1
|
Chen A, Covitz RM, Folsom AA, Mu X, Peck RF, Noh S. Symbiotic T6SS affects horizontal transmission of Paraburkholderia bonniea among Dictyostelium discoideum amoeba hosts. ISME COMMUNICATIONS 2025; 5:ycaf005. [PMID: 40046898 PMCID: PMC11882306 DOI: 10.1093/ismeco/ycaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/09/2025]
Abstract
Three species of Paraburkholderia are able to form facultative symbiotic relationships with the amoeba, Dictyostelium discoideum. These symbiotic Paraburkholderia share a type VI secretion system (T6SS) that is absent in other close relatives. We tested the phenotypic and transcriptional effect of tssH ATPase gene disruption in P. bonniea on its symbiosis with D. discoideum. We hypothesized that the ∆tssH mutant would have a significantly reduced ability to affect host fitness or transmit itself from host to host. We found that the T6SS does not directly affect host fitness. Instead, wildtype P. bonniea had significantly higher rates of horizontal transmission compared to ∆tssH. In addition, we observed significant differences in the range of infection prevalence achieved by wildtype vs. ∆tssH symbionts over multiple host social stages in the absence of opportunities for environmental symbiont acquisition. Successful symbiont transmission significantly contributes to sustained symbiotic association. Therefore, the shared T6SS appears necessary for a long-term evolutionary relationship between D. discoideum and its Paraburkholderia symbionts. The lack of difference in host fitness outcomes was confirmed by indistinguishable host gene expression patterns between hosts infected by wildtype or ∆tssH P. bonniea in an RNA-seq time series. These data also provided insight into how Paraburkholderia symbionts may evade phagocytosis by its amoeba host. Most significantly, cellular oxidant detoxification and lysosomal hydrolase delivery appear to be subject to the push and pull of host-symbiont crosstalk.
Collapse
Affiliation(s)
- Anna Chen
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Rachel M Covitz
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
- School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, United States
| | - Abigail A Folsom
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Xiangxi Mu
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Ronald F Peck
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Suegene Noh
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| |
Collapse
|
2
|
Scott TJ, Queller DC, Strassmann JE. Complex third-party effects in the Dictyostelium-Paraburkholderia symbiosis: prey bacteria that are eaten, carried or left behind. Proc Biol Sci 2024; 291:20241111. [PMID: 39016123 PMCID: PMC11253208 DOI: 10.1098/rspb.2024.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Symbiotic interactions may change depending on third parties like predators or prey. Third-party interactions with prey bacteria are central to the symbiosis between Dictyostelium discoideum social amoeba hosts and Paraburkholderia bacterial symbionts. Symbiosis with inedible Paraburkholderia allows host D. discoideum to carry prey bacteria through the dispersal stage where hosts aggregate and develop into fruiting bodies that disperse spores. Carrying prey bacteria benefits hosts when prey are scarce but harms hosts when prey bacteria are plentiful, possibly because hosts leave some prey bacteria behind while carrying. Thus, understanding benefits and costs in this symbiosis requires measuring how many prey bacteria are eaten, carried and left behind by infected hosts. We found that Paraburkholderia infection makes hosts leave behind both symbionts and prey bacteria. However, the number of prey bacteria left uneaten was too small to explain why infected hosts produced fewer spores than uninfected hosts. Turning to carried bacteria, we found that hosts carry prey bacteria more often after developing in prey-poor environments than in prey-rich ones. This suggests that carriage is actively modified to ensure hosts have prey in the harshest conditions. Our results show that multi-faceted interactions with third parties shape the evolution of symbioses in complex ways.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Biology, Washington University, St. Louis, MO63130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138, USA
| | - David C. Queller
- Department of Biology, Washington University, St. Louis, MO63130, USA
| | | |
Collapse
|
3
|
Noh S, Peck RF, Larson ER, Covitz RM, Chen A, Roy P, Hamilton MC, Dettmann RA. Facultative symbiont virulence determines horizontal transmission rate without host specificity in Dictyostelium discoideum social amoebas. Evol Lett 2024; 8:437-447. [PMID: 38818420 PMCID: PMC11134466 DOI: 10.1093/evlett/qrae001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 06/01/2024] Open
Abstract
In facultative symbioses, only a fraction of hosts are associated with symbionts. Specific host and symbiont pairings may be the result of host-symbiont coevolution driven by reciprocal selection or priority effects pertaining to which potential symbiont is associated with a host first. Distinguishing between these possibilities is important for understanding the evolutionary forces that affect facultative symbioses. We used the social amoeba, Dictyostelium discoideum, and its symbiont, Paraburkholderia bonniea, to determine whether ongoing coevolution affects which host-symbiont strain pairs naturally cooccur within a facultative symbiosis. Relative to other Paraburkholderia, including another symbiont of D. discoideum, P. bonniea features a reduced genome size that indicates a significant history of coevolution with its host. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness for naturally cooccurring (native) host and symbiont pairings compared to novel pairings. We show for the first time that P. bonniea symbionts can horizontally transmit to new amoeba hosts when hosts aggregate together during the social stage of their life cycle. Here we find evidence for a virulence-transmission trade-off without host specificity. Although symbiont strains were significantly variable in virulence and horizontal transmission rate, hosts and symbionts responded similarly to associations in native and novel pairings. We go on to identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in virulence. We conclude that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead appears to represent a stable facultative symbiosis in which naturally cooccurring P. bonniea host and symbiont pairings are the result of priority effects.
