1
|
Rajbongshi BL, Mukherjee AK. Drugs from poisonous plants: Ethnopharmacological relevance to modern perspectives. Toxicon X 2025; 25:100215. [PMID: 39990776 PMCID: PMC11847069 DOI: 10.1016/j.toxcx.2025.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The world of plant diversity is endlessly fascinating and essential for life on Earth. Since the inception of early civilization, humans have utilized plants for several purposes, particularly for their medicinal value. While some plants are known for their toxicity, they also contain beneficial phytochemicals that are important for both plants and humans, indicating their dual nature. This study aims to explore and synthesize the existing knowledge on various poisonous plant species found worldwide. It primarily focuses on the therapeutic potential of specific types of phytochemicals responsible for treating multiple diseases. This review includes a list of 70 poisonous plants with medicinal properties for treating various ailments, as well as some of their traditional uses. A few of these plants are emphasized, which have been tremendously explored and studied, hold significant potential to contribute to modern drug discovery. Furthermore, it addresses the possible prospects and challenges of using poisonous plants and their phytochemicals as therapeutic agents. Although the therapeutic potential of poisonous plants is substantial, many toxins remain unexplored. This review accentuates the need for rigorous scientific investigations, prior to clinical trials to validate their traditional uses, which would reveal the pharmacological interventions that will eventually advance human health and well-being.
Collapse
Affiliation(s)
- Bhagya Lakhmi Rajbongshi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashis K. Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
2
|
Li H, Abdullah, Yang H, Guo H, Yuan Y, Ahmed I, Li G, Wang Y, Chang Y, Tian X. Chloroplast genome evolution of Berberis (Berberidaceae): Implications for phylogeny and metabarcoding. Gene 2025; 933:148959. [PMID: 39326472 DOI: 10.1016/j.gene.2024.148959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Berberidis Radix (Sankezhen), a typical multi-origin Chinese medicinal material, originates from the dried roots of plants of the Berberis genus and is used to treat various ailments. These species have similar morphologies, potentially leading to misidentifications that can impact medicine efficacy. Therefore, developing suitable molecular markers to identify medicinal species is imperative. Furthermore, discrepancies exist in the taxonomy of the Berberis genus. In the present study, we de novo assembled the chloroplast genomes of six Berberis species (Berberis woomungensis C. Y. Wu, Berberis pruinosa Franch., Berberis thunbergii DC., Berberis chinensis Poir., Berberis wilsoniae Hemsl., and Berberis sp.) that commonly constitute Berberidis Radix and compared them with previously reported genomes. Our comparative analysis revealed similarities in genome structure, relative synonymous codon usage, amino acid frequency, repeats, and substitutions. Higher synonymous substitutions, indicative of predominant purifying selection on protein-coding genes, were observed compared to non-synonymous substitutions. However, positive selection was identified in six genes across 29 Berberis species-accD, matK, ndhD, rbcL, ycf1, and ycf2-highlighting their potential roles in adaptive responses to specific environmental conditions within the genus. Inverted repeats expansion and contraction affected the rate of mutations and were associated with the phylogenetic classification of Berberis. Our phylogenetic analysis supported the division of the Berberis complex into four genera, which corroborates previous studies involving extensive sampling. We identified the ndhD-ccsA region as the most polymorphic region and applied this region to Chinese patent medicines containing Berberidis Radix through metabarcoding. The metabarcoding analysis confirmed that five Berberis species commonly constitute Berberidis Radix in Chinese patent medicines. In conclusion, this study provides insight into the molecular evolution of the chloroplast genome and the phylogeny of the Berberis genus. In addition, metabarcoding provides insight into the species composition of Berberidis Radix in Chinese patent medicines.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Abdullah
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hongxia Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hua Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ye Yuan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan; Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Guohui Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Xiaoxuan Tian
