinoma, accounting for about 30% of all lung cancers. Yet, the evaluation of prognostic outcome and therapy response of patients with LUSC remains to be resolved. This study aimed to explore the prognostic value of cell death pathways and develop a cell death-associated signature for predicting prognosis and guiding treatment in LUSC. METHODS Transcriptome profiles and corresponding clinical information of LUSC patients were gathered from The Cancer Genome Atlas (TCGA-LUSC, n = 493) and Gene Expression Omnibus database (GSE74777, n = 107). The cell death-related genes including autophagy (n = 348), apoptosis (n = 163), and necrosis (n = 166) were retrieved from the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. In the training cohort (TCGA-LUSC), LASSO Cox regression was used to construct four prognostic signatures of respective autophagy, apoptosis, and necrosis pathway and genes of three pathways. After comparing the four signatures, the cell death index (CDI), the signature of combined genes, was further validated in the GSE74777 dataset. We also investigated the clinical significance of the CDI signature in predicting the immunotherapeutic response of LUSC patients. RESULTS The CDI signature was significantly associated with the overall survival of LUSC patients in the training cohort (HR, 2.13; 95% CI, 1.62‒2.82; P < 0.001) and in the validation cohort (HR, 1.94; 95% CI, 1.01‒3.72; P = 0.04). The differentially expressed genes between the high- and low-risk groups contained cell death-associated cytokines and were enriched in immune-associated pathways. We also found a higher infiltration of naive CD4+ T cells, monocytes, activated dendritic cells, neutrophils, and lower infiltration of plasma cells and resting memory CD4+ T cells in the high-risk group. Tumor stemness indices, mRNAsi and mDNAsi, were both negatively correlated with the risk score of the CDI. Moreover, LUSC patients in the low-risk group are more likely to respond to immunotherapy than those in the high-risk group (P = 0.002). CONCLUSIONS This study revealed a reliable cell death-associated signature (CDI) that closely correlated with prognosis and the tumor microenvironment in LUSC, which may assist in predicting the prognosis and response to immunotherapy for patients with LUSC.
Collapse
Affiliation(s)
- Guangxian Mao
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Dongyong Yang
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Guangzhou, 362000, China
| | - Bin Liu
- First Division, Department of Respiratory and Critical Care Medicine, Affiliated to Xiangya School of Medicine, Zhuzhou Hospital, Central South University, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Yu Zhang
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Sijia Ma
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Shang Dai
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Wenxiang Tang
- Department of General Practice, the Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Jialiang Zhu
- Department of Cardiothoracic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, China.
| | - Huaping Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
7
|
Wang RA, Zhang MY, Jiang YX, Wang XD, Qu JJ, Yue YL, Qu YQ. Autophagy-related tumor subtypes associated with significant gene expression profiles and immune cell infiltration signatures to reveal the prognosis of non-small cell lung cancer. J Cancer 2023; 14:1427-1442. [PMID: 37283800 PMCID: PMC10240669 DOI: 10.7150/jca.83097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Autophagy plays an important role in non-small cell lung cancer (NSCLC). We aimed to establish novel autophagy-related tumor subtypes to distinguish the prognosis of NSCLC. In this study, gene expression profiles, mutation data and clinical information obtained from the Cancer Genome Atlas. Kaplan Meier-plotter could evaluate prognostic value of autophagy-related genes. Consensus clustering revealed autophagy-related tumor subtypes. Gene expression profiles, mutation data and immune infiltration signatures were identified, oncogenic pathways and gene-drug interactions were performed according to the clusters. Finally, a total of 23 prognostic genes were screened and consensus clustering analysis divided the NSCLC into 2 clusters. The mutation signature showed that 6 genes are special. Immune infiltration signatures showed that higher fraction of immune cells was associated with cluster 1. The oncogenic pathways and gene-drug interactions also showed different patterns. In conclusion, autophagy-related tumor subtypes have different prognosis. Understanding the subtypes of NSCLC are helpful to accurately identify the NSCLC and personalized treatment.
Collapse
Affiliation(s)
- Rong-Ai Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying-Xiao Jiang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia-Jia Qu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yue-Liang Yue
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Ji X, Chu G, Chen Y, Jiao J, Lv T, Yao Q. Comprehensive analysis of novel prognosis-related proteomic signature effectively improve risk stratification and precision treatment for patients with cervical cancer. Arch Gynecol Obstet 2023; 307:903-917. [PMID: 35713693 DOI: 10.1007/s00404-022-06642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Cervical cancer (CC) is one of the most common types of malignant female cancer, and its incidence and mortality are not optimistic. Protein panels can be a powerful prognostic factor for many types of cancer. The purpose of our study was to investigate a proteomic panel to predict the survival of patients with common CC. METHODS AND RESULTS The protein expression and clinicopathological data of CC were downloaded from The Cancer Proteome Atlas and The Cancer Genome Atlas database, respectively. We selected the prognosis-related proteins (PRPs) by univariate Cox regression analysis and found that the results of functional enrichment analysis were mainly related to apoptosis. We used Kaplan-Meier analysis and multivariable Cox regression analysis further to screen PRPs to establish a prognostic model, including BCL2, SMAD3, and 4EBP1-pT70. The signature was verified to be independent predictors of OS by Cox regression analysis and the area under curves. Nomogram and subgroup classification were established based on the signature to verify its clinical application. Furthermore, we looked for the co-expressed proteins of three-protein panel as potential prognostic proteins. CONCLUSION A proteomic signature independently predicted OS of CC patients, and the predictive ability was better than the clinicopathological characteristics. This signature can help improve prediction for clinical outcome and provides new targets for CC treatment.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Guangdi Chu
- Department of Urology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yulong Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Jinwen Jiao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Teng Lv
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China.
| |
Collapse
|
9
|
Zhang X, Zhen D, Li X, Yi F, Zhang Z, Yang W, Li X, Sheng Y, Liu X, Jin T, He Y. NOTCH2, ATIC, MRI1, SLC6A13, ATP13A2 Genetic Variations are Associated with Ventricular Septal Defect in the Chinese Tibetan Population Through Whole-Exome Sequencing. Pharmgenomics Pers Med 2023; 16:389-400. [PMID: 37138656 PMCID: PMC10150769 DOI: 10.2147/pgpm.s404438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background Ventricular septal defect (VSD) is the most common congenital cardiac abnormality in children and the second most common in adults. This study aimed to explore the potentially causative genes in VSD patients in the Chinese Tibetan population, and to provide a theoretical basis for the genetic mechanism of VSD. Methods Peripheral venous blood was collected from 20 VSD subjects, and whole-genome DNA was extracted. High-throughput sequencing was performed on qualified DNA samples using whole-exome sequencing (WES) technology. After filtering, detecting, and annotating qualified data, single nucleotide variations (SNVs) and insertion-deletion (InDel) markers were analyzed, and data processing software such as GATK, SIFT, Polyphen, and MutationTaster were used for comparative evaluation and prediction of pathogenic deleterious variants associated with VSD. Results A total of 4793 variant loci, including 4168 SNVs, 557 InDels and 68 unknown loci and 2566 variant genes were obtained from 20 VSD subjects through bioinformatics analysis. According to the screening of the prediction software and database, the occurrence of VSD was predicted to be associated with five inherited pathogenic gene mutations, all of which were missense mutations, including NOTCH2 (c.1396C >A:p.Gln466Lys), ATIC (c.235C >T:p.Arg79Cys), MRI1 (c.629G >A:p.Arg210Gln), SLC6A13 (c.1138G >A:p.Gly380Arg), ATP13A2 (c.1363C >T:p.Arg455Trp). Conclusion This study demonstrated that NOTCH2, ATIC, MRI1, SLC6A13, ATP13A2 gene variants were potentially associated with VSD in Chinese Tibetan population.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Department of Ultrasound, the Affiliated Hospital of Xizang Minzu University, Xianyang, People’s Republic of China
| | - Da Zhen
- Department of Medical, Tibet Autonomous Region Maternity and Children’s Hospital, Lhasa, People’s Republic of China
| | - Xuemei Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Faling Yi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Zhanhao Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Wei Yang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Department of Emergency, the Affiliated Hospital of Xizang Minzu University, Xianyang, People’s Republic of China
| | - Xuguang Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Yemeng Sheng
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Xiaoli Liu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| | - Tianbo Jin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Correspondence: Tianbo Jin; Yongjun He, Xizang Minzu University, #6 East Wenhui Road, Xianyang, Shaanxi, 712082, People’s Republic of China, Email ;
| | - Yongjun He
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
- School of Medicine, Xizang Minzu University, Xianyang, People’s Republic of China
| |
Collapse
|
10
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
11
|
Ren J, Zhang H, Wang J, Xu Y, Zhao L, Yuan Q. Transcriptome analysis of adipocytokines and their-related LncRNAs in lung adenocarcinoma revealing the association with prognosis, immune infiltration, and metabolic characteristics. Adipocyte 2022; 11:250-265. [PMID: 35410586 PMCID: PMC9037474 DOI: 10.1080/21623945.2022.2064956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is amongst the major contributors to cancer-related deaths on a global scale. Adipocytokines and long non-coding RNAs (lncRNAs) are indispensable participants in cancer. We performed a pan-cancer analysis of the mRNA expression, single nucleotide variation, copy number variation, and prognostic value of adipocytokines. LUAD samples were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Simultaneously, train, internal and external cohorts were grouped. After a stepwise screening of optimized genes through least absolute shrinkage and selection operator regression analysis, random forest algorithm,, and Cox regression analysis, an adipocytokine-related prognostic signature (ARPS) with superior performance compared with four additional well-established signatures for survival prediction was constructed. After determination of risk levels, the discrepancy of immune microenvironment, immune checkpoint gene expression, immune subtypes, and immune response in low- and high-risk cohorts were explored through multiple bioinformatics methods. Abnormal pathways underlying high- and low-risk subgroups were identified through gene set enrichment analysis (GSEA). Immune-and metabolism-related pathways that were correlated with risk score were selected through single sample GSEA. Finally, a nomogram with satisfied predictive survival probability was plotted. In summary, this study offers meaningful information for clinical treatment and scientific investigation.