Collapse
Affiliation(s)
- Suegene Noh
- Biology Department, Colby College, Waterville, ME, United States
| | - Ron F Peck
- Biology Department, Colby College, Waterville, ME, United States
| | - Emily R Larson
- Biology Department, Colby College, Waterville, ME, United States
| | - Rachel M Covitz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Anna Chen
- Biology Department, Colby College, Waterville, ME, United States
| | - Prachee Roy
- Biology Department, Colby College, Waterville, ME, United States
| | - Marisa C Hamilton
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States
| | - Robert A Dettmann
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Scott TJ, Stephenson CJ, Rao S, Queller DC, Strassmann JE. Unpredictable soil conditions can affect the prevalence of a microbial symbiosis. PeerJ 2024; 12:e17445. [PMID: 38784393 PMCID: PMC11114107 DOI: 10.7717/peerj.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations using Dictyostelium discoideum social amoebae and their bacterial endosymbionts. D. discoideum commonly hosts endosymbiotic bacteria from three taxa: Paraburkholderia, Amoebophilus and Chlamydiae. Three species of facultative Paraburkholderia endosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments. Amoebophilus and Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data from D. discoideum isolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis with Amoebophilus and Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species of Paraburkholderia, suggesting a link between unpredictable conditions and symbiosis.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Calum J. Stephenson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Sandeep Rao
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Michalik A, Bauer E, Szklarzewicz T, Kaltenpoth M. Nutrient supplementation by genome-eroded Burkholderia symbionts of scale insects. THE ISME JOURNAL 2023; 17:2221-2231. [PMID: 37833524 PMCID: PMC10689751 DOI: 10.1038/s41396-023-01528-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Hemipterans are known as hosts to bacterial or fungal symbionts that supplement their unbalanced diet with essential nutrients. Among them, scale insects (Coccomorpha) are characterized by a particularly large diversity of symbiotic systems. Here, using microscopic and genomic approaches, we functionally characterized the symbionts of two scale insects belonging to the Eriococcidae family, Acanthococcus aceris and Gossyparia spuria. These species host Burkholderia bacteria that are localized in the cytoplasm of the fat body cells. Metagenome sequencing revealed very similar and highly reduced genomes (<900KBp) with a low GC content (~38%), making them the smallest and most AT-biased Burkholderia genomes yet sequenced. In their eroded genomes, both symbionts retain biosynthetic pathways for the essential amino acids leucine, isoleucine, valine, threonine, lysine, arginine, histidine, phenylalanine, and precursors for the semi-essential amino acid tyrosine, as well as the cobalamin-dependent methionine synthase MetH. A tryptophan biosynthesis pathway is conserved in the symbiont of G. spuria, but appeared pseudogenized in A. aceris, suggesting differential availability of tryptophan in the two host species' diets. In addition to the pathways for essential amino acid biosynthesis, both symbionts maintain biosynthetic pathways for multiple cofactors, including riboflavin, cobalamin, thiamine, and folate. The localization of Burkholderia symbionts and their genome traits indicate that the symbiosis between Burkholderia and eriococcids is younger than other hemipteran symbioses, but is functionally convergent. Our results add to the emerging picture of dynamic symbiont replacements in sap-sucking Hemiptera and highlight Burkholderia as widespread and versatile intra- and extracellular symbionts of animals, plants, and fungi.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Eugen Bauer
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
7
|
Steele MI, Peiser JM, Shreenidhi PM, Strassmann JE, Queller DC. Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum. THE ISME JOURNAL 2023; 17:2352-2361. [PMID: 37884792 PMCID: PMC10689837 DOI: 10.1038/s41396-023-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.
Collapse
Affiliation(s)
- Margaret I Steele
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA.
| | - Jessica M Peiser
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| | - P M Shreenidhi
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan E Strassmann
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| | - David C Queller
- Biology Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Delumeau A, Quétel I, Harnais F, Sellin A, Gros O, Talarmin A, Marcelino I. Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: The impact of amoebae identity, grazing conditions, and passage number. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165816. [PMID: 37506913 DOI: 10.1016/j.scitotenv.2023.165816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.