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Zhang J, Zhou D, Chen W, Lin P, Zhao S, Wang M, Wang H, Shi S, Mehmood F, Ye X, Meng J, Zhuang W. Comparison of the chloroplast genomics of nine endangered Habenaria species and phylogenetic analysis. BMC PLANT BIOLOGY 2024; 24:1046. [PMID: 39497089 PMCID: PMC11536600 DOI: 10.1186/s12870-024-05766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Habenaria, a genus in the family Orchidaceae, are the nearly cosmopolitan orchids, and most species have significant medicinal and ornamental values. Despite the morphological and molecular data that have been studied in recent years, the phylogenetic relationship is still unclear. RESULTS We sequenced, assembled, and annotated the chloroplast (cp) genomes of two species (Habenaria aitchisonii Rchb.f. and Habenaria tibetica Schltr.ex Limpricht) of Habenaria grown on the Qinghai-Tibetan Plateau (QTP), and compared them with seven previously published cp genomes which may aid in the genomic profiling of these species. The two genomes ranged from 155,259-155,269 bp in length and both included 132 genes, encoding 86 proteins, 38 tRNAs and 8 rRNAs. In the cp genomes, the tandem repeats (797), SSRs (2195) and diverse loci (3214) were identified. Comparative analyses of codon usage, amino frequency, microsatellite, oligo repeats and transition and transversion substitutions revealed similarities between the species. Moreover, we identified 16 highly polymorphic regions with a nucleotide diversity above 0.02, which may be suitable for robust authentic barcoding and inferring in the phylogeny of Habenaria species. Among the polymorphic regions, positive selection was significantly exerted on several genes, such as cemA, petA, and ycf1. This finding may suggest an important adaptation strategy for the two Habenaria species on the QTP. The phylogenetic relationship revealed that H. aitchisonii and H. tibetica were more closely related to each other than to the other species, and the other seven species were clustered in three groups. In addition, the estimated divergence time suggested that the two species separated from the others approximately 0.39 Mya in the Neogene period. Our findings also suggest that Habenaria can be divided into different sections. CONCLUSIONS The results of this study enriched the genomics resources of Habenaria, and SSR marker may aid in the conservation management of two endangered species.
Collapse
Affiliation(s)
- Jinkui Zhang
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Dangwei Zhou
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- College of Medicine, Xi'an International University, Xi'an, Shaanxi, 710077, People's Republic of China.
| | - Weidong Chen
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Pengcheng Lin
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Suqin Zhao
- School of Physicsand, Electronic Information Engineering , Qinghai Nationalities University, Xining, Qinghai, 810007, People's Republic of China
| | - Min Wang
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Huan Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Shengbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Furrukh Mehmood
- Research and Innovation Center, Foudazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Xing Ye
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Jing Meng
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Wenyuan Zhuang
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| |
Collapse
|
4
|
Yin S, Gao Y. Characterization of the complete chloroplast genome assembly of Amorphophallus yunnanensis Engler, Pflanzenr (Araceae) from southwestern China. Mitochondrial DNA B Resour 2023; 8:1445-1449. [PMID: 38173919 PMCID: PMC10763844 DOI: 10.1080/23802359.2023.2294896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Southwestern China is a biodiversity hotspot due to its diverse topography and environment. Amorphophallus yunnanensis is a species of perennial herb that is mainly distributed throughout southwestern China. The genetic diversity and divergence in this species have not been assessed largely due to a lack of genomic resources. To help with the phylogeographic study, we sequenced and assembled the first complete chloroplast genome sequence of A. yunnanensis. The length of the chloroplast genome was 164,417 bp, with an average GC content of 36% (GenBank accession no. OR400247). The genome possessed a typical quadripartite structure, and the lengths of the large single-copy (LSC), small single-copy (SSC), and two inverted repeat (IR) regions were 92,149 bp, 15,182 bp, 28,543bp, and 28,543bp, respectively. A total of 128 genes were annotated across the genome, including 82 protein-coding genes, 8 rRNAs, and 38 tRNAs. The maximum likelihood (ML) phylogeny confirmed the phylogenetic position of Amorphophallus within Araceae, with the Amorphophallus species forming a single monophyletic clade with a high bootstrap value. The ML tree also indicated that A. yunnanensis was most closely related to A. coaetaneus. This newly sequenced chloroplast genome assembly will aid in future studies of genetic diversity, historical population dynamics, and geographic differentiation patterns of A. yunnanensis.