Collapse
Affiliation(s)
- Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Zhang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinna Wang
- Department of Oncology, Dalian Friendship Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| | - Yingsong Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Liu X, Li J, Wang Q, Bai L, Xing J, Hu X, Li S, Li Q. Analysis on heterogeneity of hepatocellular carcinoma immune cells and a molecular risk model by integration of scRNA-seq and bulk RNA-seq. Front Immunol 2022; 13:1012303. [PMID: 36311759 PMCID: PMC9606610 DOI: 10.3389/fimmu.2022.1012303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Studies have shown that hepatocellular carcinoma (HCC) heterogeneity is a main cause leading to failure of treatment. Technology of single-cell sequencing (scRNA) could more accurately reveal the essential characteristics of tumor genetics. Methods From the Gene Expression Omnibus (GEO) database, HCC scRNA-seq data were extracted. The FindCluster function was applied to analyze cell clusters. Autophagy-related genes were acquired from the MSigDB database. The ConsensusClusterPlus package was used to identify molecular subtypes. A prognostic risk model was built with the Least Absolute Shrinkage and Selection Operator (LASSO)-Cox algorithm. A nomogram including a prognostic risk model and multiple clinicopathological factors was constructed. Results Eleven cell clusters labeled as various cell types by immune cell markers were obtained from the combined scRNA-seq GSE149614 dataset. ssGSEA revealed that autophagy-related pathways were more enriched in malignant tumors. Two autophagy-related clusters (C1 and C2) were identified, in which C1 predicted a better survival, enhanced immune infiltration, and a higher immunotherapy response. LASSO-Cox regression established an eight-gene signature. Next, the HCCDB18, GSA14520, and GSE76427 datasets confirmed a strong risk prediction ability of the signature. Moreover, the low-risk group had enhanced immune infiltration and higher immunotherapy response. A nomogram which consisted of RiskScore and clinical features had better prediction ability. Conclusion To precisely assess the prognostic risk, an eight-gene prognostic stratification signature was developed based on the heterogeneity of HCC immune cells.
Collapse
Affiliation(s)
- Xiaorui Liu
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Li
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingxiang Wang
- Department of physical examination&Blood collection Xuchang Blood Center, Xuchang, China
| | - Lu Bai
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xing
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobo Hu
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Li
- Bioinformatics R&D Department, Hangzhou Mugu Technology Co., Ltd, Hangzhou, China
| | - Qinggang Li
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Cui Y, Wang X, Zhang L, Liu W, Ning J, Gu R, Cui Y, Cai L, Xing Y. A novel epithelial-mesenchymal transition (EMT)-related gene signature of predictive value for the survival outcomes in lung adenocarcinoma. Front Oncol 2022; 12:974614. [PMID: 36185284 PMCID: PMC9521574 DOI: 10.3389/fonc.2022.974614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a remarkably heterogeneous and aggressive disease with dismal prognosis of patients. The identification of promising prognostic biomarkers might enable effective diagnosis and treatment of LUAD. Aberrant activation of epithelial-mesenchymal transition (EMT) is required for LUAD initiation, progression and metastasis. With the purpose of identifying a robust EMT-related gene signature (E-signature) to monitor the survival outcomes of LUAD patients. In The Cancer Genome Atlas (TCGA) database, least absolute shrinkage and selection operator (LASSO) analysis and cox regression analysis were conducted to acquire prognostic and EMT-related genes. A 4 EMT-related and prognostic gene signature, comprising dickkopf-like protein 1 (DKK1), lysyl oxidase-like 2 (LOXL2), matrix Gla protein (MGP) and slit guidance ligand 3 (SLIT3), was identified. By the usage of datum derived from TCGA database and Western blotting analysis, compared with adjacent tissue samples, DKK1 and LOXL2 protein expression in LUAD tissue samples were significantly higher, whereas the trend of MGP and SLIT3 expression were opposite. Concurrent with upregulation of epithelial markers and downregulation of mesenchymal markers, knockdown of DKK1 and LOXL2 impeded the migration and invasion of LUAD cells. Simultaneously, MGP and SLIT3 silencing promoted metastasis and induce EMT of LUAD cells. In the TCGA-LUAD set, receiver operating characteristic (ROC) analysis indicated that our risk model based on the identified E-signature was superior to those reported in literatures. Additionally, the E-signature carried robust prognostic significance. The validity of prediction in the E-signature was validated by the three independent datasets obtained from Gene Expression Omnibus (GEO) database. The probabilistic nomogram including the E-signature, pathological T stage and N stage was constructed and the nomogram demonstrated satisfactory discrimination and calibration. In LUAD patients, the E-signature risk score was associated with T stage, N stage, M stage and TNM stage. GSEA (gene set enrichment analysis) analysis indicated that the E-signature might be linked to the pathways including GLYCOLYSIS, MYC TARGETS, DNA REPAIR and so on. In conclusion, our study explored an innovative EMT based prognostic signature that might serve as a potential target for personalized and precision medicine.
Collapse
Affiliation(s)
- Yimeng Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ruixue Gu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaowen Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Ying Xing, ; Li Cai,
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Ying Xing, ; Li Cai,
| |
Collapse
|
14
|
Chen B, Zhang L, Zhou H, Ye W, Luo C, Yang L, Fang N, Tang A. HMOX1 promotes lung adenocarcinoma metastasis by affecting macrophages and mitochondrion complexes. Front Oncol 2022; 12:978006. [PMID: 36033490 PMCID: PMC9417688 DOI: 10.3389/fonc.2022.978006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Metastasis is the leading cause of lung adenocarcinoma (LUAD) patient death. However, the mechanism of metastasis is unclear. We performed bioinformatic analyses for HMOX1 (Heme oxygenase-1), aiming to explore its role in LUAD metastasis. Methods Pan-cancer analysis was first used to identify the metastasis-associated role of HMOX1 in LUAD. HMOX1-related genomic alterations were then investigated. Based on functional enrichment, we systematically correlated HMOX1 with immunological characteristics and mitochondrial activities. Furthermore, weighted gene co-expression network analysis (WGCNA) was applied to construct the HMOX1-mediated metastasis regulatory network, which was then validated at the proteomic level. Finally, we conducted the survival analysis and predicted the potential drugs to target the HMOX1 network. Results HMOX1 expression was significantly associated with epithelial-mesenchymal transition (EMT) and lymph and distant metastasis in LUAD. High HMOX1 levels exhibited higher macrophage infiltration and lower mitochondrial complex expression. WGCNA showed a group of module genes co-regulating the traits mentioned above. Subsequently, we constructed an HMOX1-mediated macrophage-mitochondrion-EMT metastasis regulatory network in LUAD. The network had a high inner correlation at the proteomic level and efficiently predicted prognosis. Finally, we predicted 9 potential drugs targeting HMOX1-mediated metastasis in LUAD, like chloroxine and isoliquiritigenin. Conclusions Our analysis elaborates on the role of HMOX1 in LUAD metastasis and identified a highly prognostic HMOX1-mediated metastasis regulatory network. Novel potential drugs targeting the HMOX1 network were also proposed, which should be tested for their activity against LUAD metastasis in future studies.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Fang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, China
- *Correspondence: Anliu Tang,
| |
Collapse
|
15
|
Autophagy-Related Gene Signature Highlights Metabolic and Immunogenic Status of Malignant Cells in Non-Small Cell Lung Cancer Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14143462. [PMID: 35884522 PMCID: PMC9317787 DOI: 10.3390/cancers14143462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The role of autophagy in lung cancers is still controversial, mainly because the visualization of autophagy levels in patients remains challenging. One interesting approach consists of studying autophagy at the transcriptomic level. In this line, many transcriptomics analyses performed on autophagy genes focused on the discovery of new biomarkers to predict the efficiency of antitumor therapies. However, the majority of these studies were based on global transcriptomic analysis of the whole tumor microenvironment, and few investigations have been performed on malignant cells themselves. The goal of this study was not to determine another new predictive signature based on autophagy-related genes. Instead, we investigated the expression of autophagy genes to understand the involvement of this process in lung cancer homeostasis. Specifically, we discovered a new autophagy signature that correlates with the metabolic and immunogenic status of malignant cells, supporting the relationship between autophagy and tumor growth in lung cancer patients. Abstract Autophagy is a self-degradative mechanism involved in many biological processes, including cell death, survival, proliferation or migration. In tumors, autophagy plays an important role in tumorigenesis as well as cancer progression and resistance to therapies. Usually, a high level of autophagy in malignant cells has been associated with tumor progression and poor prognostic for patients. However, the investigation of autophagy levels in patients remains difficult, especially because quantification of autophagy proteins is challenging in the tumor microenvironment. In this study, we analyzed the expression of autophagy genes in non-small cell lung (NSCLC) cancer patients using public datasets and revealed an autophagy gene signature for proliferative and immune-checkpoint-expressed malignant cells in lung adenocarcinoma (LUAD). Analysis of autophagy-related gene expression profiles in tumor and adjacent tissues revealed differential signatures, namely signature A (23 genes) and signature B (12 genes). Signature B correlated with a bad prognosis and poor overall and disease-specific survival. Univariate and multivariate analyses revealed that this signature was an independent factor for prognosis. Moreover, patients with high expression of signature B exhibited more genes related to proliferation and fewer genes related to immune cells or immune response. The analysis of datasets from sorted fresh tumor cells or single cells revealed that signature B is predominantly represented in malignant cells, with poor expression in pan-immune population or in fibroblast or endothelial cells. Interestingly, autophagy was increased in malignant cells exhibiting high levels of signature B, which correlated with an elevated expression of genes involved in cell proliferation and immune checkpoint signaling. Taken together, our analysis reveals a novel autophagy-based signature to define the metabolic and immunogenic status of malignant cells in LUAD.