Collapse
Affiliation(s)
- Aurélie Delumeau
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Florian Harnais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Arantxa Sellin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France.
| |
Collapse
|
9
|
Bach E, Volpiano CG, Sant'Anna FH, Passaglia LMP. Genome-based taxonomy of Burkholderia sensu lato: Distinguishing closely related species. Genet Mol Biol 2023; 46:e20230122. [PMID: 37935243 PMCID: PMC10629849 DOI: 10.1590/1678-4685-gmb-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
The taxonomy of Burkholderia sensu lato (s.l.) has been revisited using genome-based tools, which have helped differentiate closely related species. Many species from this group are indistinguishable through phenotypic traits and 16S rRNA gene sequence analysis. Furthermore, they also exhibit whole-genome Average Nucleotide Identity (ANI) values in the twilight zone for species circumscription (95-96%), which may impair their correct classification. In this work, we provided an updated Burkholderia s.l. taxonomy focusing on closely related species and give other recommendations for those developing genome-based taxonomy studies. We showed that a combination of ANI and digital DNA-DNA hybridization (dDDH) applying the universal cutoff values of 95% and 70%, respectively, successfully discriminates Burkholderia s.l. species. Using genome metrics with this pragmatic criterion, we demonstrated that i) Paraburkholderia insulsa should be considered a later heterotypic synonym of Paraburkholderia fungorum; ii) Paraburkholderia steynii differs from P. terrae by harboring symbiotic genes; iii) some Paraburkholderia are indeed different species based on dDDH values, albeit sharing ANI values close to 95%; iv) some Burkholderia s.l. indeed represent new species from the genomic viewpoint; iv) some genome sequences should be evaluated with care due to quality concerns.
Collapse
Affiliation(s)
- Evelise Bach
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Camila Gazolla Volpiano
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Fernando Hayashi Sant'Anna
- Hospital Moinhos de Vento, Programa de Apoio ao Desenvolvimento Institucional do Sistema Único de Saúde (PROADI - SUS), Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Instituto de Biociências, Departamento de Genética and Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Scott TJ, Larsen TJ, Brock DA, Uhm SYS, Queller DC, Strassmann JE. Symbiotic bacteria, immune-like sentinel cells, and the response to pathogens in a social amoeba. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230727. [PMID: 37593719 PMCID: PMC10427822 DOI: 10.1098/rsos.230727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Some endosymbionts living within a host must modulate their hosts' immune systems in order to infect and persist. We studied the effect of a bacterial endosymbiont on a facultatively multicellular social amoeba host. Aggregates of the amoeba Dictyostelium discoideum contain a subpopulation of sentinel cells that function akin to the immune systems of more conventional multicellular organisms. Sentinel cells sequester and discard toxins from D. discoideum aggregates and may play a central role in defence against pathogens. We measured the number and functionality of sentinel cells in aggregates of D. discoideum infected by bacterial endosymbionts in the genus Paraburkholderia. Infected D. discoideum produced fewer and less functional sentinel cells, suggesting that Paraburkholderia may interfere with its host's immune system. Despite impaired sentinel cells, however, infected D. discoideum were less sensitive to ethidium bromide toxicity, suggesting that Paraburkholderia may also have a protective effect on its host. By contrast, D. discoideum infected by Paraburkholderia did not show differences in their sensitivity to two non-symbiotic pathogens. Our results expand previous work on yet another aspect of the complicated relationship between D. discoideum and Paraburkholderia, which has considerable potential as a model for the study of symbiosis.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tyler J. Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - So Yeon Stacey Uhm
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
11
|
Mather RV, Larsen TJ, Brock DA, Queller DC, Strassmann JE. Paraburkholderia symbionts isolated from Dictyostelium discoideum induce bacterial carriage in other Dictyostelium species. Proc Biol Sci 2023; 290:20230977. [PMID: 37464760 PMCID: PMC10354463 DOI: 10.1098/rspb.2023.0977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia's potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia's symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes.
Collapse
Affiliation(s)
- Rory Vu Mather
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
- Harvard Medical School, Boston, MA 02115-6027, USA
| | - Tyler J. Larsen
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | - David C. Queller
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| |
Collapse
|
12
|
Medina JM, Queller DC, Strassmann JE, Garcia JR. The social amoeba Dictyostelium discoideum rescues Paraburkholderia hayleyella, but not P. agricolaris, from interspecific competition. FEMS Microbiol Ecol 2023; 99:fiad055. [PMID: 37226596 PMCID: PMC10243984 DOI: 10.1093/femsec/fiad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.
Collapse
Affiliation(s)
- James M Medina
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joan E Strassmann
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Justine R Garcia
- Department of Biology, New Mexico Highlands University, 1005 Diamond Ave, Las Vegas, NM 87701, USA
| |
Collapse
|
13
|
Wang Z, Huang W, Mai Y, Tian Y, Wu B, Wang C, Yan Q, He Z, Shu L. Environmental stress promotes the persistence of facultative bacterial symbionts in amoebae. Ecol Evol 2023; 13:e9899. [PMID: 36937064 PMCID: PMC10019945 DOI: 10.1002/ece3.9899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Amoebae are one major group of protists that are widely found in natural and engineered environments. They are a significant threat to human health not only because many of them are pathogenic but also due to their unique role as an environmental shelter for pathogens. However, one unsolved issue in the amoeba-bacteria relationship is why so many bacteria live within amoeba hosts while they can also live independently in the environments. By using a facultative amoeba- Paraburkholderia bacteria system, this study shows that facultative bacteria have higher survival rates within amoebae under various environmental stressors. In addition, bacteria survive longer within the amoeba spore than in free living. This study demonstrates that environmental stress can promote the persistence of facultative bacterial symbionts in amoebae. Furthermore, environmental stress may potentially select and produce more amoeba-resisting bacteria, which may increase the biosafety risk related to amoebae and their intracellular bacteria.