Collapse
Affiliation(s)
- Si Yin
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Yong Gao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| |
Collapse
|
5
|
Zhang E, Liu Y, Wang Y, Zhang X, Wei Y, Zhang L. Characterization of the complete chloroplast genome of Cynanchum acutum subsp. s ibiricum (Apocynaceae). Mitochondrial DNA B Resour 2023; 8:993-997. [PMID: 37746032 PMCID: PMC10512800 DOI: 10.1080/23802359.2023.2256496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
In this study, we assembled the complete chloroplast (cp) genome of Cynanchum acutum subsp. sibiricum using high-throughput Illumina sequencing reads. The resulting chloroplast genome assembly displayed a typical quadripartite structure with a total length of 158,283 bp, which contained a pair of inverted repeat regions (IRs) of 24,459 bp. These two IRs were separated by a large single-copy region (LSC) and a small single-copy region (SSC) of 89,424 bp and 19,941 bp in length, respectively. The C. acutum subsp. sibiricum cp genome contained 130 genes, and its overall GC content was 37.87%. Phylogenetic analysis among C. acutum subsp. sibiricum and nine other Cynanchum species demonstrated that C. acutum subsp. sibiricum was closely related to C. chinense. The C. acutum subsp. sibiricum cp genome presented in this study lays a good foundation for further genetic and genomic studies of the Cynanchum as well as Apocynaceae.
Collapse
Affiliation(s)
- Erdong Zhang
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| | - Yi Liu
- Operation Management Department, Yinchuan Hedong International Airport, Yinchuan, Ningxia, P. R. China
| | - Yan Wang
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| | - Xuedan Zhang
- Operation Management Department, Yinchuan Hedong International Airport, Yinchuan, Ningxia, P. R. China
| | - Yuqing Wei
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| |
Collapse
|
6
|
Liu R, Xie L, Wang D. The complete chloroplast genome of Malvaviscus penduliflorus (Malvaceae). Mitochondrial DNA B Resour 2023; 8:886-889. [PMID: 37614528 PMCID: PMC10443977 DOI: 10.1080/23802359.2023.2246670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
In this study, we assembled the complete chloroplast (cp) genome of Malvaviscus penduliflorus using high-throughput Illumina sequencing reads. The resulting plastome assembly displayed a typical quadripartite structure with a total length of 160,332 bp, containing a pair of inverted repeat regions (IRs) of 26,313 bp separated by a large single-copy region (LSC) of 88,750 bp and a small single-copy region (SSC) of 18,956 bp. The M. penduliflorus cp genome contained 128 genes, and its overall GC content was 36.96%. Phylogenetic analysis among M. penduliflorus and five other Malvaceae species demonstrated that M. penduliflorus was closely related to Urena procumbens and Hibiscus cannabinus. The M. penduliflorus cp genome presented in this study will lay a good foundation for further genetic and genomic studies of the genus Malvaviscus as well as Malvaceae.
Collapse
Affiliation(s)
- Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dan Wang
- Department of Pharmacy, Sichuan Nursing Vocational College, Chengdu, China
| |
Collapse
|
7
|
Ling X, Liao R, Zhu X. The complete chloroplast genome sequence of Chrysojasminum subhumile and its phylogenetic position within Oleaceae. Mitochondrial DNA B Resour 2023; 8:678-681. [PMID: 37346171 PMCID: PMC10281350 DOI: 10.1080/23802359.2023.2224460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
We assembled and characterized the complete chloroplast genome sequence of Chrysojasminum subhumile (W.W.Sm.) Banfi & Galasso 2014, a valuable horticultural and medicinal plant species. The total genome size was 159,918 bp in length and the GC content was 37.4%. It displayed a circular structure and could be divided into a large single-copy region, a small single-copy region, and a pair of inverted repeat regions. The genome encoded a total of 131 unique genes, including 82 protein-coding genes, 41 tRNA genes, and eight rRNA genes. Among these genes, 17 contained a single intron, and two genes had two introns. Phylogenetic analysis results showed that C. subhumile was closely related to Jasminum.
Collapse
Affiliation(s)
- Xinyu Ling
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Rui Liao
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xingfu Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
8
|
Guan TX, Lu ZP, Liu ML, Xun LL, Fang MF, Li ZH. Characterization of the complete chloroplast genome of Gypsophila huashanensis Y. W. Tsui & D. Q. Lu, an endemic herb species in China. Mitochondrial DNA B Resour 2023; 8:643-647. [PMID: 37312972 PMCID: PMC10259312 DOI: 10.1080/23802359.2023.2220436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Gypsophila huashanensis Y. W. Tsui & D. Q. Lu (Caryophyllaceae) is an endemic herb species to the Qinling Mountains in China. In this study, we characterized its whole plastid genome using the Illumina sequencing platform. The complete plastid genome of G. huashanensis is 152,457 bp in length, including a large single-copy DNA region of 83,476 bp, a small single-copy DNA region of 17,345 bp, and a pair of inverted repeat DNA sequences of 25,818 bp. The genome contains 130 genes comprising 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Evolutionary analysis showed that the non-coding regions of Caryophyllaceae exhibit a higher level of divergence than the exon regions. Gene site selection analysis suggested that 11 coding protein genes (accD, atpF, ndhA, ndhB, petB, petD, rpoCl, rpoC2, rps16, ycfl, and ycf2) have some sites under protein sequence evolution. Phylogenetic analysis showed that G. huashanensis is most closely related to the congeneric species G. oldhamiana. These results are very useful for studying phylogenetic evolution and species divergence in the family Caryophyllaceae.