Collapse
|
16
|
Crassolide Induces G2/M Cell Cycle Arrest, Apoptosis, and Autophagy in Human Lung Cancer Cells via ROS-Mediated ER Stress Pathways. Int J Mol Sci 2022; 23:ijms23105624. [PMID: 35628435 PMCID: PMC9144222 DOI: 10.3390/ijms23105624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 02/07/2023] Open
Abstract
Crassolide, a cembranoid diterpene extracted from the soft coral Lobophytum crissum, has been proven to possess antioxidant and immunomodulatory properties. In the present study, we assessed the anticancer effects of crassolide on human H460 non-small-cell lung cancer (NSCLC) cells. We found that crassolide exerted cytotoxic effects on H460 cancer cells in vitro, inducing G2/M phase arrest and apoptosis. In addition, in H460 cells exposed to crassolide, the expression of the autophagy-related proteins LC3-II and beclin was increased, while the expression of p62 was decreased. Moreover, inhibiting autophagy with chloroquine (CQ) suppressed the crassolide-induced G2/M arrest and apoptosis of H460 cells. Moreover, we also found that crassolide induced endoplasmic reticulum (ER) stress in lung cancer cells by increasing the expression of ER stress marker proteins and that the crassolide-induced G2/M arrest, apoptosis, and autophagy were markedly attenuated by the ER stress inhibitor 4-phenylbutyric acid (4-PBA). Furthermore, we found that crassolide promoted reactive oxygen species (ROS) production by H460 cells and that the ROS inhibitor N-acetylcysteine (NAC) decreased the crassolide-induced ER stress, G2/M arrest, apoptosis, and autophagy. In conclusion, our findings show that crassolide inhibits NSCLC cell malignant biological behaviors for the first time, suggesting that this effect may be mechanistically achieved by inducing G2/M arrest, apoptosis, and autophagy through ROS accumulation, which activates the ER stress pathway. As a result of our findings, we now have a better understanding of the molecular mechanism underlying the anticancer effect of crassolide, and we believe crassolide might be a candidate for targeted cancer therapy.
Collapse
|
17
|
Chen Z, Xiong H, Shen H, You Q. Autophagy characteristics and establishment of autophagy prognostic models in lung adenocarcinoma and lung squamous cell carcinoma. PLoS One 2022; 17:e0266070. [PMID: 35333893 PMCID: PMC8956171 DOI: 10.1371/journal.pone.0266070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC), which makes up the majority of lung cancers, remains one of the deadliest malignancies in the world. It has a poor prognosis due to its late detection and lack of response to chemoradiaiton. Therefore, it is urgent to find a new prognostic marker. Methods We evaluated biological function and immune cell infiltration in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients from TCGA and GEO databases between different clusters based on autophagy related hub genes. Autophagy scores were used to assess the degree of autophagy in each individual by using component analysis. Results Three different clusters were obtained. Gene set variation analysis, single-sample gene set enrichment analysis and survive analysis showed differences among these three clusters. We demonstrated that the autophagy score of each patient could predict tumor stage and prognosis. Patients with a high autophagy score had a better prognosis, higher immune infiltration, and were more sensitive to immunotherapy and conventional chemotherapy. Conclusion It was uncovered that autophagy played an irreplaceable role in NSCLC. Quantified autophagy scores for each NSCLC patient would help guide effective treatment strategies.
Collapse
Affiliation(s)
- Zhubei Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University Medical School, Nantong, China
| | - Hui Xiong
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University Medical School, Nantong, China
| | - Hao Shen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University Medical School, Nantong, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
18
|
Li X, Dai Z, Wu X, Zhang N, Zhang H, Wang Z, Zhang X, Liang X, Luo P, Zhang J, Liu Z, Zhou Y, Cheng Q, Chang R. The Comprehensive Analysis Identified an Autophagy Signature for the Prognosis and the Immunotherapy Efficiency Prediction in Lung Adenocarcinoma. Front Immunol 2022; 13:749241. [PMID: 35529878 PMCID: PMC9072793 DOI: 10.3389/fimmu.2022.749241] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/09/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a fatal malignancy in the world. Growing evidence demonstrated that autophagy-related genes regulated the immune cell infiltration and correlated with the prognosis of LUAD. However, the autophagy-based signature that can predict the prognosis and the efficiency of checkpoint immunotherapy in LUAD patients is yet to be discovered. METHODS We used conventional autophagy-related genes to screen candidates for signature construction in TCGA cohort and 9 GEO datasets (tumor samples, n=2181; normal samples, n=419). An autophagy-based signature was constructed, its correlation with the prognosis and the immune infiltration of LUAD patients was explored. The prognostic value of the autophagy-based signature was validated in an independent cohort with 70 LUAD patients. Single-cell sequencing data was used to further characterize the various immunological patterns in tumors with different signature levels. Moreover, the predictive value of autophagy-based signature in PD-1 immunotherapy was explored in the IMvigor210 dataset. At last, the protective role of DRAM1 in LUAD was validated by in vitro experiments. RESULTS After screening autophagy-related gene candidates, a signature composed by CCR2, ITGB1, and DRAM1 was established with the ATscore in each sample. Further analyses showed that the ATscore was significantly associated with immune cell infiltration and low ATscore indicated poor prognosis. Meanwhile, the prognostic value of ATscore was validated in our independent LUAD cohort. GSEA analyses and single-cell sequencing analyses revealed that ATscore was associated with the immunological status of LUAD tumors, and ATscore could predict the efficacy of PD-1 immunotherapy. Moreover, in vitro experiments demonstrated that the inhibition of DRAM1 suppressed the proliferation and migration capacity of LUAD cells. CONCLUSION Our study identified a new autophagy-based signature that can predict the prognosis of LUAD patients, and this ATscore has potential applicative value in the checkpoint therapy efficiency prediction.
Collapse
Affiliation(s)
- Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xianning Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanwu Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
19
|
Chen G, Wang Q, Wang K. MicroRNA-218-5p affects lung adenocarcinoma progression through targeting endoplasmic reticulum oxidoreductase 1 alpha. Bioengineered 2022; 13:10061-10070. [PMID: 35441565 PMCID: PMC9161986 DOI: 10.1080/21655979.2022.2063537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LUAD) severely threatens the health of people owing to its lethality. Nonetheless, the underlying mechanisms on LUAD development remain unclear to a great extent. This work aimed to probe the functions of miR-218-5p in LUAD. MiR-218-5p and endoplasmic reticulum oxidoreductase 1 alpha (ERO1A) were screened as differently downregulated and upregulated RNAs in LUAD, respectively, by bioinformatics analyses. The results of cell functional assays stated that enforced expression of miR-218-5p notably restrained cell viability, invasion, and migration in LUAD. MiR-218-5p may interact with 3’-untranslated region of ERO1A mRNA as analyzed by bioinformatics. Afterward, western blot and dual-luciferase reporter gene analyses were introduced to identify their interaction. ERO1A overexpression reversed the suppressive impacts of miR-218-5p on LUAD cell progression, indicating the implication of miR-218-5p/ERO1A axis in suppressing cancer development. We also observed that this regulatory axis suppressed angiogenesis in LUAD. Taken together, miR-218-5p/ERO1A axis exerted an imperative role in LUAD cell progression, which provides a valuable clue for the development of LUAD therapeutic regimen.
Collapse
Affiliation(s)
- Gang Chen
- Internal Medicine-oncology, The First People's Hospital Of Jiashan, Jiaxing, China
| | - Qihao Wang
- Department of Clinical Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Kunyu Wang
- Surgery, Taizhou First People's HospitalDepartment of Cardio-Thoracic, Taizhou, China
| |
Collapse
|
20
|
Potential Impact of Cancer Susceptibility Genes on Lung Cancer Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:1516946. [PMID: 35479964 PMCID: PMC9038395 DOI: 10.1155/2022/1516946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Background. Studies of prognosis-related molecular markers are an important tool to uncover the mechanism of tumour metastasis. Cancer susceptibility gene testing is an important tool for genetic counselling of cancer risk. However, the impact of lung cancer susceptibility genes (LCSGs) on lung cancer metastasis and prognosis has not been well studied. Methods. The list of lung cancer susceptibility genes was retrospectively analysed and updated. After expression profiling and functional analysis, LCSG-based signatures for prognosis were identified by Cox regression and LASSO regression analyses. For translational purposes, nomograms integrating LCSGs and clinical characteristics were constructed. Results. A total of 301 LCSGs were employed for modelling. For lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), 10-gene and 7-gene signatures were created and independently validated. The LCSG-based risk score could stratify LUAD survival (univariate: hazard ratio
, 95% confidence interval
–1.103,
; multivariate:
, 95%
–1.095,
) and LUSC survival (univariate:
, 95%
−1.239,
; multivariate:
, 95%
−1.228,
). One of the processes affected by differentially expressed genes in both LUAD and LUSC was the negative regulation of epithelial cell differentiation. Conclusions. Overall, novel LCSG-based gene signatures for LUAD and LUSC were constructed. These findings could expand the understanding of the impact of LCSG expression on cancer metastasis and prognosis.