Collapse
Affiliation(s)
- Zihe Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Wei Huang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Yingwen Mai
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Yuehui Tian
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Bo Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
14
|
Noh S, Capodanno BJ, Xu S, Hamilton MC, Strassmann JE, Queller DC. Reduced and Nonreduced Genomes in Paraburkholderia Symbionts of Social Amoebas. mSystems 2022; 7:e0056222. [PMID: 36098425 PMCID: PMC9601139 DOI: 10.1128/msystems.00562-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a predatory soil protist frequently used for studying host-pathogen interactions. A subset of D. discoideum strains isolated from soil persistently carry symbiotic Paraburkholderia, recently formally described as P. agricolaris, P. bonniea, and P. hayleyella. The three facultative symbiont species of D. discoideum present a unique opportunity to study a naturally occurring symbiosis in a laboratory model protist. There is a large difference in genome size between P. agricolaris (8.7 million base pairs [Mbp]) versus P. hayleyella and P. bonniea (4.1 Mbp). We took a comparative genomics approach and compared the three genomes of D. discoideum symbionts to 12 additional Paraburkholderia genomes to test for genome evolution patterns that frequently accompany host adaptation. Overall, P. agricolaris is difficult to distinguish from other Paraburkholderia based on its genome size and content, but the reduced genomes of P. bonniea and P. hayleyella display characteristics indicative of genome streamlining rather than deterioration during adaptation to their protist hosts. In addition, D. discoideum-symbiont genomes have increased secretion system and motility genes that may mediate interactions with their host. Specifically, adjacent BurBor-like type 3 and T6SS-5-like type 6 secretion system operons shared among all three D. discoideum-symbiont genomes may be important for host interaction. Horizontal transfer of these secretion system operons within the amoeba host environment may have contributed to the unique ability of these symbionts to establish and maintain a symbiotic relationship with D. discoideum. IMPORTANCE Protists are a diverse group of typically single cell eukaryotes. Bacteria and archaea that form long-term symbiotic relationships with protists may evolve in additional ways than those in relationships with multicellular eukaryotes such as plants, animals, or fungi. Social amoebas are a predatory soil protist sometimes found with symbiotic bacteria living inside their cells. They present a unique opportunity to explore a naturally occurring symbiosis in a protist frequently used for studying host-pathogen interactions. We show that one amoeba-symbiont species is similar to other related bacteria in genome size and content, while the two reduced-genome-symbiont species show characteristics of genome streamlining rather than deterioration during adaptation to their host. We also identify sets of genes present in all three amoeba-symbiont genomes that are potentially used for host-symbiont interactions. Because the amoeba symbionts are distantly related, the amoeba host environment may be where these genes were shared among symbionts.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Benjamin J. Capodanno
- Department of Biology, Colby College, Waterville, Maine, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Songtao Xu
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- Department of Biology, Colby College, Waterville, Maine, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
DuBose JG, Robeson MS, Hoogshagen M, Olsen H, Haselkorn TS. Complexities of Inferring Symbiont Function: Paraburkholderia Symbiont Dynamics in Social Amoeba Populations and Their Impacts on the Amoeba Microbiota. Appl Environ Microbiol 2022; 88:e0128522. [PMID: 36043858 PMCID: PMC9499018 DOI: 10.1128/aem.01285-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
The relationship between the social amoeba Dictyostelium discoideum and its endosymbiotic bacteria Paraburkholderia provides a model system for studying the development of symbiotic relationships. Laboratory experiments have shown that any of three species of the Paraburkholderia symbiont allow D. discoideum food bacteria to persist through the amoeba life cycle and survive in amoeba spores rather than being fully digested. This phenomenon is termed "farming," as it potentially allows spores dispersed to food-poor locations to grow their own. The occurrence and impact of farming in natural populations, however, have been a challenge to measure. Here, we surveyed natural D. discoideum populations and found that only one of the three symbiont species, Paraburkholderia agricolaris, remained prevalent. We then explored the effect of Paraburkholderia on the amoeba microbiota, expecting that by facilitating bacterial food carriage, it would diversify the microbiota. Contrary to our expectations, Paraburkholderia tended to infectiously dominate the D. discoideum microbiota, in some cases decreasing diversity. Similarly, we found little evidence for Paraburkholderia facilitating the carriage of particular food bacteria. These findings highlight the complexities of inferring symbiont function in nature and suggest the possibility that Paraburkholderia could be playing multiple roles for its host. IMPORTANCE The functions of symbionts in natural populations can be difficult to completely discern. The three Paraburkholderia bacterial farming symbionts of the social amoeba Dictyostelium discoideum have been shown in the laboratory environment to allow the amoebas to carry, rather than fully digest, food bacteria. This potentially provides a fitness benefit to the amoebas upon dispersal to food-poor environments, as they could grow their food. We expected that meaningful food carriage would manifest as a more diverse microbiota. Surprisingly, we found that Paraburkholderia tended to infectiously dominate the D. discoideum microbiota rather than diversifying it. We determined that only one of the three Paraburkholderia symbionts has increased in prevalence in natural populations in the past 20 years, suggesting that this symbiont may be beneficial, however. These findings suggest that Paraburkholderia may have an alternative function for its host, which drives its prevalence in natural populations.