Collapse
Affiliation(s)
- Tian-Xia Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhao-Ping Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Lu-Lu Xun
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an, Shaanxi, China
| | - Min-Feng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Dong W, Gao L, Xu C, Song Y, Poczai P. Editorial: Rise to the challenges in plastome phylogenomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1200302. [PMID: 37324700 PMCID: PMC10267445 DOI: 10.3389/fpls.2023.1200302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lianming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Museomics Research Group, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| |
Collapse
|
10
|
Wong KH, Siu TY, Tsang SSK, Kong BLH, Wu HY, But GWC, Hui JHL, Shaw PC, Lau DTW. The Complete Chloroplast Genomes of Nine Smilacaceae Species from Hong Kong: Inferring Infra- and Inter-Familial Phylogeny. Int J Mol Sci 2023; 24:ijms24087460. [PMID: 37108622 PMCID: PMC10138973 DOI: 10.3390/ijms24087460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The Smilacaceae is a cosmopolitan family consisting of 200-370 described species. The family includes two widely accepted genera, namely Smilax and Heterosmilax. Among them, the taxonomical status of Heterosmilax has been continuously challenged. Seven Smilax and two Heterosmilax species can be found in Hong Kong, with most of them having medicinal importance. This study aims to revisit the infra-familial and inter-familial relationships of the Smilacaceae using complete chloroplast genomes. The chloroplast genomes of the nine Smilacaceae species from Hong Kong were assembled and annotated, which had sizes of 157,885 bp to 159,007 bp; each of them was identically annotated for 132 genes, including 86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes. The generic status of Heterosmilax was not supported because it was nested within the Smilax clade in the phylogenetic trees, echoing previous molecular and morphological studies. We suggest delimitating the genus Heterosmilax as a section under the genus Smilax. The results of phylogenomic analysis support the monophyly of Smilacaceae and the exclusion of Ripogonum from the family. This study contributes to the systematics and taxonomy of monocotyledons, authentication of medicinal Smilacaceae, and conservation of plant diversity.
Collapse
Affiliation(s)
- Kwan-Ho Wong
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tin-Yan Siu
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Research Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Stacey Shun-Kei Tsang
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Grace Wing-Chiu But
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jerome Ho-Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Simon F.S. Li Marine Science Laboratory and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (The Chinese University of Hong Kong) and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - David Tai-Wai Lau
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
11
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and is required for C-to-U editing of chloroplast RNA transcripts. RESEARCH SQUARE 2023:rs.3.rs-2574001. [PMID: 36865278 PMCID: PMC9980218 DOI: 10.21203/rs.3.rs-2574001/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 homologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. We examined the function of ISE2 and IPI1 in chloroplast RNA processing in N. benthamiana. A combination of deep sequencing and Sanger sequencing revealed C-to-U editing at 41 sites in 18 transcripts, with 34 sites conserved in the closely related N. tabacum. Virus induced gene silencing of NbISE2 or NbIPI1 led to defective C-to-U revealed that they have overlapping roles at editing a site in the rpoB transcript but have distinct roles in editing other transcripts. This finding contrasts with maize ppr103 mutants that showed no defects in editing. The results indicate that NbISE2 and NbIPI1 are important for C-to-U editing in N. benthamiana chloroplasts, and they may function in a complex to edit specific sites while having antagonistic effects on editing others. That NbIPI1, carrying a DYW domain, is involved in organelle C-to-U RNA editing supports previous work showing that this domain catalyzes RNA editing.
