1
|
Pilmer L, Woolley L, Lymbery A, Dam C, Elizur A, Foysal MJ, Partridge G. Exploring single cell microbial protein as a sustainable fishmeal alternative in yellowtail kingfish (Seriola lalandi) diets: impacts on health and gut microbiome. J Anim Sci Biotechnol 2025; 16:16. [PMID: 39893452 PMCID: PMC11787759 DOI: 10.1186/s40104-024-01146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND With the global expansion of aquaculture and the increasing demand for fish meal, identifying appropriate and sustainable alternative protein sources for aquafeeds has become essential. Single-cell protein (SCP), derived from methanotrophic bacteria, presents a promising alternative by converting methane into protein, potentially addressing both the need for alternative protein sources and reducing industrial greenhouse gas emissions. This study aimed to evaluate the effects of different levels of SCP inclusion (0%, 25%, 50%, and 75% fish meal replacement) on the health, gene expression, and gut microbiome of yellowtail kingfish (YTK, Seriola lalandi) following a 35-day growth trial. RESULTS The study found that SCP inclusion at the highest level of fishmeal replacement (75%) induced a mild inflammatory response in the hindgut of the fish. However, micromorphological assessments of the hindgut, serum biochemistry, and gene expression analyses revealed no significant detrimental effects from SCP replacement. Notably, there were indications of improved lipid digestibility with SCP. Furthermore, SCP inclusion significantly enhanced microbial richness and altered the composition of the gut microbiome, introducing beneficial bacterial taxa that may contribute to improved gut health and resilience. CONCLUSIONS This study highlights SCP as a viable and sustainable alternative to fish meal in YTK diets. The findings suggest that SCP can be included in YTK diets without adverse health effects at moderate levels and may even offer benefits in terms of lipid digestibility and gut microbiome diversity. These results contribute to the advancement of more sustainable aquaculture practices.
Collapse
Affiliation(s)
- Luke Pilmer
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia.
- Department of Primary Industries and Regional Development, Fleet Street, Fremantle, WA, 6160, Australia.
| | - Lindsey Woolley
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Fleet Street, Fremantle, WA, 6160, Australia
| | - Alan Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Chinh Dam
- Bioinovation Centre, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
- Research Institute for Aquaculture No.1, Dinh Bang, Tu Son, Bac Ninh, Vietnam
| | - Abigail Elizur
- Bioinovation Centre, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Md Javed Foysal
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Gavin Partridge
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Fleet Street, Fremantle, WA, 6160, Australia
- Oceans Institute, University of Western Australia, Stirling Highway, WA, 6009, Australia
| |
Collapse
|
2
|
Singh BK, Thakur K, Kumari H, Mahajan D, Sharma D, Sharma AK, Kumar S, Singh B, Pankaj PP, Kumar R. A review on comparative analysis of marine and freshwater fish gut microbiomes: insights into environmental impact on gut microbiota. FEMS Microbiol Ecol 2025; 101:fiae169. [PMID: 39719366 PMCID: PMC11730441 DOI: 10.1093/femsec/fiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
The gut microbiota, which includes prokaryotes, archaea, and eukaryotes such as yeasts, some protozoa, and fungi, significantly impacts fish by affecting digestion, metabolism, and the immune system. In this research, we combine various tasks carried out by various bacteria in the gut of fish. This study also examines the gut microbiome composition of marine and freshwater fish, identifying important bacterial species linked to different biological functions. The diversity within fish species highlights the importance of considering nutrition, habitat, and environmental factors in microbiological research on fish. The ever-changing gut microbiome of the fish indicates that microbial communities are specifically adapted to meet the needs of both the host and its environment. This indicates that the fish can adjust to a specific environment with the help of gut microbiota. This important research is crucial for comprehending the complex relationships between fish and their gut bacteria in different aquatic environments. These discoveries have implications for aquaculture practices, fisheries administration, and the broader ecological processes of both freshwater and marine environments. With further progress in this area of study, the knowledge acquired would offer a valuable standpoint to enhance our comprehension of aquatic microbiology and enhance the sustainability and nutrition of fish resources.