Collapse
Affiliation(s)
- James G. DuBose
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| | - Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Hunter Olsen
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| | - Tamara S. Haselkorn
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| |
Collapse
|
16
|
Notification List of Bacterial Strains Made Available by the United Kingdom National Collection of Type Cultures in 2021. Microbiol Resour Announc 2022; 11:e0035722. [PMID: 35880877 PMCID: PMC9387213 DOI: 10.1128/mra.00357-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report on the 47 bacterial strains made available by the National Collection of Type Cultures in 2021, alongside a commentary on these strains and their significance.
Collapse
|
17
|
Yu H, He Z, He Z, Yan Q, Shu L. Soil Amoebae Affect Iron and Chromium Reduction through Preferential Predation between Two Metal-Reducing Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9052-9062. [PMID: 35544746 DOI: 10.1021/acs.est.1c08069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil protists are essential but often overlooked in soil and could impact microbially driven element cycling in natural ecosystems. However, how protists influence heavy metal cycling in soil remains poorly understood. In this study, we used a model protist, Dictyostelium discoideum, to explore the effect of interactions between soil amoeba and metal-reducing bacteria on the reduction of soil Fe(III) and Cr(VI). We found that D. discoideum could preferentially prey on the Fe(III)-reducing bacterium Shewanella decolorationis S12 and significantly decrease its biomass. Surprisingly, this predation pressure also stimulated the activity of a single S. decolorationis S12 bacterium to reduce Fe(III) by enhancing the content of electron-transfer protein cyt c, intracellular ATP synthesis, and reactive oxygen species (e.g., H2O2). We also found that D. discoideum could not prey on the Cr(VI)-reducing bacterium Brevibacillus laterosporus. In contrast, B. laterosporus became edible to amoebae in the presence of S. decolorationis S12, and their Cr(VI) reduction ability decreased under amoeba predation pressure. This study provides direct evidence that protists can affect the Cr and Fe cycling via the elective predation pressure on the metal-reducing bacteria, broadening our horizons of predation of protists on soil metal cycling.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Scott TJ, Queller DC, Strassmann JE. Context dependence in the symbiosis between
Dictyostelium discoideum
and
Paraburkholderia. Evol Lett 2022; 6:245-254. [PMID: 35784451 PMCID: PMC9233174 DOI: 10.1002/evl3.281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Trey J. Scott
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| | - David C. Queller
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| | - Joan E. Strassmann
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| |
Collapse
|
19
|
Symbiont-Induced Phagosome Changes Rather than Extracellular Discrimination Contribute to the Formation of Social Amoeba Farming Symbiosis. Microbiol Spectr 2022; 10:e0172721. [PMID: 35442071 PMCID: PMC9241765 DOI: 10.1128/spectrum.01727-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbiont recognition is essential in many symbiotic relationships, especially for horizontally transferred symbionts. Therefore, how to find the right partner is a crucial challenge in these symbiotic relationships. Previous studies have demonstrated that both animals and plants have evolved various mechanisms to recognize their symbionts. However, studies about the mechanistic basis of establishing protist-bacterium symbioses are scarce. This study investigated this question using a social amoeba Dictyostelium discoideum and their Burkholderia symbionts. We found no evidence that D. discoideum hosts could distinguish different Burkholderia extracellularly in chemotaxis assays. Instead, symbiont-induced phagosome biogenesis contributed to the formation of social amoeba symbiosis, and D. discoideum hosts have a higher phagosome pH when carrying symbiotic Burkholderia than nonsymbiotic Burkholderia. In conclusion, the establishment of social amoeba symbiosis is not linked with extracellular discrimination but related to symbiont-induced phagosome biogenesis, which provides new insights into the mechanisms of endosymbiosis formation between protists and their symbionts. IMPORTANCE Protists are single-celled, extremely diverse eukaryotic microbes. Like animals and plants, they live with bacterial symbionts and have complex relationships. In protist-bacterium symbiosis, while some symbionts are strictly vertically transmitted, others need to reestablish and acquire symbionts from the environment frequently. However, the mechanistic basis of establishing protist-bacterium symbioses is mostly unclear. This study uses a novel amoeba-symbiont system to show that the establishment of this symbiosis is not linked with extracellular discrimination. Instead, symbiont-induced phagosome biogenesis contributes to the formation of social amoeba-bacterium symbiosis. This study increases our understanding of the mechanistic basis of establishing protist-bacterium symbioses.