Collapse
Affiliation(s)
- Tyra N. McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mohammad F. Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Tessa M. Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| |
Collapse
|
12
|
Berlowitz I, García Torres E, Maake C, Wolf U, Martin-Soelch C. Indigenous-Amazonian Traditional Medicine's Usage of the Tobacco Plant: A Transdisciplinary Ethnopsychological Mixed-Methods Case Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020346. [PMID: 36679060 PMCID: PMC9863029 DOI: 10.3390/plants12020346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Harmful usage of tobacco is a global public health problem associated with adverse health effects and addiction. Yet, in the Peruvian Amazon, the native region of Nicotiana rustica L., this plant is used in remarkably different manners: it is considered a potent medicinal plant, applied in liquid form for oral ingestion to treat mental health problems, a common and ancient healing practice in this region. Using a transdisciplinary field research approach with mixed ethnopsychological methods, this work aimed to report for the first time a case study in this context. The intervention took place in the Peruvian Amazon (Loreto) and involved ritual tobacco ingestion in a weeklong retreat-like frame, administered by a specialized traditional Amazonian healer. The patient was a 37-year-old woman with diagnosed mood, anxiety, and attention deficit disorders, as well as a chronic somatic condition. We applied qualitative experience-sampling during and quantitative symptom assessments pre- and post-treatment. Our findings offer a detailed description of the experiential therapeutic process during the treatment week and suggest clinically relevant improvements in patient well-being. This work is significant in view of the globally prevalent harmful uses of tobacco and the current scientific trend of revisiting herbal psychoactives (e.g., cannabis, psilocybin) for their therapeutic potentials.
Collapse
Affiliation(s)
- Ilana Berlowitz
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
- Department of Biomedical Research, University Hospital Bern, 3010 Bern, Switzerland
- Correspondence:
| | | | - Caroline Maake
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | | |
Collapse
|
13
|
Song B, Liu C, Xie D, Xiao Y, Tian R, Li Z, Zhou S, He X. Plastid Phylogenomic Analyses Reveal the Taxonomic Position of Peucedanum franchetii. PLANTS (BASEL, SWITZERLAND) 2022; 12:97. [PMID: 36616226 PMCID: PMC9824613 DOI: 10.3390/plants12010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Peucedanum franchetii is a famous folk medicinal plant in China. However, the taxonomy of the P. franchetii has not been sufficiently resolved. Due to similar morphological features between P. franchetii and Ligusticopsis members, the World Flora Online (WFO) Plant List suggested that this species transformed into the genus Ligusticopsis and merged with Ligusticopsis likiangensis. However, both species are obviously diverse in leaf shape, bracts, and bracteoles. To check the taxonomic position of P. franchetii, we newly sequenced and assembled the plastome of P. franchetii and compared it with nine other plastomes of the genus Ligusticopsis. Ten plastomes were highly conserved and similar in gene order, codon bias, RNA editing sites, IR borders, and SSRs. Nevertheless, 10 mutation hotspot regions (infA, rps8, matK, ndhF, rps15, psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) were still detected. In addition, both phylogenetic analyses based on plastome data and ITS sequences robustly supported that P. franchetii was not clustered with members of Peucedanum but nested in Ligusticopsis. P. franchetii was sister to L. likiangensis in the ITS topology but clustered with L. capillacea in the plastome tree. These findings implied that P. franchetii should be transferred to genus Ligusticopsis and not merged with L. likiangensis, but as an independent species, which was further verified by morphological evidences. Therefore, transferring P. franchetii under the genus Ligusticopsis as an independent species was reasonable, and a new combination was presented.
Collapse
|
14
|
Rozov SM, Zagorskaya AA, Konstantinov YM, Deineko EV. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins. PLANTS (BASEL, SWITZERLAND) 2022; 12:38. [PMID: 36616166 PMCID: PMC9824153 DOI: 10.3390/plants12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are the most important product of current industrial biotechnology. They are indispensable in medicine (for diagnostics and treatment), food and chemical industries, and research. Plant cells combine advantages of the eukaryotic protein production system with simplicity and efficacy of the bacterial one. The use of plants for the production of recombinant proteins is an economically important and promising area that has emerged as an alternative to traditional approaches. This review discusses advantages of plant systems for the expression of recombinant proteins using nuclear, plastid, and mitochondrial genomes. Possibilities, problems, and prospects of modifications of the three parts of the genome in light of obtaining producer plants are examined. Examples of successful use of the nuclear expression platform for production of various biopharmaceuticals, veterinary drugs, and technologically important proteins are described, as are examples of a high yield of recombinant proteins upon modification of the chloroplast genome. Potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated. Although these opportunities have not yet been exploited, potential utility of plant mitochondria as an expression system for the production of recombinant proteins and its advantages over the nucleus and chloroplasts are substantiated.