Collapse
Affiliation(s)
- Binoy Kumar Singh
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Hishani Kumari
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Birbal Singh
- ICAR—Indian Veterinary Research Institute (IVRI), Regional Station, Palampur 176061, India
| | - Pranay Punj Pankaj
- Department of Zoology, Nagaland University (A Central University), Lumami 798627, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| |
Collapse
|
3
|
Bathia J, Miklós M, Gyulai I, Fraune S, Tökölyi J. Environmental microbial reservoir influences the bacterial communities associated with Hydra oligactis. Sci Rep 2024; 14:32167. [PMID: 39741169 PMCID: PMC11688501 DOI: 10.1038/s41598-024-82944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome. Correlation analyses and neutral modeling revealed that differences in Hydra microbiota are associated with differences in environmental microbiota. To further investigate the influence of environmental bacterial community on the host microbiome, field-collected Hydra polyps from three populations were cultured in native water or foreign water. Our results show that lake water bacteria significantly contribute to Hydra microbial communities, but the compositional profile remained stable when cultured in different water sources. Longitudinal analysis of the in vitro experiment revealed a site-specific change in microbiome that correlated with the source water quality. Taken together, our findings demonstrate that while freshwater serves as a critical microbial reservoir, Hydra microbial communities exhibit remarkable resilience to environmental changes maintaining stability despite potential invasion. This dual approach highlights the complex interplay between environmental reservoirs and host microbiome integrity.
Collapse
Affiliation(s)
- Jay Bathia
- Institute of Zoology and Organismic Interactions, Heinrich-Heine University, Düsseldorf, Germany.
| | - Máté Miklós
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
- Centre for Eco-Epidemiology, National Laboratory for Health Security, Budapest, Hungary
| | - István Gyulai
- National Laboratory for Water Science and Water Security, Department of Hydrobiology, University of Debrecen, Debrecen, Hungary
| | - Sebastian Fraune
- Institute of Zoology and Organismic Interactions, Heinrich-Heine University, Düsseldorf, Germany
| | - Jácint Tökölyi
- MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Chen Y, Ma J, Yong YS, Chen Y, Chen B, Cao J, Peng K, Wang G, Huang H, Loh JY. Impacts of Black Soldier Fly ( Hermetia illucens) Larval Meal on Intestinal Histopathology and Microbiome Responses in Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂): A Comprehensive Analysis. Animals (Basel) 2024; 14:3596. [PMID: 39765499 PMCID: PMC11672651 DOI: 10.3390/ani14243596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This study examined the diversity and responses of intestinal microbiota in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) fed diets with varying levels of fishmeal replaced by black soldier fly larvae (BSFL). The 10% BSFL substitution (BSFL10) group showed the highest levels of trypsin and amylase. Substituting fishmeal with 30% and 50% BSFL weakened the intestinal wall, resulting in vacuoles, sparse striatal boundaries, and fewer villi. Microbiota diversity, measured through Shannon's index, was higher in the BSFL10 and BSFL50 groups than in the control. 16S rRNA amplicon data revealed the dominance of Firmicutes, Proteobacteria, Bacteroidetes, Spirochaetota, and Verrucomicrobia phyla. The BSFL-replacement groups showed an increase in Proteobacteria, Bacteroidetes, and Spirochaetota compared to the control, but fewer Firmicutes. PICRUSt analysis indicated significant alterations in microbial function, particularly enhanced protein, carbohydrate, lipid, and energy metabolisms in the BSFL-fed group. Substituting 10% fishmeal with BSFL enhanced nutrient metabolism and gut microbiota in juvenile hybrid grouper. Further research is needed to explore factors affecting the efficacy of insect feed as a sustainable aquaculture diet.
Collapse
Affiliation(s)
- Yan Chen
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Yoong-Soon Yong
- R&D Quality Department, Osmosis Nutrition Sdn Bhd, Bandar Nilai Utama, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Yonggan Chen
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Bing Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Junming Cao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kai Peng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Guaxia Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Collaborative Innovation Center of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572024, China; (Y.C.)