Collapse
|
20
|
Itabangi H, Sephton-Clark PCS, Tamayo DP, Zhou X, Starling GP, Mahamoud Z, Insua I, Probert M, Correia J, Moynihan PJ, Gebremariam T, Gu Y, Ibrahim AS, Brown GD, King JS, Ballou ER, Voelz K. A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Curr Biol 2022; 32:1115-1130.e6. [PMID: 35134329 PMCID: PMC8926845 DOI: 10.1016/j.cub.2022.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/04/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Opportunistic infections by environmental fungi are a growing clinical problem, driven by an increasing population of people with immunocompromising conditions. Spores of the Mucorales order are ubiquitous in the environment but can also cause acute invasive infections in humans through germination and evasion of the mammalian host immune system. How they achieve this and the evolutionary drivers underlying the acquisition of virulence mechanisms are poorly understood. Here, we show that a clinical isolate of Rhizopus microsporus contains a Ralstonia pickettii bacterial endosymbiont required for virulence in both zebrafish and mice and that this endosymbiosis enables the secretion of factors that potently suppress growth of the soil amoeba Dictyostelium discoideum, as well as their ability to engulf and kill other microbes. As amoebas are natural environmental predators of both bacteria and fungi, we propose that this tri-kingdom interaction contributes to establishing endosymbiosis and the acquisition of anti-phagocyte activity. Importantly, we show that this activity also protects fungal spores from phagocytosis and clearance by human macrophages, and endosymbiont removal renders the fungal spores avirulent in vivo. Together, these findings describe a new role for a bacterial endosymbiont in Rhizopus microsporus pathogenesis in animals and suggest a mechanism of virulence acquisition through environmental interactions with amoebas.
Collapse
Affiliation(s)
- Herbert Itabangi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Poppy C S Sephton-Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Diana P Tamayo
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Xin Zhou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina P Starling
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Zamzam Mahamoud
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ignacio Insua
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark Probert
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Teclegiorgis Gebremariam
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yiyou Gu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ashraf S Ibrahim
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Jason S King
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
21
|
Selberherr E, Penz T, König L, Conrady B, Siegl A, Horn M, Schmitz-Esser S. The life cycle-dependent transcriptional profile of the obligate intracellular amoeba symbiont Amoebophilus asiaticus. FEMS Microbiol Ecol 2022; 98:fiac001. [PMID: 34999767 PMCID: PMC8831229 DOI: 10.1093/femsec/fiac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Free-living amoebae often harbor obligate intracellular bacterial symbionts. Amoebophilus (A.) asiaticus is a representative of a lineage of amoeba symbionts in the phylum Bacteroidota. Here, we analyse the transcriptome of A. asiaticus strain 5a2 at four time points during its infection cycle and replication within the Acanthamoeba host using RNA sequencing. Our results reveal a dynamic transcriptional landscape throughout different A. asiaticus life cycle stages. Many intracellular bacteria and pathogens utilize eukaryotic-like proteins (ELPs) for host cell interaction and the A. asiaticus 5a2 genome shows a particularly high abundance of ELPs. We show the expression of all genes encoding ELPs and found many ELPs to be differentially expressed. At the replicative stage of A. asiaticus, ankyrin repeat proteins and tetratricopeptide/Sel1-like repeat proteins were upregulated. At the later time points, high expression levels of a type 6 secretion system that likely prepares for a new infection cycle after lysing its host, were found. This study reveals comprehensive insights into the intracellular lifestyle of A. asiaticus and highlights candidate genes for host cell interaction. The results from this study have implications for other intracellular bacteria such as other amoeba-associated bacteria and the arthropod symbionts Cardinium forming the sister lineage of A. asiaticus.
Collapse
Affiliation(s)
- E Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - T Penz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - L König
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - B Conrady
- Department of Veterinary and Animal Science, University of Copenhagen, 1870, Denmark
| | - A Siegl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - M Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
22
|
Haselkorn TS, Jimenez D, Bashir U, Sallinger E, Queller DC, Strassmann JE, DiSalvo S. Novel Chlamydiae and Amoebophilus endosymbionts are prevalent in wild isolates of the model social amoeba Dictyostelium discoideum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:708-719. [PMID: 34159734 PMCID: PMC8518690 DOI: 10.1111/1758-2229.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/12/2021] [Indexed: 05/24/2023]
Abstract
Amoebae interact with bacteria in multifaceted ways. Amoeba predation can serve as a selective pressure for the development of bacterial virulence traits. Bacteria may also adapt to life inside amoebae, resulting in symbiotic relationships. Indeed, particular lineages of obligate bacterial endosymbionts have been found in different amoebae. Here, we screened an extensive collection of Dictyostelium discoideum wild isolates for the presence of these bacterial symbionts using endosymbiont specific PCR primers. We find that these symbionts are surprisingly common, identified in 42% of screened isolates (N = 730). Members of the Chlamydiae phylum are particularly prevalent, occurring in 27% of the amoeba isolated. They are novel and phylogenetically distinct from other Chlamydiae. We also found Amoebophilus symbionts in 8% of screened isolates (N = 730). Antibiotic-cured amoebae behave similarly to their Chlamydiae or Amoebophilus-infected counterparts, suggesting that these endosymbionts do not significantly impact host fitness, at least in the laboratory. We found several natural isolates were co-infected with multiple endosymbionts, with no obvious fitness effect of co-infection under laboratory conditions. The high prevalence and novelty of amoeba endosymbiont clades in the model organism D. discoideum opens the door to future research on the significance and mechanisms of amoeba-symbiont interactions.