Collapse
|
21
|
Ye W, Shi Z, Zhou Y, Zhang Z, Zhou Y, Chen B, Zhang Q. Autophagy-Related Signatures as Prognostic Indicators for Hepatocellular Carcinoma. Front Oncol 2022; 12:654449. [PMID: 35402224 PMCID: PMC8987527 DOI: 10.3389/fonc.2022.654449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common and deadly type of liver cancer. Autophagy is the process of transporting damaged or aging cellular components into lysosomes for digestion and degradation. Accumulating evidence implies that autophagy is a key factor in tumor progression. The aim of this study was to determine a panel of novel autophagy-related prognostic markers for liver cancer. Methods We conducted a comprehensive analysis of autophagy-related gene (ARG) expression profiles and corresponding clinical information based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The univariate Cox proportional regression model was used to screen candidate autophagy-related prognostic genes. In addition, a multivariate Cox proportional regression model was used to identify five key prognostic autophagy-related genes (ATIC, BAX, BIRC5, CAPNS1, and FKBP1A), which were used to construct a prognostic signature. Real-time qPCR analysis was used to evaluate the expression levels of ARGs in 20 surgically resected HCC samples and matched tumor-adjacent normal tissue samples. In addition, the effect of FKBP1A on autophagy and tumor progression was determined by performing in vitro and in vivo experiments. Results Based on the prognostic signature, patients with liver cancer were significantly divided into high-risk and low-risk groups in terms of overall survival (OS). A subsequent multivariate Cox regression analysis indicated that the prognostic signature remained an independent prognostic factor for OS. The prognostic signature possessing a better area under the curve (AUC) displayed better performance in predicting the survival of patients with HCC than other clinical parameters. Furthermore, FKBP1A was overexpressed in HCC tissues, and knockdown of FKBP1A impaired cell proliferation, migration, and invasion through the PI3K/AKT/mTOR signaling pathway. Conclusion This study provides a prospective biomarker for monitoring outcomes of patients with HCC.
Collapse
Affiliation(s)
- Wen Ye
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhehao Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yilin Zhou
- College of Engineering, Boston University, Boston, MA, United States
| | - Zhongjing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qiyu Zhang, ; Bicheng Chen,
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qiyu Zhang, ; Bicheng Chen,
| |
Collapse
|
22
|
Zhai WY, Duan FF, Chen S, Wang JY, Zhao ZR, Wang YZ, Rao BY, Lin YB, Long H. An Aging-Related Gene Signature-Based Model for Risk Stratification and Prognosis Prediction in Lung Squamous Carcinoma. Front Cell Dev Biol 2022; 10:770550. [PMID: 35300428 PMCID: PMC8921527 DOI: 10.3389/fcell.2022.770550] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/04/2022] [Indexed: 12/29/2022] Open
Abstract
Aging is an inevitable process characterized by a decline in many physiological activities, and has been known as a significant risk factor for many kinds of malignancies, but there are few studies about aging-related genes (ARGs) in lung squamous carcinoma (LUSC). We designed this study to explore the prognostic value of ARGs and establish an ARG-based prognosis signature for LUSC patients. RNA-sequencing and corresponding clinicopathological data of patients with LUSC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The ARG risk signature was developed on the basis of results of LASSO and multivariate Cox analysis in the TCGA training dataset (n = 492). Furthermore, the GSE73403 dataset (n = 69) validated the prognostic performance of this ARG signature. Immunohistochemistry (IHC) staining was used to verify the expression of the ARGs in the signature. A five ARG-based signature, including A2M, CHEK2, ELN, FOS, and PLAU, was constructed in the TCGA dataset, and stratified patients into low- and high-risk groups with significantly different overall survival (OS) rates. The ARG risk score remained to be considered as an independent indicator of OS in the multivariate Cox regression model for LUSC patients. Then, a prognostic nomogram incorporating the ARG risk score with T-, N-, and M-classification was established. It achieved a good discriminative ability with a C-index of 0.628 (95% confidence interval [CI]: 0.586-0.671) in the TCGA cohort and 0.648 (95% CI: 0.535-0.762) in the GSE73403 dataset. Calibration curves displayed excellent agreement between the actual observations and the nomogram-predicted survival. The IHC staining discovered that these five ARGs were overexpression in LUSC tissues. Besides, the immune infiltration analysis in the TCGA cohort represented a distinctly differentiated infiltration of anti-tumor immune cells between the low- and high-risk groups. We identified a novel ARG-related prognostic signature, which may serve as a potential biomarker for individualized survival predictions and personalized therapeutic recommendation of anti-tumor immunity for patients with LUSC.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Si Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ze-Rui Zhao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Zhi Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Bin Lin
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Hao Long
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Niu N, Zeng J, Ke X, Zheng W, Fu C, Lv S, Fu J, Yu Y. ATIC facilitates cell growth and migration by upregulating Myc expression in lung adenocarcinoma. Oncol Lett 2022; 23:131. [PMID: 35251351 PMCID: PMC8895470 DOI: 10.3892/ol.2022.13251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a catalysing enzyme in the de novo purine biosynthetic pathway, has been previously reported to be upregulated and to participate in myeloma and hepatocellular carcinoma progression. In the present study, by using bioinformatics technology, a higher ATIC expression was identified in lung adenocarcinoma (LUAD) tissues than in normal tissues, and ATIC expression was found to be positively associated with Myc expression in LUAD tissues. In addition, the role of ATIC in modulating the growth and migration of LUAD cells was explored and the involvement of Myc was revealed. ATIC expression in 56 paired LUAD and tumour adjacent non-cancerous tissues was assessed using reverse transcription-quantitative PCR and western blot analysis. Pearson's correlation analysis was applied to evaluate the correlation between ATIC and Myc expression levels in LUAD tissues. A rescue experiment was performed to explore the role of ATIC/Myc in regulating the growth, migration and invasion of HCC827 and NCI-H1435 cells. It was demonstrated that ATIC was overexpressed in LUAD tissues, particularly in advanced-stage LUAD, and was predicted to be associated with an advanced TNM stage, a higher lymph node metastasis rate, poor tissue differentiation and a lower overall survival rate. ATIC overexpression promoted cell growth, migratory and invasive capacities, whereas this effect was abrogated by Myc knockdown in the HCC827 and NCI-H1435 cells. On the whole, the present study demonstrates that ATIC promotes LUAD cell growth and migration by increasing Myc expression.
Collapse
Affiliation(s)
- Niu Niu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Jialong Zeng
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Xianni Ke
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Wenyu Zheng
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Chunmei Fu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Shiqi Lv
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Jianghong Fu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Yang Yu
- Department of Internal Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
24
|
Impact of Variants in the ATIC and ARID5B Genes on Therapeutic Failure with Imatinib in Patients with Chronic Myeloid Leukemia. Genes (Basel) 2022; 13:genes13020330. [PMID: 35205374 PMCID: PMC8872593 DOI: 10.3390/genes13020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm derived from the balanced reciprocal translocation of chromosomes 9 and 22 t (9q34 and 22q11), which leads to the formation of the Philadelphia chromosome and fusion of the BCR-ABL genes. The first-line treatment for CML is imatinib, a tyrosine kinase inhibitor that acts on the BCR-ABL protein. However, even though it is a target-specific drug, about 25% of patients do not respond to this treatment. The resistance mechanisms involved in this process have been investigated and studies have shown that germinal alterations can influence this mechanism. The aim of this work was to investigate 32 polymorphisms in 24 genes of carcinogenic pathway to verify the influence of these genetic variants on the response to treatment with imatinib. Our results demonstrated that individuals with the recessive GG genotype for the rs2372536 variant in the ATIC gene are approximately three times more likely to experience treatment failure with imatinib (p = 0.045, HR = 2.726, 95% CI = 0.9986–7.441), as well as individuals with the TT genotype for the rs10821936 variant in the ARID5B gene, who also have a higher risk for treatment failure with imatinib over time (p = 0.02, HR = 0.4053, IC 95% = 0.1802–0.911). In conclusion, we show that variants in the ATIC and ARIDB5 gene, never screened in previous studies, could potentially influence the therapeutic response to imatinib in patients treated for CML.