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya 572004, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya 572022, China
| | - Jiun-Yan Loh
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore
| |
Collapse
|
5
|
Milián-Sorribes MC, Martínez-Llorens S, Peñaranda DS, Jauralde I, Jover-Cerdá M, Tomás-Vidal A. Growth, Survival, and Intestinal Health Alterations in Mediterranean Yellowtail ( Seriola dumerili) Due to Alternatives to Fishmeal and Fish Oil. Curr Issues Mol Biol 2024; 46:753-772. [PMID: 38248351 PMCID: PMC10814527 DOI: 10.3390/cimb46010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
Fishmeal and fish oil substitution in aquafeeds might have adverse effects on fish growth and health, mainly in carnivorous species, such as Mediterranean yellowtail (Seriola dumerili). Mediterranean yellowtail shows great potential as an alternative aquaculture species due to its fast growth and high price on the market, but the need for high-quality protein and fatty acid content in its diets is limiting its production. In order to improve the sustainability of its production, this study was conducted with 360 fish of 35 g to evaluate the effects on fish growth and health. Six diets were used: one control diet without replacement, three with FM replacement (FM66, FM33, and FM0) (33%, 66%, and 100% FM replacement), and two with FO replacement (FO50 and FO0) (50% and 100% FO replacement). The substitution of FM was with vegetable (VM) (corn gluten) and animal (AM) (krill and meat meal) meals. The reductions in FM and FO of up to 33 and 0%, respectively, did not affect the growth and survival of S. dumerili at the intestinal morphology level, except for the anterior intestine regarding the lower villi length and width and the posterior intestine regarding the lower width of the lamina propria. On the other hand, the substitution of fish ingredients in the diet affects liver morphology, indicating alterations in the major diameter of hepatocytes or their nuclei. Finally, diet did not affect the gut microbiota with respect to the control, but significant differences were found in alpha and beta diversity when FO and FM microbiota were compared. A 66% FM replacement and total FO replacement would be possible without causing major alterations in the fish.
Collapse
Affiliation(s)
| | - Silvia Martínez-Llorens
- Aquaculture and Biodiversity Group, Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.C.M.-S.); (D.S.P.); (I.J.); (M.J.-C.); (A.T.-V.)
| | | | | | | | | |
Collapse
|
6
|
Wang LC, Chen LH, Chiu YC, Liou CY, Chen HC, Lu CY, Chen JL. Teleost skin microbiome: An intimate interplay between the environment and the host immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108869. [PMID: 37285875 DOI: 10.1016/j.fsi.2023.108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The mucosal microbiome plays a role in regulating host health. The research conducted in humans and mice has governed and detailed the information on microbiome-host immunity interactions. Teleost fish, different from humans and mice, lives in and relies on the aquatic environment and is subjected to environmental variation. The growth of teleost mucosal microbiome studies, the majority in the gastrointestinal tract, has emphasized the essential role of the teleost microbiome in growth and health. However, research in the teleost external surface microbiome, as the skin microbiome, has just started. In this review, we examine the general findings in the colonization of the skin microbiome, how the skin microbiome is subjected to environmental change and the reciprocal regulation with the host immune system, and the current challenges that potential study models can address. The information collected from teleost skin microbiome-host immunity research would help future teleost culturing from the potential parasitic infestation and bacterial infection as foreseeing growing threats.
Collapse
Affiliation(s)
- Liang-Chun Wang
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Committee of Fisheries Extension Service, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| | - Li-Hsuan Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Yu-Che Chiu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chung-Yi Liou
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Han-Chung Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chia-Yun Lu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Jian-Lin Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| |
Collapse
|
7
|
Rosado D, Canada P, Marques Silva S, Ribeiro N, Diniz P, Xavier R. Disruption of the skin, gill, and gut mucosae microbiome of gilthead seabream fingerlings after bacterial infection and antibiotic treatment. FEMS MICROBES 2023; 4:xtad011. [PMID: 37389204 PMCID: PMC10306326 DOI: 10.1093/femsmc/xtad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
The activity of the microbiome of fish mucosae provides functions related to immune response, digestion, or metabolism. Several biotic and abiotic factors help maintaining microbial homeostasis, with disruptions leading to dysbiosis. Diseases and antibiotic administration are known to cause dysbiosis in farmed fish. Pathogen infections greatly affect the production of gilthead seabream, and antibiotic treatment is still frequently required. Here, we employed a 16S rRNA high-throughput metataxonomics approach to characterize changes in the gut, skin, and gill microbiomes occurring due to infection with Photobacterium damselae subsp. piscicida and subsequent antibiotic treatment with oxytetracycline (OTC), as well as during recovery. Although microbiota response differed between studied tissues, overall changes in composition, diversity, structure, and predicted function were observed in all mucosae. The skin and gill microbiomes of diseased fish became largely dominated by taxa that have been frequently linked to secondary infections, whereas in the gut the genus Vibrio, known to include pathogenic bacteria, increased with OTC treatment. The study highlights the negative impacts of disease and antibiotic treatment on the microbiome of farmed fish. Our results also suggest that fish transportation operations may have profound effects on the fish microbiome, but further studies are needed to accurately evaluate their impact.