Collapse
Affiliation(s)
- Tamara S. Haselkorn
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - Daniela Jimenez
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Usman Bashir
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Eleni Sallinger
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - David C. Queller
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Joan E. Strassmann
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Susanne DiSalvo
- Department of Biological SciencesSouthern Illinois University Edwardsville44 Circle Drive, EdwardsvilleIL62026USA
| |
Collapse
|
23
|
Shu L, He Z, Guan X, Yang X, Tian Y, Zhang S, Wu C, He Z, Yan Q, Wang C, Shi Y. A dormant amoeba species can selectively sense and predate on different soil bacteria. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat‐Sen University Guangzhou China
| | - Zhenzhen He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Xueqin Yang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Yuehui Tian
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Siyi Zhang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Chenyuan Wu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Yijing Shi
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat‐Sen University Guangzhou China
- School of Environment Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment SCNU Environmental Research InstituteSouth China Normal University Guangzhou China
| |
Collapse
|
24
|
de Lajudie P, Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 6 July 2020. Int J Syst Evol Microbiol 2021; 71:004784. [PMID: 33956594 PMCID: PMC8289204 DOI: 10.1099/ijsem.0.004784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Philippe de Lajudie
- IRD, University of Montpellier, CIRAD, INRAE, SupAgro, LSTM, Montpellier, France
| | - Seyed Abdollah Mousavi
- Ecosystems and Environment Research Programme, University of Helsinki, Finland
- Department of Biology, University of Turku, Finland
| | | |
Collapse
|
25
|
Larsen T, Jefferson C, Bartley A, Strassmann JE, Queller DC. Inference of symbiotic adaptations in nature using experimental evolution. Evolution 2021; 75:945-955. [PMID: 33590884 DOI: 10.1111/evo.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/30/2021] [Indexed: 11/27/2022]
Abstract
Microbes must adapt to the presence of other species, but it can be difficult to recreate the natural context for these interactions in the laboratory. We describe a method for inferring the existence of symbiotic adaptations by experimentally evolving microbes that would normally interact in an artificial environment without access to other species. By looking for changes in the fitness effects microbes adapted to isolation have on their partners, we can infer the existence of ancestral adaptations that were lost during experimental evolution. The direction and magnitude of trait changes can offer useful insight as to whether the microbes have historically been selected to help or harm one another in nature. We apply our method to the complex symbiosis between the social amoeba Dictyostelium discoideum and two intracellular bacterial endosymbionts, Paraburkholderia agricolaris and Paraburkholderia hayleyella. Our results suggest P. hayleyella-but not P. agricolaris-has generally been selected to attenuate its virulence in nature, and that D. discoideum has evolved to antagonistically limit the growth of Paraburkholderia. The approach demonstrated here can be a powerful tool for studying adaptations in microbes, particularly when the specific natural context in which the adaptations evolved is unknown or hard to reproduce.
Collapse
Affiliation(s)
- Tyler Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Cara Jefferson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Anthony Bartley
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| |
Collapse
|
26
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
27
|
Polyphosphate is an extracellular signal that can facilitate bacterial survival in eukaryotic cells. Proc Natl Acad Sci U S A 2020; 117:31923-31934. [PMID: 33268492 DOI: 10.1073/pnas.2012009117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Polyphosphate is a linear chain of phosphate residues and is present in organisms ranging from bacteria to humans. Pathogens such as Mycobacterium tuberculosis accumulate polyphosphate, and reduced expression of the polyphosphate kinase that synthesizes polyphosphate decreases their survival. How polyphosphate potentiates pathogenicity is poorly understood. Escherichia coli K-12 do not accumulate detectable levels of extracellular polyphosphate and have poor survival after phagocytosis by Dictyostelium discoideum or human macrophages. In contrast, Mycobacterium smegmatis and Mycobacterium tuberculosis accumulate detectable levels of extracellular polyphosphate, and have relatively better survival after phagocytosis by D. discoideum or macrophages. Adding extracellular polyphosphate increased E. coli survival after phagocytosis by D. discoideum and macrophages. Reducing expression of polyphosphate kinase 1 in M. smegmatis reduced extracellular polyphosphate and reduced survival in D. discoideum and macrophages, and this was reversed by the addition of extracellular polyphosphate. Conversely, treatment of D. discoideum and macrophages with recombinant yeast exopolyphosphatase reduced the survival of phagocytosed M. smegmatis or M. tuberculosis D. discoideum cells lacking the putative polyphosphate receptor GrlD had reduced sensitivity to polyphosphate and, compared to wild-type cells, showed increased killing of phagocytosed E. coli and M. smegmatis Polyphosphate inhibited phagosome acidification and lysosome activity in D. discoideum and macrophages and reduced early endosomal markers in macrophages. Together, these results suggest that bacterial polyphosphate potentiates pathogenicity by acting as an extracellular signal that inhibits phagosome maturation.