Collapse
Affiliation(s)
- Sergey M. Rozov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova Str. 132, Irkutsk 664033, Russia
| | - Elena V. Deineko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Zhou D, Mehmood F, Lin P, Cheng T, Wang H, Shi S, Zhang J, Meng J, Zheng K, Poczai P. Characterization of the Evolutionary Pressure on Anisodus tanguticus Maxim. with Complete Chloroplast Genome Sequence. Genes (Basel) 2022; 13:2125. [PMID: 36421800 PMCID: PMC9690199 DOI: 10.3390/genes13112125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 10/15/2023] Open
Abstract
Anisodus tanguticus Maxim. (Solanaceae), a traditional endangered Tibetan herb, is endemic to the Qinghai-Tibet Plateau. Here, we report the de novo assembled chloroplast (cp) genome sequences of A. tanguticus (155,765 bp). The cp contains a pair of inverted repeated (IRa and IRb) regions of 25,881 bp that are separated by a large single copy (LSC) region (86,516 bp) and a small single copy SSC (17,487 bp) region. A total of 132 functional genes were annotated in the cp genome, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Moreover, 199 simple sequence repeats (SSR) and 65 repeat structures were detected. Comparative plastome analyses revealed a conserved gene order and high similarity of protein-coding sequences. The A. tanguticus cp genome exhibits contraction and expansion, which differs from Przewalskia tangutica and other related Solanaceae species. We identified 30 highly polymorphic regions, mostly belonging to intergenic spacer regions (IGS), which may be suitable for the development of robust and cost-effective markers for inferring the phylogeny of the genus Anisodus and family Solanaceae. Analysis of the Ka/Ks ratios of the Hyoscyameae tribe revealed significant positive selection exerted on the cemA, rpoC2, and clpP genes, which suggests that protein metabolism may be an important strategy for A. tanguticus and other species in Hyoscyameae in adapting to the adverse environment on the Qinghai-Tibetan Plateau. Phylogenetic analysis revealed that A. tanguticus clustered closer with Hyoscyamus niger than P. tangutica. Our results provide reliable genetic information for future exploration of the taxonomy and phylogenetic evolution of the Hyoscyameae tribe and related species.
Collapse
Affiliation(s)
- Dangwei Zhou
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry, Faculty of Sciences, University of Sialkot, Daska Road, Punjab 51040, Pakistan
| | - Pengcheng Lin
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Tingfeng Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Huan Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Shenbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jinkui Zhang
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Jing Meng
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Kun Zheng
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Péter Poczai
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
16
|
Li Y, Jian Y, Mao Y, Meng F, Shao Z, Wang T, Zheng J, Wang Q, Liu L. "Omics" insights into plastid behavior toward improved carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1001756. [PMID: 36275568 PMCID: PMC9583013 DOI: 10.3389/fpls.2022.1001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plastids are a group of diverse organelles with conserved carotenoids synthesizing and sequestering functions in plants. They optimize the carotenoid composition and content in response to developmental transitions and environmental stimuli. In this review, we describe the turbulence and reforming of transcripts, proteins, and metabolic pathways for carotenoid metabolism and storage in various plastid types upon organogenesis and external influences, which have been studied using approaches including genomics, transcriptomics, proteomics, and metabonomics. Meanwhile, the coordination of plastid signaling and carotenoid metabolism including the effects of disturbed carotenoid biosynthesis on plastid morphology and function are also discussed. The "omics" insight extends our understanding of the interaction between plastids and carotenoids and provides significant implications for designing strategies for carotenoid-biofortified crops.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yue Jian
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yuanyu Mao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Sandoval-Padilla I, Zamora-Tavares MDP, Ruiz-Sánchez E, Pérez-Alquicira J, Vargas-Ponce O. Characterization of the plastome of Physaliscordata and comparative analysis of eight species of Physalis sensu stricto. PHYTOKEYS 2022; 210:109-134. [PMID: 36760406 PMCID: PMC9836641 DOI: 10.3897/phytokeys.210.85668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
In this study, we sequenced, assembled, and annotated the plastome of Physaliscordata Mill. and compared it with seven species of the genus Physalis sensu stricto. Sequencing, annotating, and comparing plastomes allow us to understand the evolutionary mechanisms associated with physiological functions, select possible molecular markers, and identify the types of selection that have acted in different regions of the genome. The plastome of P.cordata is 157,000 bp long and presents the typical quadripartite structure with a large single-copy (LSC) region of 87,267 bp and a small single-copy (SSC) region of 18,501 bp, which are separated by two inverted repeat (IRs) regions of 25,616 bp each. These values are similar to those found in the other species, except for P.angulata L. and P.pruinosa L., which presented an expansion of the LSC region and a contraction of the IR regions. The plastome in all Physalis species studied shows variation in the boundary of the regions with three distinct types, the percentage of the sequence identity between coding and non-coding regions, and the number of repetitive regions and microsatellites. Four genes and 10 intergenic regions show promise as molecular markers and eight genes were under positive selection. The maximum likelihood analysis showed that the plastome is a good source of information for phylogenetic inference in the genus, given the high support values and absence of polytomies. In the Physalis plastomes analyzed here, the differences found, the positive selection of genes, and the phylogenetic relationships do not show trends that correspond to the biological or ecological characteristics of the species studied.