Collapse
Affiliation(s)
- Daniela Rosado
- S2AQUA – Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Avenida Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Paula Canada
- Corresponding author. Paula Canada, CIIMAR – Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208 Matosinhos, Portugal, CMC; Centro de Maricultura da Calheta, Direcção Regional do Mar, Av. D. Manuel I, nº 7, 9370-135 Calheta, Madeira, Portugal
| | - Sofia Marques Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
| | - Nuno Ribeiro
- MVAQUA – Serviços Médico Veterinários dedicados a Aquacultura, Av. do Parque de Campismo Lote 24, Fração C, 3840-264 Gafanha da Boa Hora, Portugal
| | - Pedro Diniz
- Marismar – Aquicultura Marinha, Lda, Rua do Cabrestante 28, 9000-105 Funchal, Portugal
| | - Raquel Xavier
- Raquel Xavier, CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal; E-mail:
| |
Collapse
|
8
|
Zhang L, Yang Z, Yang F, Wang G, Zeng M, Zhang Z, Yang M, Wang Z, Li Z. Gut microbiota of two invasive fishes respond differently to temperature. Front Microbiol 2023; 14:1087777. [PMID: 37056740 PMCID: PMC10088563 DOI: 10.3389/fmicb.2023.1087777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Temperature variation structures the composition and diversity of gut microbiomes in ectothermic animals, key regulators of host physiology, with potential benefit to host or lead to converse results (i.e., negative). So, the significance of either effect may largely depend on the length of time exposed to extreme temperatures and how rapidly the gut microbiota can be altered by change in temperature. However, the temporal effects of temperature on gut microbiota have rarely been clarified. To understand this issue, we exposed two juvenile fishes (Cyprinus carpio and Micropterus salmoides), which both ranked among the 100 worst invasive alien species in the world, to increased environmental temperature and sampled of the gut microbiota at multiple time points after exposure so as to determine when differences in these communities become detectable. Further, how temperature affects the composition and function of microbiota was examined by comparing predicted metagenomic profiles of gut microbiota between treatment groups at the final time point of the experiment. The gut microbiota of C. carpio was more plastic than those of M. salmoides. Specifically, communities of C. carpio were greatly altered by increased temperature within 1 week, while communities of M. salmoides exhibit no significant changes. Further, we identified 10 predicted bacterial functional pathways in C. carpio that were temperature-dependent, while none functional pathways in M. salmoides was found to be temperature-dependent. Thus, the gut microbiota of C. carpio was more sensitive to temperature changes and their functional pathways were significantly changed after temperature treatment. These results showed the gut microbiota of the two invasive fishes differ in response to temperature change, which may indicate that they differ in colonization modes. Broadly, we have confirmed that the increased short-term fluctuations in temperatures are always expected to alter the gut microbiota of ectothermic vertebrates when facing global climate change.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
- Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem and The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, China
- *Correspondence: Lixia Zhang,
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ming Zeng
- Jigongshan National Nature Reserve, Xinyang, China
| | | | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Zhibing Li
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
9
|
Li J, Bates KA, Hoang KL, Hector TE, Knowles SCL, King KC. Experimental temperatures shape host microbiome diversity and composition. GLOBAL CHANGE BIOLOGY 2023; 29:41-56. [PMID: 36251487 PMCID: PMC10092218 DOI: 10.1111/gcb.16429] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 05/10/2023]
Abstract
Global climate change has led to more extreme thermal events. Plants and animals harbour diverse microbial communities, which may be vital for their physiological performance and help them survive stressful climatic conditions. The extent to which microbiome communities change in response to warming or cooling may be important for predicting host performance under global change. Using a meta-analysis of 1377 microbiomes from 43 terrestrial and aquatic species, we found a decrease in the amplicon sequence variant-level microbiome phylogenetic diversity and alteration of microbiome composition under both experimental warming and cooling. Microbiome beta dispersion was not affected by temperature changes. We showed that the host habitat and experimental factors affected microbiome diversity and composition more than host biological traits. In particular, aquatic organisms-especially in marine habitats-experienced a greater depletion in microbiome diversity under cold conditions, compared to terrestrial hosts. Exposure involving a sudden long and static temperature shift was associated with microbiome diversity loss, but this reduction was attenuated by prior-experimental lab acclimation or when a ramped regime (i.e., warming) was used. Microbial differential abundance and co-occurrence network analyses revealed several potential indicator bacterial classes for hosts in heated environments and on different biome levels. Overall, our findings improve our understanding on the impact of global temperature changes on animal and plant microbiome structures across a diverse range of habitats. The next step is to link these changes to measures of host fitness, as well as microbial community functions, to determine whether microbiomes can buffer some species against a more thermally variable and extreme world.