Collapse
|
28
|
Shu L, Qian X, Brock DA, Geist KS, Queller DC, Strassmann JE. Loss and resiliency of social amoeba symbiosis under simulated warming. Ecol Evol 2020; 10:13182-13189. [PMID: 33304528 PMCID: PMC7713973 DOI: 10.1002/ece3.6909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Anthropogenic global change is increasingly raising concerns about collapses of symbiotic interactions worldwide. Therefore, understanding how climate change affects symbioses remains a challenge and demands more study. Here, we look at how simulated warming affects the social ameba Dictyostelium discoideum and its relationship with its facultative bacterial symbionts, Paraburkholderia hayleyella and Paraburkholderia agricolaris. We cured and cross-infected ameba hosts with different symbionts. We found that warming significantly decreased D. discoideum's fitness, and we found no sign of local adaptation in two wild populations. Experimental warming had complex effects on these symbioses with responses determined by both symbiont and host. Neither of these facultative symbionts increases its hosts' thermal tolerance. The nearly obligate symbiont with a reduced genome, P. hayleyella, actually decreases D. discoideum's thermal tolerance and even causes symbiosis breakdown. Our study shows how facultative symbioses may have complex responses to global change.
Collapse
Affiliation(s)
- Longfei Shu
- Environmental Microbiomics Research CenterSchool of Environmental Science and EngineeringSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - Xinye Qian
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - Debra A. Brock
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | | |
Collapse
|
29
|
Sallinger E, Robeson MS, Haselkorn TS. Characterization of the bacterial microbiomes of social amoebae and exploration of the roles of host and environment on microbiome composition. Environ Microbiol 2020; 23:126-142. [PMID: 33063404 DOI: 10.1111/1462-2920.15279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/04/2023]
Abstract
As predators of bacteria, amoebae select for traits that allow bacteria to become symbionts by surviving phagocytosis and exploiting the eukaryotic intracellular environment. Soil-dwelling social amoebae can help us answer questions about the natural ecology of these amoeba-bacteria symbioses along the pathogen-mutualist spectrum. Our objective was to characterize the natural bacterial microbiome of phylogenetically and morphologically diverse social amoeba species using next-generation sequencing of 16S rRNA amplicons directly from amoeba fruiting bodies. We found six phyla of amoeba-associated bacteria: Proteobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, Firmicutes, and Acidobacteria. The most common associates of amoebae were classified to order Chlamydiales and genus Burkholderia-Caballeronia-Paraburkholderia. These bacteria were present in multiple amoeba species across multiple locations. While there was substantial intraspecific variation, there was some evidence for host specificity and differentially abundant taxa between different amoeba hosts. Amoebae microbiomes were distinct from the microbiomes of their soil habitat, and soil pH affected amoeba microbiome diversity. Alpha-diversity was unsurprisingly lower in amoebae samples compared with soil, but beta-diversity between amoebae samples was higher than between soil samples. Further exploration of social amoebae microbiomes may help us understand the roles of bacteria, host, and environment on symbiotic interactions and microbiome formation in basal eukaryotic organisms.
Collapse
Affiliation(s)
- Eleni Sallinger
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| |
Collapse
|
30
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2020; 70:5596-5600. [DOI: 10.1099/ijsem.0.004484] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
31
|
Paraburkholderia Symbionts Display Variable Infection Patterns That Are Not Predictive of Amoeba Host Outcomes. Genes (Basel) 2020; 11:genes11060674. [PMID: 32575747 PMCID: PMC7349545 DOI: 10.3390/genes11060674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Symbiotic interactions exist within a parasitism to mutualism continuum that is influenced, among others, by genes and context. Dynamics of intracellular invasion, replication, and prevalence may underscore both host survivability and symbiont stability. More infectious symbionts might exert higher corresponding costs to hosts, which could ultimately disadvantage both partners. Here, we quantify infection patterns of diverse Paraburkholderia symbiont genotypes in their amoeba host Dictyostelium discoideum and probe the relationship between these patterns and host outcomes. We exposed D. discoideum to thirteen strains of Paraburkholderia each belonging to one of the three symbiont species found to naturally infect D. discoideum: Paraburkholderia agricolaris, Paraburkholderia hayleyella, and Paraburkholderia bonniea. We quantified the infection prevalence and intracellular density of fluorescently labeled symbionts along with the final host population size using flow cytometry and confocal microscopy. We find that infection phenotypes vary across symbiont strains. Symbionts belonging to the same species generally display similar infection patterns but are interestingly distinct when it comes to host outcomes. This results in final infection loads that do not strongly correlate to final host outcomes, suggesting other genetic factors that are not a direct cause or consequence of symbiont abundance impact host fitness.
Collapse
|