Collapse
|
25
|
Zhai WY, Duan FF, Chen S, Wang JY, Lin YB, Wang YZ, Rao BY, Zhao ZR, Long H. A Novel Inflammatory-Related Gene Signature Based Model for Risk Stratification and Prognosis Prediction in Lung Adenocarcinoma. Front Genet 2022; 12:798131. [PMID: 35069695 PMCID: PMC8766344 DOI: 10.3389/fgene.2021.798131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammation is an important hallmark of cancer and plays a role in both neogenesis and tumor development. Despite this, inflammatory-related genes (IRGs) remain to be poorly studied in lung adenocarcinoma (LUAD). We aim to explore the prognostic value of IRGs for LUAD and construct an IRG-based prognosis signature. The transcriptomic profiles and clinicopathological information of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Least absolute shrinkage and selection operator (LASSO) analysis and multivariate Cox regression were applied in the TCGA set to generate an IRG risk signature. LUAD cases with from the GSE31210 and GSE30219 datasets were used to validate the predictive ability of the signature. Analysis of the TCGA cohort revealed a five-IRG risk signature consisting of EREG, GPC3, IL7R, LAMP3, and NMUR1. This signature was used to divide patients into two risk groups with different survival rates. Multivariate Cox regression analysis verified that the risk score from the five-IRG signature negatively correlated with patient outcome. A nomogram was developed using the IRG risk signature and stage, with C-index values of 0.687 (95% CI: 0.644-0.730) in the TCGA training cohort, 0.678 (95% CI: 0.586-0.771) in GSE30219 cohort, and 0.656 (95% CI: 0.571-0.740) in GSE30219 cohort. Calibration curves were consistent between the actual and the predicted overall survival. The immune infiltration analysis in the TCGA training cohort and two GEO validation cohorts showed a distinctly differentiated immune cell infiltration landscape between the two risk groups. The IRG risk signature for LUAD can be used to predict patient prognosis and guide individual treatment. This risk signature is also a potential biomarker of immunotherapy.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- State Key Laboratory of Oncology in Southern China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Si Chen
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yao-Bin Lin
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Zhi Wang
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Rui Zhao
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Hao Long
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Zhang MY, Huo C, Liu JY, Shi ZE, Zhang WD, Qu JJ, Yue YL, Qu YQ. Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:756911. [PMID: 34869345 PMCID: PMC8636677 DOI: 10.3389/fcell.2021.756911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Autophagy plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the autophagy-related gene (ARG) expression pattern and to identify promising autophagy-related biomarkers to improve the prognosis of LUAD. Methods: The gene expression profiles and clinical information of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA), and validation cohort information was extracted from the Gene Expression Omnibus database. The Human Autophagy Database (HADb) was used to extract ARGs. Gene expression data were analyzed using the limma package and visualized using the ggplot2 package as well as the pheatmap package in R software. Functional enrichment analysis was also performed for the differentially expressed ARGs (DEARGs). Then, consensus clustering revealed autophagy-related tumor subtypes, and differentially expressed genes (DEGs) were screened according to the subtypes. Next, the univariate Cox and multivariate Cox regression analyses were used to identify independent prognostic ARGs. After overlapping DEGs and the independent prognostic ARGs, the predictive risk model was established and validated. Correlation analyses between ARGs and clinicopathological variables were also explored. Finally, the TIMER and TISIDB databases were used to further explore the correlation analysis between immune cell infiltration levels and the risk score as well as clinicopathological variables in the predictive risk model. Results: A total of 222 genes from the HADb were identified as ARGs, and 28 of the 222 genes were pooled as DEARGs. The most significant GO term was autophagy (p = 3.05E-07), and KEGG analysis results indicated that 28 DEARGs were significantly enriched in the ErbB signaling pathway (p < 0.001). Then, consensus clustering analysis divided the LUAD into two clusters, and a total of 168 DEGs were identified according to cluster subtypes. Then univariate and multivariate Cox regression analyses were used to identify 12 genes that could serve as independent prognostic indicators. After overlapping 168 DEGs and 12 genes, 10 genes (ATG4A, BAK1, CAPNS1, CCR2, CTSD, EIF2AK3, ITGB1, MBTPS2, SPHK1, ST13) were selected for the further exploration of the prognostic pattern. Survival analysis results indicated that this risk model identified the prognosis (p = 4.379E-10). Combined with the correlation analysis results between ARGs and clinicopathological variables, five ARGs were screened as prognostic genes. Among them, SPHK1 expression levels were positively correlated with CD4+ T cells and dendritic cell infiltration levels. Conclusions: In this study, we constructed a predictive risk model and identified a five autophagy subtype-related gene expression pattern to improve the prognosis of LUAD. Understanding the subtypes of LUAD is helpful to accurately characterize the LUAD and develop personalized treatment.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Zhuang-E Shi
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Wen-Di Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Jia-Jia Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Yue-Liang Yue
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University; Shandong Key Laboratory of Infectious Respiratory Diseases, Jinan, China
| |
Collapse
|
27
|
Xie Z, Li H, Zang J. Knockdown of lysine (K)-specific demethylase 2B KDM2B inhibits glycolysis and induces autophagy in lung squamous cell carcinoma cells by regulating the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway. Bioengineered 2021; 12:12227-12235. [PMID: 34783291 PMCID: PMC8810134 DOI: 10.1080/21655979.2021.2005931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancer with poor prognosis. This study aimed to explore the role of KDM2B in the development of LUSC. The results of this study demonstrated that KDM2B was upregulated in LUSC tissues and cell lines. Knockdown of KDM2B reduced cell viability and colony forming ability in SK-MES-1 and NCI-H520 cells. KDM2B inhibition reduced glucose consumption, lactate production, ATP level, and also downregulated the expression of LDHA and GLUT1. KDM2B knockdown decreased the protein expression of LC3-I and p62, and increased LC3-II and Beclin-1. Furthermore, KDM2B silencing inhibited the phosphorylation of AKT, mTOR and P70S6K. KDM2B knockdown led to reduced tumor size in mouse model. In conclusion, KDM2B is upregulated in LUSC tissues and cell lines. KDM2B silencing inhibits glycolysis and promotes autophagy through inactivation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhonghai Xie
- Department of Thoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Hongwei Li
- Department of Thoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Jin Zang
- Department of Thoracic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| |
Collapse
|
28
|
Liu B, Zhao Y, Yang S. An Autophagy-Related Long Non-Coding RNA Prognostic Signature for Patients with Lung Squamous Carcinoma Based on Bioinformatics Analysis. Int J Gen Med 2021; 14:6621-6637. [PMID: 34675625 PMCID: PMC8520473 DOI: 10.2147/ijgm.s331327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose Lung cancer is the most common and deadly cancer type affecting humans. Although huge progress has been made on early diagnosis and precision treatment, the overall 5 year survival rate remains low. In this study, we constructed an autophagy-related long non-coding RNA (lncRNA) prognostic signature for guiding clinical practice. Methods From The Cancer Genome Atlas, we retrieved mRNA and lncRNA expression matrices of patients with lung squamous carcinoma. We then established a prognostic risk model using Lasso regression and multivariate Cox regression. The model generated a risk score to differentiate high- and low-risk groups. An ROC curve and nomogram were used to visualize the predictive ability of the current signatures. Finally, we used Gene Set Enrichment Analysis to determine gene ontology and pathway enrichment. Results After screening 1248 autophagy-related lncRNAs, we selected seven lncRNAs (LUCAT1, AC022150.2, AL035425.3, AC138976.2, AC106786.1, GPRC5D-AS1 and AP006545.2) for our signature. Univariate (hazard ratio [HR] = 2.147, 95% confidence interval [CI]: 1.681–2.743, P < 0.001) and multivariate (HR = 2.096, 95% CI: 1.652–2.658, P < 0.001) Cox regression analyses revealed that the risk score is an independent predictive factor for LUSC patients. Further, areas under the receiver operating characteristic curve were 0.622, 0.699, and 0.721, respectively, for the 1 year, 3 year, and 5 year risk scores—indicating a reliable model. Selected lncRNAs were primarily enriched in autophagy, metabolism, MAPK pathway, and JAK/STAT pathway. Further drug sensitivity analysis revealed that low-risk patients were more sensitive to Cisplatin, Docetaxel, Vinblastine, and Vinorelbine. Finally, a multi-omics analysis found that lncRNA-linked proteins IKBKB and SQSTM1 were expressed at low levels and significantly correlated in tumor samples, compared with normal tissue. Conclusion Our prognostic model successfully predicted patient prognosis in lung cancer.
Collapse
Affiliation(s)
- Boxuan Liu
- Department of Critical Care and Respiratory Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yun Zhao
- Department of Cardiology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Shuanying Yang
- Department of Critical Care and Respiratory Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| |
Collapse
|
29
|
Multi-omics analysis of m 6A modification-related patterns based on m 6A regulators and tumor microenvironment infiltration in lung adenocarcinoma. Sci Rep 2021; 11:20921. [PMID: 34686691 PMCID: PMC8536683 DOI: 10.1038/s41598-021-00272-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
Epigenetic modifications, especially N6-methyladenosine (m6A) modification, play a key role in tumor microenvironment (TME) infiltration. However, the regulatory role of m6A modification in the TME of lung adenocarcinoma (LUAD) remains unclear. A total of 2506 patients with LUAD were included in the analysis and divided into different groups according to distinct m6A modification-related patterns based on 23 m6A regulators. A comprehensive analysis was performed to explore TME infiltration in different m6A modification-related patterns. Principal component analysis was performed to obtain the m6Ascore and to quantify m6A modification-related patterns in different individuals. Three distinct m6A modification-related patterns were identified by 23 m6A regulators. The pathway enrichment analysis showed that m6Acluster-A was associated with immune activation; m6Acluster-B was associated with carcinogenic activation; m6Acluster-C was prominently related to substance metabolism. M6Acluster-A was remarkably rich in TME-infiltrating immune cells and patients with this pattern showed a survival advantage. The m6Ascore could predict TME infiltration, tumor mutation burden (TMB), the effect of tumor immunotherapy, and the prognosis of patients in LUAD. High m6Ascore was characterized by increased TME infiltration, reduced TMB, and survival advantage. Patients with a high m6Ascore exhibited significantly improved clinical response to anti-cytotoxic T lymphocyte antigen-4 (anti-CTLA4) immunotherapy. This study explored the regulatory mechanisms of TME infiltration in LUAD. The comprehensive analysis of m6A modification-related patterns may contribute to the development of individualized immunotherapy and the improvement of the overall effectiveness of immunotherapy for LUAD patients.