Collapse
Affiliation(s)
- Jingdi Li
- Department of BiologyUniversity of OxfordOxfordUK
| | | | - Kim L. Hoang
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | | | |
Collapse
|
10
|
Potential Role of Gastrointestinal Microbiota in Growth Regulation of Yellowtail Kingfish Seriola lalandi in Different Stocking Densities. FISHES 2022. [DOI: 10.3390/fishes7040154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A 90-day study was performed under three different stocking densities, including high density (10,000 fishes/cage), medium density (8000 fishes/cage), and low density (6000 fishes/cage), in a deep-sea net cage for yellowtail kingfish (Seriola lalandi). The physiological characteristics and growth performance were tested, and structural characteristics of the gastrointestinal microbiota were systematically analyzed. The results show that fishes with high density had a lower weight gain rate and a specific growth rate, as well as higher serum cortisol content. The diversity, types and numbers of dominant microbiota with significant differences, and the numbers of shared genera among the different groups all changed. Core genera in the gastrointestinal tract were obtained according to the principles of dominance, commonality, and difference. The changes in the relative abundance of the core genera might be related to the growth and physiological characteristics of the host. The ratio of Firmicutes to Bacteroidetes in the stomach and pyloric caecum, which favors the accumulation of energy by the host from the diet, was higher in the medium-density group than in the other groups. This indicates that the higher density could cause physiological stress and affect growth performance. In order to reduce the resulting growth differences, gastrointestinal microbiota might assist the host in accumulating energy, participating in the energy distribution by adjusting its structure. Based on the growth, physiology, and production practices, the medium density was the appropriate density in this study. This study provides a reference for the improvement of deep-sea culture technology and the promotion of healthy growth through the gastrointestinal microecological regulation of yellowtail kingfish.
Collapse
|
11
|
Legrand T, Wos‐Oxley M, Wynne J, Weyrich L, Oxley A. Dead or alive: microbial viability treatment reveals both active and inactive bacterial constituents in the fish gut microbiota. J Appl Microbiol 2021; 131:2528-2538. [PMID: 33945191 PMCID: PMC8596808 DOI: 10.1111/jam.15113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 04/17/2021] [Indexed: 12/26/2022]
Abstract
AIMS This study evaluated the microbial viability of fish gut microbiota in both digesta (faecal) and mucosal samples using a modified propidium monoazide (PMA) protocol, followed by 16S ribosomal RNA (rRNA) gene sequencing. METHODS AND RESULTS Digesta and gut mucosal samples from farmed yellowtail kingfish (Seriola lalandi) were collected and a modified PMA treatment was applied prior to DNA extraction to differentiate both active and nonviable microbial cells in the samples. All samples were then sequenced using a standard 16S rRNA approach. The digesta and mucosal samples contained significantly different bacterial communities, with a higher diversity observed in digesta samples. In addition, PMA treatment significantly reduced the microbial diversity and richness of digesta and mucosal samples and depleted bacterial constituents typically considered to be important within fish, such as Lactobacillales and Clostridales taxa. CONCLUSIONS These findings suggest that important bacterial members may not be active in the fish gut microbiota. In particular, several beneficial lactic acid bacteria (LAB) were identified as nonviable bacterial cells, potentially influencing the functional potential of the fish microbiota. SIGNIFICANCE AND IMPACTS OF THE STUDY Standardizing the methods for characterizing the fish microbiota are paramount in order to compare studies. In this study, we showed that both sample type and PMA treatment influence the bacterial communities found in the fish gut microbiota. Our findings also suggest that several microbes previously described in the fish gut may not be active constituents. As a result, these factors should be considered in future studies to better evaluate the active bacterial communities associated with the host.
Collapse
Affiliation(s)
- T.P.R.A. Legrand
- School of Biological SciencesThe University of AdelaideAdelaideSAAustralia
- CSIRO, Agriculture and FoodHobartTasAustralia
- South Australian Research and Development InstituteAquatic Sciences CentreWest BeachSAAustralia
| | - M.L. Wos‐Oxley
- College of Science and EngineeringFlinders UniversityAdelaideSAAustralia
| | - J.W. Wynne
- CSIRO, Agriculture and FoodHobartTasAustralia
| | - L.S. Weyrich
- School of Biological SciencesThe University of AdelaideAdelaideSAAustralia
- Department of Anthropology and Huck Institutes of Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - A.P.A. Oxley
- Faculty of Science Engineering and Built EnvironmentSchool of Life and Environmental SciencesDeakin UniversityGeelongVic.Australia
| |
Collapse
|
12
|
Ou W, Yu G, Zhang Y, Mai K. Recent progress in the understanding of the gut microbiota of marine fishes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:434-448. [PMID: 37073265 PMCID: PMC10077274 DOI: 10.1007/s42995-021-00094-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
As the significance of the gut microbiota has become increasingly realized, a large number of related studies have emerged. With respect to the gut microbial composition of fish, the predominant gut microbes and core gut microbiota have been reported by many researchers. Our understanding of fish gut microbiota, especially its functional roles, has fallen far behind that of terrestrial vertebrates, although previous studies using gnotobiotic zebrafish models have revealed that the gut microbiota performs a significant role in gut development, nutrient metabolism and immune responses. Given that environmental factors of marine habitats are very different from those of freshwater habitats, a distinct difference may exist in the gut microbiota between freshwater and marine fish. Therefore, this review aims to address the advances in marine fish gut microbiota in terms of methodologies, the gut microbial composition, and gnotobiotic models of marine fish, the important factors (host genotype and three environmental factors: temperature, salinity and diet) that drive marine fish gut microbiota, and significant roles of the gut microbiota in marine fish.
Collapse
Affiliation(s)
- Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
| | - Guijuan Yu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
13
|
Liu A, Mazumder D, Pirozzi I, Sammut J, Booth M. The effect of dietary choline and water temperature on the contribution of raw materials to the muscle tissue of juvenile yellowtail kingfish (Seriola lalandi): An investigation using a stable isotope mixing model. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Larios-Soriano E, Zavala RC, López LM, Gómez-Gil B, Ramírez DT, Sanchez S, Canales K, Galaviz MA. Soy protein concentrate effects on gut microbiota structure and digestive physiology of Totoaba macdonaldi. J Appl Microbiol 2021; 132:1384-1396. [PMID: 34469017 DOI: 10.1111/jam.15269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 01/28/2023]
Abstract
AIMS Examine the effect of soy protein concentrate (SPC) on allochthonous microbiota, hindgut integrity, and liver tissue of totoaba (Totoaba macdonaldi). METHODS AND RESULTS Four diets were prepared: control diet (100% fishmeal) and experimental diets containing partial substitution of fishmeal by SPC (15%, 30% and 45% SPC). After 90 days, samples of the hindgut contents were taken to determine the taxonomic composition of the allochthonous microbiota through sequencing of the V3-V4 region of the 16S rRNA gene. Simultaneously, liver and hindgut samples were collected for examination by histological approaches. The SPC modulated the richness and abundance of the accessory microbiota, of which the main operational taxonomic unit showed an increase corresponding to the Phylum Firmicutes (Bacillales and Lactobacillales). With the increase in SPC, a slight decrease in mucosal fold width, a decrease in goblet cells and a slight distortion of the villi in the hindgut were observed. In the liver, SPC was observed to influence hepatocytes morphology through irregular and enlarged nuclei. CONCLUSION The study demonstrates that Proteobacteria dominated the allochthonous microbiota of subadult totoaba, regardless of the diet. However, the SPC modulated the accessory bacteria communities and caused slight effects on the liver and gut of fish. SIGNIFICANCES AND IMPACT OF THE STUDY To our knowledge, this is the first study that analyses the effects of SPC on allochthonous microbiota of subadults T. macdonaldi through new generation techniques such as DNA sequencing for metagenomic analysis.