Collapse
|
30
|
Zhu J, Ao H, Liu M, Cao K, Ma J. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. J Transl Med 2021; 19:374. [PMID: 34461934 PMCID: PMC8407090 DOI: 10.1186/s12967-021-03056-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Background Ubiquitin-conjugating enzyme E2T (UBE2T) acts as an oncogene in various types of cancer. However, the mechanisms behind its oncogenic role remain unclear in lung cancer. This study aims to explore the function and clinical relevance of UBE2T in lung cancer. Methods Lentiviral vectors were used to mediate UBE2T depletion or overexpress UBE2T in lung cancer cells. CCK8 analysis and western blotting were performed to investigate the effects of UBE2T on proliferation, autophagy, and relevant signaling pathways. To exploit the clinical significance of UBE2T, we performed immunohistochemistry staining with an anti-UBE2T antibody on 131 NSCLC samples. Moreover, we downloaded the human lung adenocarcinoma (LUAD) dataset from The Cancer Atlas Project (TCGA). Lasso Cox regression model was adopted to establish a prognostic model with UBE2T-correlated autophagy genes. Results We found that UBE2T stimulated proliferation and autophagy, and silencing this gene abolished autophagy in lung cancer cells. As suggested by Gene set enrichment analysis, we observed that UBE2T downregulated p53 levels in A549 cells and vice versa. Blockade of p53 counteracted the inhibitory effects of UBE2T depletion on autophagy. Meanwhile, the AMPK/mTOR signaling pathway was activated during UBE2T-mediated autophagy, suggesting that UBE2T promotes autophagy via the p53/AMPK/mTOR pathway. Interestingly, UBE2T overexpression increased cisplatin-trigged autophagy and led to cisplatin resistance of A549 cells, whereas inhibiting autophagy reversed drug resistance. However, no association was observed between UEB2T and overall survival in a population of 131 resectable NSCLC patients. Therefore, we developed and validated a multiple gene signature by considering UBE2T and its relevance in autophagy in lung cancer. The risk score derived from the prognostic signature significantly stratified LUAD patients into low- and high-risk groups with different overall survival. The risk score might independently predict prognosis. Interestingly, nomogram and decision curve analysis demonstrated that the signature’s prognostic accuracy culminated while combined with clinical features. Finally, the risk score showed great potential in predicting clinical chemosensitivity. Conclusions We found that UBE2T upregulates autophagy in NSCLC cells by activating the p53/AMPK/mTOR signaling pathway. The clinical predicting ability of UBE2T in LUAD can be improved by considering the autophagy-regulatory role of UBE2T. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03056-1.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Haijiao Ao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Mingdong Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Kui Cao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
31
|
Yu X, Liu J, Xie R, Chang M, Xu B, Zhu Y, Xie Y, Yang S. Construction of a prognostic model for lung squamous cell carcinoma based on seven N6-methylandenosine-related autophagy genes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6709-6723. [PMID: 34517553 DOI: 10.3934/mbe.2021333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE We aimed to construct a novel prognostic model based on N6-methyladenosine (m6A)-related autophagy genes for predicting the prognosis of lung squamous cell carcinoma (LUSC). METHODS Gene expression profiles and clinical information of Patients with LUSC were downloaded from The Cancer Genome Atlas (TCGA) database. In addition, m6A- and autophagy-related gene profiles were obtained from TCGA and Human Autophagy Database, respectively. Pearson correlation analysis was performed to identify the m6A-related autophagy genes, and univariate Cox regression analysis was conducted to screen for genes associated with prognosis. Based on these genes, LASSO Cox regression analysis was used to construct a prognostic model. The corresponding prognostic score (PS) was calculated, and patients with LUSC were assigned to low- and high-risk groups according to the median PS value. An independent dataset (GSE37745) was used to validate the prognostic ability of the model. CIBERSORT was used to calculate the differences in immune cell infiltration between the high- and low-risk groups. RESULTS Seven m6A-related autophagy genes were screened to construct a prognostic model: CASP4, CDKN1A, DLC1, ITGB1, PINK1, TP63, and EIF4EBP1. In the training and validation sets, patients in the high-risk group had worse survival times than those in the low-risk group; the areas under the receiver operating characteristic curves were 0.958 and 0.759, respectively. There were differences in m6A levels and immune cell infiltration between the high- and low-risk groups. CONCLUSIONS Our prognostic model of the seven m6A-related autophagy genes had significant predictive value for LUSC; thus, these genes may serve as autophagy-related therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Xin Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen 518116, China
| | - Jun Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ruiwen Xie
- Department of Cardiothoracic Surgery, Dongguan People's Hospital, Dongguan, Guangzhou 523000, China
| | - Mengling Chang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Bichun Xu
- Department of Oncology Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yangqing Zhu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuancai Xie
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengli Yang
- Department of Thoracic Surgery, Foshan First people's Hospital, Affiliated Hospital of Sun Yat sen University, Foshan 528000, China
| |
Collapse
|
32
|
Ren J, Wang A, Liu J, Yuan Q. Identification and validation of a novel redox-related lncRNA prognostic signature in lung adenocarcinoma. Bioengineered 2021; 12:4331-4348. [PMID: 34338158 PMCID: PMC8806475 DOI: 10.1080/21655979.2021.1951522] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the main causes of cancer deaths globally. Redox is emerging as a crucial contributor to the pathophysiology of LUAD, which can be regulated by long non-coding RNAs (lncRNAs). The aim of our research is to identify a novel redox-related lncRNA prognostic signature (redox-LPS) for better prediction of LUAD prognosis. 535 LUAD samples from The Cancer Genome Atlas (TCGA) database and 226 LUAD samples from the Gene Expression Omnibus (GEO) database were included in our study. 67 redox genes and 313 redox-related lncRNAs were identified. After performing LASSO-Cox regression analysis, a redox-LPS consisting of four lncRNAs (i.e., CRNDE, CASC15, LINC01137, and CYP1B1-AS1) was developed and validated. Our redox-LPS was superior to another three established models in predicting survival probability of LUAD patients. Univariate and multivariate Cox regression analysis revealed that risk score and stage were independent prognostic indicators. A nomogram plot including risk score and stage was constructed to predict survival probability of LUAD patients; this was further verified by calibration curves. Functional enrichment analysis and gene set enrichment analysis, were performed to determine the differences in cellular processes and signaling pathways between the high – and low-risk subgroups. A variety of algorithms (such as single-sample gene set enrichment analysis and CIBERSOFT) were conducted to uncover the landscape of tumor immune microenvironment in the high- and low-risk subgroups. In conclusion, a novel independent redox-LPS was constructed and validated for LUAD patients, which might provide new insights for clinical decision-making and precision medicine.
Collapse
Affiliation(s)
- Jie Ren
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
33
|
Cui H, Weng Y, Ding N, Cheng C, Wang L, Zhou Y, Zhang L, Cui Y, Zhang W. Autophagy-Related Three-Gene Prognostic Signature for Predicting Survival in Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:650891. [PMID: 34336650 PMCID: PMC8321089 DOI: 10.3389/fonc.2021.650891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors in China, and its prognosis remains poor. Autophagy is an evolutionarily conserved catabolic process involved in the occurrence and development of ESCC. In this study, we described the expression profile of autophagy-related genes (ARGs) in ESCC and developed a prognostic prediction model for ESCC patients based on the expression pattern of ARGs. We used four ESCC cohorts, GSE53624 (119 samples) set as the discovery cohort, The Cancer Genome Atlas (TCGA) ESCC set (95 samples) as the validation cohort, 155 ESCC cohort, and Oncomine cohort were used to screen and verify differentially expressed ARGs. We identified 34 differentially expressed genes out of 222 ARGs. In the discovery cohort, we divided ESCC patients into three groups that showed significant differences in prognosis. Then, we analyzed the prognosis of 34 differentially expressed ARGs. Three genes [poly (ADP-ribose) polymerase 1 (PARP1), integrin alpha-6 (ITGA6), and Fas-associated death domain (FADD)] were ultimately obtained through random forest feature selection and were constructed as an ARG-related prognostic model. This model was further validated in TCGA ESCC set. Cox regression analysis confirmed that the three-gene signature was an independent prognostic factor for ESCC patients. This signature effectively stratified patients in both discovery and validation cohorts by overall survival (P = 5.162E-8 and P = 0.052, respectively). We also constructed a clinical nomogram with a concordance index of 0.713 to predict the survival possibility of ESCC patients by integrating clinical characteristics and the ARG signature. The calibration curves substantiated fine concordance between nomogram prediction and actual observation. In conclusion, we constructed a new ARG-related prognostic model, which shows the potential to improve the ability of individualized prognosis prediction in ESCC.
Collapse
Affiliation(s)
- Heyang Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yongjia Weng
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Ning Ding
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Chen Cheng
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Longlong Wang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yong Zhou
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Ling Zhang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Yongping Cui
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China
| | - Weimin Zhang
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
34
|
Identification of the pyroptosis‑related prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discov 2021; 7:161. [PMID: 34226539 PMCID: PMC8257680 DOI: 10.1038/s41420-021-00557-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 12/22/2022] Open
Abstract
Lung adenocarcinoma (LUAD) remains the most common deadly disease and has a poor prognosis. Pyroptosis could regulate tumour cell proliferation, invasion, and metastasis, thereby affecting the prognosis of cancer patients. However, the role of pyroptosis-related genes (PRGs) in LUAD remains unclear. In our study, comprehensive bioinformatics analysis was performed to construct a prognostic gene model and ceRNA network. The correlations between PRGs and tumour-immune infiltration, tumour mutation burden, and microsatellite instability were evaluated using Pearson’s correlation analysis. A total of 23 PRGs were upregulated or downregulated in LUAD. The genetic mutation variation landscape of PRG in LUAD was also summarised. Functional enrichment analysis revealed that these 33 PRGs were mainly involved in pyroptosis, the NOD-like receptor signalling pathway, and the Toll-like receptor signalling pathway. Prognosis analysis indicated a poor survival rate in LUAD patients with low expression of NLRP7, NLRP1, NLRP2, and NOD1 and high CASP6 expression. A prognostic PRG model constructed using the above five prognostic genes could predict the overall survival of LUAD patients with medium-to-high accuracy. Significant correlation was observed between prognostic PRGs and immune-cell infiltration, tumour mutation burden, and microsatellite instability. A ceRNA network was constructed to identify a lncRNA KCNQ1OT1/miR-335-5p/NLRP1/NLRP7 regulatory axis in LUAD. In conclusion, we performed a comprehensive bioinformatics analysis and identified a prognostic PRG signature containing five genes (NLRP7, NLRP1, NLRP2, NOD1, and CASP6) for LUAD patients. Our results also identified a lncRNA KCNQ1OT1/miR-335-5p/NLRP1/NLRP7 regulatory axis, which may also play an important role in the progression of LUAD. Further study needs to be conducted to verify this result.