Collapse
Affiliation(s)
- Ernesto Larios-Soriano
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Roberto Carrillo Zavala
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Lus M López
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo A.C. Unidad-Mazatlán, Sinaloa, México
| | | | - Samuel Sanchez
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Karla Canales
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Mario A Galaviz
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| |
Collapse
|
15
|
Rosado D, Xavier R, Cable J, Severino R, Tarroso P, Pérez-Losada M. Longitudinal sampling of external mucosae in farmed European seabass reveals the impact of water temperature on bacterial dynamics. ISME COMMUNICATIONS 2021; 1:28. [PMID: 36739461 PMCID: PMC9723769 DOI: 10.1038/s43705-021-00019-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Fish microbiota are intrinsically linked to health and fitness, but they are highly variable and influenced by both biotic and abiotic factors. Water temperature particularly limits bacterial adhesion and growth, impacting microbial diversity and bacterial infections on the skin and gills. Aquaculture is heavily affected by infectious diseases, especially in warmer months, and industry practices often promote stress and microbial dysbiosis, leading to an increased abundance of potentially pathogenic bacteria. In this regard, fish mucosa health is extremely important because it provides a primary barrier against pathogens. We used 16 rRNA V4 metataxonomics to characterize the skin and gill microbiota of the European seabass, Dicentrarchus labrax, and the surrounding water over 12 months, assessing the impact of water temperature on microbial diversity and function. We show that the microbiota of external mucosae are highly dynamic with consistent longitudinal trends in taxon diversity. Several potentially pathogenic genera (Aliivibrio, Photobacterium, Pseudomonas, and Vibrio) were highly abundant, showing complex interactions with other bacterial genera, some of which with recognized probiotic activity, and were also significantly impacted by changes in temperature. The surrounding water temperature influenced fish microbial composition, structure and function over time (days and months). Additionally, dysbiosis was more frequent in warmer months and during transitions between cold/warm months. We also detected a strong seasonal effect in the fish microbiota, which is likely to result from the compound action of several unmeasured environmental factors (e.g., pH, nutrient availability) beyond temperature. Our results highlight the importance of performing longitudinal studies to assess the impact of environmental factors on fish microbiotas.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, Lagos, Portugal
| | - Pedro Tarroso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
16
|
Minich JJ, Nowak B, Elizur A, Knight R, Fielder S, Allen EE. Impacts of the Marine Hatchery Built Environment, Water and Feed on Mucosal Microbiome Colonization Across Ontogeny in Yellowtail Kingfish, Seriola lalandi. FRONTIERS IN MARINE SCIENCE 2021; 8:676731. [PMID: 36248701 PMCID: PMC9563383 DOI: 10.3389/fmars.2021.676731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The fish gut microbiome is impacted by a number of biological and environmental factors including fish feed formulations. Unlike mammals, vertical microbiome transmission is largely absent in fish and thus little is known about how the gut microbiome is initially colonized during hatchery rearing nor the stability throughout growout stages. Here we investigate how various microbial-rich surfaces from the built environment "BE" and feed influence the development of the mucosal microbiome (gill, skin, and digesta) of an economically important marine fish, yellowtail kingfish, Seriola lalandi, over time. For the first experiment, we sampled gill and skin microbiomes from 36 fish reared in three tank conditions, and demonstrate that the gill is more influenced by the surrounding environment than the skin. In a second experiment, fish mucous (gill, skin, and digesta), the BE (tank side, water, inlet pipe, airstones, and air diffusers) and feed were sampled from indoor reared fish at three ages (43, 137, and 430 dph; n = 12 per age). At 430 dph, 20 additional fish were sampled from an outdoor ocean net pen. A total of 304 samples were processed for 16S rRNA gene sequencing. Gill and skin alpha diversity increased while gut diversity decreased with age. Diversity was much lower in fish from the ocean net pen compared to indoor fish. The gill and skin are most influenced by the BE early in development, with aeration equipment having more impact in later ages, while the gut "allochthonous" microbiome becomes increasingly differentiated from the environment over time. Feed had a relatively low impact on driving microbial communities. Our findings suggest that S. lalandi mucosal microbiomes are differentially influenced by the BE with a high turnover and rapid succession occurring in the gill and skin while the gut microbiome is more stable. We demonstrate how individual components of a hatchery system, especially aeration equipment, may contribute directly to microbiome development in a marine fish. In addition, results demonstrate how early life (larval) exposure to biofouling in the rearing environment may influence fish microbiome development which is important for animal health and aquaculture production.
Collapse
Affiliation(s)
- Jeremiah J. Minich
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Barbara Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Abigail Elizur
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Stewart Fielder
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, NSW, Australia
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|