Collapse
|
35
|
Duan J, Lei Y, Lv G, Liu Y, Zhao W, Yang Q, Su X, Song Z, Lu L, Shi Y. Identification of a novel autophagy signature for predicting survival in patients with lung adenocarcinoma. PeerJ 2021; 9:e11074. [PMID: 33976960 PMCID: PMC8067911 DOI: 10.7717/peerj.11074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/17/2021] [Indexed: 01/22/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most commonhistological lung cancer subtype, with an overall five-year survivalrate of only 17%. In this study, we aimed to identify autophagy-related genes (ARGs) and develop an LUAD prognostic signature. Methods In this study, we obtained ARGs from three databases and downloaded gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We used TCGA-LUAD (n = 490) for a training and testing dataset, and GSE50081 (n = 127) as the external validation dataset.The least absolute shrinkage and selection operator (LASSO) Cox and multivariate Cox regression models were used to generate an autophagy-related signature. We performed gene set enrichment analysis (GSEA) and immune cell analysis between the high- and low-risk groups. A nomogram was built to guide the individual treatment for LUAD patients. Results We identified a total of 83 differentially expressed ARGs (DEARGs) from the TCGA-LUAD dataset, including 33 upregulated DEARGs and 50 downregulated DEARGs, both with thresholds of adjusted P < 0.05 and |Fold change| > 1.5. Using LASSO and multivariate Cox regression analyses, we identified 10 ARGs that we used to build a prognostic signature with areas under the curve (AUCs) of 0.705, 0.715, and 0.778 at 1, 3, and 5 years, respectively. Using the risk score formula, the LUAD patients were divided into low- or high-risk groups. Our GSEA results suggested that the low-risk group were enriched in metabolism and immune-related pathways, while the high-risk group was involved in tumorigenesis and tumor progression pathways. Immune cell analysis revealed that, when compared to the high-risk group, the low-risk group had a lower cell fraction of M0- and M1- macrophages, and higher CD4 and PD-L1 expression levels. Conclusion Our identified robust signature may provide novel insight into underlying autophagy mechanisms as well as therapeutic strategies for LUAD treatment.
Collapse
Affiliation(s)
- Jin Duan
- Department of Geriatric Thoracic Surgery, The First Hospital of Kunming Medical University, Kunming City, Yunnan Province, P.R. China
| | - Youming Lei
- Department of Geriatric Thoracic Surgery, The First Hospital of Kunming Medical University, Kunming City, Yunnan Province, P.R. China
| | - Guoli Lv
- Department of Geriatric Thoracic Surgery, The First Hospital of Kunming Medical University, Kunming City, Yunnan Province, P.R. China
| | - Yinqiang Liu
- Department of Geriatric Thoracic Surgery, The First Hospital of Kunming Medical University, Kunming City, Yunnan Province, P.R. China
| | - Wei Zhao
- Department of Geriatric Thoracic Surgery, The First Hospital of Kunming Medical University, Kunming City, Yunnan Province, P.R. China
| | - Qingmei Yang
- Department of Geriatric Thoracic Surgery, The First Hospital of Kunming Medical University, Kunming City, Yunnan Province, P.R. China
| | - Xiaona Su
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Leilei Lu
- Origimed Co. Ltd., Shanghai, P.R. China
| | - Yunfei Shi
- Department of Geriatric Thoracic Surgery, The First Hospital of Kunming Medical University, Kunming City, Yunnan Province, P.R. China
| |
Collapse
|
36
|
Wang S, Wu C, Ma D, Hu Q. Identification of a ferroptosis-related gene signature (FRGS) for predicting clinical outcome in lung adenocarcinoma. PeerJ 2021; 9:e11233. [PMID: 33954048 PMCID: PMC8051350 DOI: 10.7717/peerj.11233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathological subtype of lung cancer. Ferroptosis, an oxidative, iron-dependent form of necrotic cell death, is highly associated with tumorigenesis and cancer progression. However, the prognostic value of ferroptosis progress in LUAD was still rarely be investigated. Methods Herein, we collected three mRNA expression profiles and 85 ferroptosis-related genes from public databases. The “limma” package was used to identify ferroptosis-related differentially expressed genes (DEGs). Univariate Cox regression analysis and LASSO regression analysis were applied to screen and develop a ferroptosis-related gene signature (FRGS) and a formula to calculate the risk score. Multivariate Cox regression analysis was implemented to determine independent prognostic predictors of overall survival (OS). The area under the receiver operating characteristic curve (AUC) and calibration plot were used to evaluate the predictive accuracy of the FRGS and nomogram. Results We developed a FRGS with five genes (CYBB, CISD1, FADD, SAT2, VDAC2). The AUC of the FRGS in TCGA cohort was 0.777 at 1-year, 0.721 at 3-year and 0.725 at 5-year, significantly superior to the AUC of TNM stage (1-year: 0.701, 3-year: 0.691, 5-year: 0.686). A similar phenomenon was observed in GEO cohort 1 and 2. Multivariate Cox regression analysis indicted TNM stage and risk score were independent prognostic predictors. Finally, we built a nomogram with TNM stage and FRGS, the AUCs of which markedly higher than that of FRGS or TNM stage alone. Conclusion We constructed a prognostic FRGS with five ferroptosis-related genes and a nomogram for predicting the 1-, 3- and 5-year survival rate of LUAD patients, which may provide a new understanding of the prognostic value of ferroptosis progress in LUAD and will benefit prognosis assessment of LUAD patients.
Collapse
Affiliation(s)
- Sheng Wang
- Respiratory Department, Jinhua Guangfu Hospital, Jinhua, Zhejiang, China
| | - Chunlei Wu
- Department of Thoracic Surgery, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Dehua Ma
- Department of Thoracic Surgery, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Quanteng Hu
- Department of Thoracic Surgery, Taizhou Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
37
|
Miao TW, Du LY, Xiao W, Mao B, Wang Y, Fu JJ. Identification of Survival-Associated Gene Signature in Lung Cancer Coexisting With COPD. Front Oncol 2021; 11:600243. [PMID: 33791201 PMCID: PMC8006292 DOI: 10.3389/fonc.2021.600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) and lung cancer often coexist, which is associated with a worse prognosis. Thousands of biomarkers related to the survival of lung cancer have been investigated. However, those which can predict the survival of lung cancer coexisting with COPD are currently lacking. The present study aimed to identify novel gene signatures to predict the survival of patients with lung cancer coexisting COPD. Method: RNA-sequence data of lung cancer and control accompanying with matched clinical information were retrieved from the Cancer Genome Atlas (TCGA). Differently expressed genes (DEGs) associated with lung cancer coexisting COPD were screened. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Univariate and multivariate Cox regression analyses were applied to identify survival-associated DEGs and to construct survival-associated gene signature. Kaplan-Meier survival analysis and calibration plots of the nomogram were performed to test the predictive accuracy of the gene signature. qPCR was performed to validate the genes in the prognostic signature. Results: Sequence data from 70 patients with lung cancer coexisting COPD, 127 with lung cancer alone and 108 control tissues were included for analysis. A total of 2424 DEGs were identified when comparing lung cancer coexisting COPD with controls. The biological process was primarily associated with DNA-binding transcription activator activity, peptidase inhibitor activity, endopeptidase inhibitor activity, et al. KEGG pathways were mainly enriched in neuroactive ligand-receptor interaction, cell cycle, and Staphylococcus aureus infection. A survival-associated gene signature consisting of CEACAM5, RASAL1, CSTL1, CNGB1, and SLC4A3 was identified and represented as risk score. The high-risk score group had significantly worse survival than the low-risk score group (P < 0.001). Areas under receiver operating characteristic curves were 0.943, 0.773, 0.888 for predicting overall survival at 1-, 3-, and 5-year, respectively. The risk score was an independent predictor of survival, independent of clinical factors. High conformity of the actual survival and the nomogram–predicted probability of survival by applying the risk score. Upregulation of the five genes in patients with lung cancer coexisting COPD were confirmed by qPCR in an independent cohort. Conclusion: Our study constructed and validated a novel prognostic gene signature for predicting survival of patient with lung cancer coexisting COPD, which may contribute to the clinical treatment decisions.
Collapse
Affiliation(s)
- Ti-Wei Miao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Yi Du
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xiao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Mao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Juan-Juan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Wu C, Hu Q, Ma D. Development of an immune-related gene pairs signature for predicting clinical outcome in lung adenocarcinoma. Sci Rep 2021; 11:3611. [PMID: 33574499 PMCID: PMC7878883 DOI: 10.1038/s41598-021-83120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. We downloaded the gene expression profile and immune-related gene set from the TCGA and ImmPort database, respectively, to establish immune-related gene pairs (IRGPs). Then, IRGPs were subjected to univariate Cox regression analysis, LASSO regression analysis, and multivariable Cox regression analysis to screen and develop an IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from the GEO set was used to validate this signature. The relationship of 22 tumor-infiltrating immune cells (TIICs) to the immune risk score was also investigated. An IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in the TCGA set was 0.867 and 0.870, respectively. Similar results were observed in the AUCs of GEO set 1, 2 and 3 (GEO set 1 [1-year: 0.819; 3-year: 0.803]; GEO set 2 [1-year: 0.834; 3-year: 0.870]; GEO set 3 [1-year: 0.955; 3-year: 0.827]). Survival analysis demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that the risk score was an independent prognostic factor. The immune risk score was highly associated with several TIICs (Plasma cells, memory B cells, resting memory CD4 T cells, and activated NK cells). We developed a novel IRGPs signature for predicting 1- and 3- year overall survival in LUAD, which would be helpful for prognosis assessment of LUAD.
Collapse
Affiliation(s)
- Chunlei Wu
- Department of Thoracic Surgery, Taizhou Hospital, No. 150 Ximen Street, Linhai, Taizhou, Zhejiang, China
| | - Quanteng Hu
- Department of Thoracic Surgery, Taizhou Hospital, No. 150 Ximen Street, Linhai, Taizhou, Zhejiang, China
| | - Dehua Ma
- Department of Thoracic Surgery, Taizhou Hospital, No. 150 Ximen Street, Linhai, Taizhou, Zhejiang, China.
| |
Collapse
|
39
|
Su WJ, Lu PZ, Wu Y, Kalpana K, Yang CK, Lu GD. Identification of Key Genes in Purine Metabolism as Prognostic Biomarker for Hepatocellular Carcinoma. Front Oncol 2021; 10:583053. [PMID: 33520699 PMCID: PMC7841304 DOI: 10.3389/fonc.2020.583053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Deregulated purine metabolism is critical for fast-growing tumor cells by providing nucleotide building blocks and cofactors. Importantly, purine antimetabolites belong to the earliest developed anticancer drugs and are still prescribed in clinics today. However, these antimetabolites can inhibit non-tumor cells and cause undesired side effects. As liver has the highest concentration of purines, it makes liver cancer a good model to study important nodes of dysregulated purine metabolism for better patient selection and precisive cancer treatment. Methods By using a training dataset from TCGA, we investigated the differentially expressed genes (DEG) of purine metabolism pathway (hsa00230) in hepatocellular carcinoma (HCC) and determined their clinical correlations to patient survival. A prognosis model was established by Lasso-penalized Cox regression analysis, and then validated through multiple examinations including Cox regression analysis, stratified analysis, and nomogram using another ICGC test dataset. We next treated HCC cells using chemical drugs of the key enzymes in vitro to determine targetable candidates in HCC. Results The DEG analysis found 43 up-regulated and 2 down-regulated genes in the purine metabolism pathway. Among them, 10 were markedly associated with HCC patient survival. A prognostic correlation model including five genes (PPAT, DCK, ATIC, IMPDH1, RRM2) was established and then validated using the ICGC test dataset. Multivariate Cox regression analysis found that both prognostic risk model (HR = 4.703 or 3.977) and TNM stage (HR = 2.303 or 2.957) independently predicted HCC patient survival in the two datasets respectively. The up-regulations of the five genes were further validated by comparing between 10 pairs of HCC tissues and neighboring non-tumor tissues. In vitro cellular experiments further confirmed that inhibition of IMPDH1 significantly repressed HCC cell proliferation. Conclusion In summary, this study suggests that purine metabolism is deregulated in HCC. The prognostic gene correlation model based on the five purine metabolic genes may be useful in predicting HCC prognosis and patient selection. Moreover, the deregulated genes are targetable by specific inhibitors.
Collapse
Affiliation(s)
- Wen-Jing Su
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Pei-Zhi Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Kumari Kalpana
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Key Laboratory of High-incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education of China, Nanning, China
| |
Collapse
|
40
|
Tu J, Kuang Z, Xie X, Wu S, Wu T, Chen S. Prognostic and predictive value of a mRNA signature in peripheral T-cell lymphomas: A mRNA expression analysis. J Cell Mol Med 2020; 25:84-95. [PMID: 33259129 PMCID: PMC7810961 DOI: 10.1111/jcmm.15851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Current international prognostic index is widely questioned on the risk stratification of peripheral T‐cell lymphoma and does not accurately predict the outcome for patients. We postulated that multiple mRNAs could combine into a model to improve risk stratification and helping clinicians make treatment decisions. In this study, the gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co‐expression network analysis (WGCNA) was used to screening genes in selected module which most closely related to PTCLs, and then built a mRNA signature using a LASSO Cox regression model and validated the prognostic accuracy of it. Finally, a nomogram was constructed and the performance was assessed. A total of 799 WGCNA‐selected mRNAs in black module were identified, and a mRNA signature which based on DOCK2, GSTM1, H2AFY, KCNAB2, LAPTM5 and SYK for PTCLs was developed. Significantly statistical difference can be seen in overall survival of PTCLs between low‐risk group and high‐risk group (training set:hazard ratio [HR] 4.3, 95% CI 2.4‐7.4, P < .0001; internal testing set:hazard ratio [HR] 2.4, 95% CI 1.2‐4.8, P < .01; external testing set:hazard ratio [HR] 2.3, 95% CI 1.10‐4.7, P = .02). Furthermore, multivariate regression demonstrated that the signature was an independently prognostic factor. Moreover, the nomogram which combined the mRNA signature and multiple clinical factors suggesting that predicted survival probability agreed well with the actual survival probability. The signature is a reliable prognostic tool for patients with PTCLs, and it has the potential for clinicians to implement personalized therapeutic regimen for patients with PTCLs.
Collapse
Affiliation(s)
- Jiannan Tu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, China
| | - Zhixing Kuang
- Department of Radiation Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, China
| | - Xiaoliang Xie
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shizhen Wu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, China
| | - Ting Wu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, China
| | - Shengchi Chen
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, China
| |
Collapse
|
41
|
Gorbunova AS, Yapryntseva MA, Denisenko TV, Zhivotovsky B. BNIP3 in Lung Cancer: To Kill or Rescue? Cancers (Basel) 2020; 12:cancers12113390. [PMID: 33207677 PMCID: PMC7697772 DOI: 10.3390/cancers12113390] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bcl-2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) is a pro-apoptotic BH3-only protein of the Bcl-2 family. Its function in various biological processes was described. Although potential involvement of BNIP3 in cancer progression has been discussed in many review articles, its specific role in lung cancer is still unclear. In this review, we shed light on the BNIP3‘s role in different types of cancer in general and lung cancer, in particular, as well as suggested its potential for targeting therapy of lung cancer. Abstract Bcl-2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) is a pro-apoptotic BH3-only protein of the Bcl-2 family. Initially, BNIP3 was described as one of the mediators of hypoxia-induced apoptotic cell death in cardiac myocytes and neurons. Besides apoptosis, BNIP3 plays a crucial role in autophagy, metabolic pathways, and metastasis-related processes in different tumor types. Lung cancer is one of the most aggressive types of cancer, which is often diagnosed at an advanced stage. Therefore, there is still urgent demand for reliable biochemical markers for lung cancer and its efficient treatment. Mitochondria functioning and mitochondrial proteins, including BNIP3, have a strong impact on lung cancer development and progression. Here, we summarized current knowledge about the BNIP3 gene and protein features and their role in cancer progression, especially in lung cancer in order to develop new therapeutic approaches associated with BNIP3.
Collapse
Affiliation(s)
- Anna S. Gorbunova
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (A.S.G.); (M.A.Y.); (T.V.D.)
| | - Maria A. Yapryntseva
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (A.S.G.); (M.A.Y.); (T.V.D.)
| | - Tatiana V. Denisenko
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (A.S.G.); (M.A.Y.); (T.V.D.)
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (A.S.G.); (M.A.Y.); (T.V.D.)
- Karolinska Institutet, Institute of Environmental Medicine, SE-17177 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
42
|
Establishment of a Gene Signature to Predict Prognosis for Patients with Lung Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21228479. [PMID: 33187219 PMCID: PMC7697394 DOI: 10.3390/ijms21228479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that the reliable gene signature may serve as an independent prognosis factor for lung adenocarcinoma (LUAD) diagnosis. Here, we sought to identify a risk score signature for survival prediction of LUAD patients. In the Gene Expression Omnibus (GEO) database, GSE18842, GSE75037, GSE101929, and GSE19188 mRNA expression profiles were downloaded to screen differentially expressed genes (DEGs), which were used to establish a protein-protein interaction network and perform clustering module analysis. Univariate and multivariate proportional hazards regression analyses were applied to develop and validate the gene signature based on the TCGA dataset. The signature genes were then verified on GEPIA, Oncomine, and HPA platforms. Expression levels of corresponding genes were also measured by qRT-PCR and Western blotting in HBE, A549, and PC-9 cell lines. The prognostic signature based on eight genes (TTK, HMMR, ASPM, CDCA8, KIF2C, CCNA2, CCNB2, and MKI67) was established, which was independent of other clinical factors. The risk model offered better discrimination between risk groups, and patients with high-risk scores tended to have poor survival rate at 1-, 3- and 5-year follow-up. The model also presented better survival prediction in cancer-specific cohorts of age, gender, clinical stage III/IV, primary tumor 1/2, and lymph node metastasis 1/2. The signature genes, moreover, were highly expressed in A549 and PC-9 cells. In conclusion, the risk score signature could be used for prognostic estimation and as an independent risk factor for survival prediction in patients with LUAD.
Collapse
|
43
|
Li SQ, Feng J, Yang M, Ai XP, He M, Liu F. Sauchinone: a prospective therapeutic agent-mediated EIF4EBP1 down-regulation suppresses proliferation, invasion and migration of lung adenocarcinoma cells. J Nat Med 2020; 74:777-787. [PMID: 32666278 DOI: 10.1007/s11418-020-01435-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Lung adenocarcinoma (LUAD) is the top prevalent histological kind of lung cancer worldwide. Recent evidences have demonstrated that Sauchinone plays an anticancer role in tumor cell invasion and migration. Therefore, we performed this investigation to explain the potential role of Sauchinone in LUAD as well as the potential mechanism involved. Cell counting kit 8 (CCK-8) and transwell experiments were implemented to measure the proliferative, invasive and migratory abilities of LUAD cells. qRT-PCR and Western blot were performed to detect the transfection efficiency of si-EIF4EBP1s. Additionally, Western blot was also implemented to evaluate the effect of Sauchinone on EIF4EBP1 expression level as well as cell cycle-related proteins. Our findings showed that Sauchinone remarkably suppressed the proliferative ability of LUAD cells in a dose-dependent and time-dependent manner. EIF4EBP1 was a candidate target gene of Sauchinone. EIF4EBP1 expression was increased in LUAD tissues, and its high expression induced a poorer prognosis of LUAD patients. EIF4EBP1 expression was positively associated with cell cycle in LUAD. Sauchinone treatment attenuated EIF4EBP1 expression and cell cycle-related protein levels. Knockdown of EIF4EBP1 repressed the proliferation, invasion and migration of LUAD cells; furthermore, Sauchinone stimulation enforced its inhibitory effect. Meanwhile, the treatment of Sauchinone intensified the arrest of cell cycle induced by EIF4EBP1 knockdown. To sum up, our discovery indicated that Sauchinone exerts an anticancer role through down-regulating EIF4EBP1 and mediating cell cycle in LUAD.
Collapse
Affiliation(s)
- Sheng-Qian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Jing Feng
- Department of Pharmacy, Nanchong Second People's Hospital, No.55, Baituba Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xiao-Peng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|