Collapse
Affiliation(s)
- Isaac Sandoval-Padilla
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - María del Pilar Zamora-Tavares
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Eduardo Ruiz-Sánchez
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Jessica Pérez-Alquicira
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal A(LaniVeg), Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoCONACYTMexico CityMexico
| | - Ofelia Vargas-Ponce
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| |
Collapse
|
18
|
Revealing the Complete Chloroplast Genome of an Andean Horticultural Crop, Sweet Cucumber (Solanum muricatum), and Its Comparison with Other Solanaceae Species. DATA 2022. [DOI: 10.3390/data7090123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sweet cucumber (Solanum muricatum) sect. Basarthrum is a neglected horticultural crop native to the Andean region. It is naturally distributed very close to other two Solanum crops of high importance, potatoes, and tomatoes. To date, molecular tools for this crop remain undetermined. In this study, the complete sweet cucumber chloroplast (cp) genome was obtained and compared with seven Solanaceae species. The cp genome of S. muricatum was 155,681 bp in length and included a large single copy (LSC) region of 86,182 bp and a small single-copy (SSC) region of 18,360 bp, separated by a pair of inverted repeats (IR) regions of 25,568 bp. The cp genome possessed 87 protein-coding genes (CDS), 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and one pseudogene. Furthermore, 48 perfect microsatellites were identified. These repeats were mainly located in the noncoding regions. Whole cp genome comparative analysis revealed that the SSC and LSC regions showed more divergence than IR regions. Similar to previous studies, our phylogenetic analysis showed that S. muricatum is a sister species to members of sections Petota + Lycopersicum + Etuberosum. We expect that this first sweet cucumber chloroplast genome will provide potential molecular markers and genomic resources to shed light on the genetic diversity and population studies of S. muricatum, which will allow us to identify varieties and ecotypes. Finally, the features and the structural differentiation will provide us with information about the genes of interest, generating tools for the most precise selection of the best individuals of sweet cucumber, in less time and with fewer resources.
Collapse
|
19
|
Bai X, Zheng H, Huang X, Li J, Guo T, Luo Q, Zhang Z, Wu W, Yi K. The complete chloroplast genome of Coffea liberica (Gentianales: Rubiaceae). Mitochondrial DNA B Resour 2022; 7:1454-1456. [PMID: 35965645 PMCID: PMC9364704 DOI: 10.1080/23802359.2022.2107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Coffee is one of the most popular beverages around the world. As one of the best-known coffee species, Liberian coffee (Coffea liberica Bull ex Hiern 1876) has a high resistance to leaf rust, a devasting disease caused by Hemileia vastatrix. However, there are few reports on the systematic position and phylogenetic relationship of C. liberica at the chloroplast (cp) genome level. Thus, we successfully assembled its cp genome. The full length is 154,799 bp with a GC content of 37.48%. We have further annotated the cp genome and predicted 85 protein-coding genes together with 8 rRNAs and 37 tRNAs. Furthermore, a large single copy region (LSC), a small single copy region (SSC), an inverted repeat region a (IRa) and an inverted repeat region b (IRb) are identified with lengths of 84,868 bp, 18,121 bp, 25,905 bp and 25,905 bp, respectively. The phylogenetic tree indicates that C. liberica is closely related to C. canephora, which is consistent with a previous result obtained from genotyping‐by‐sequencing.
Collapse
Affiliation(s)
- Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Hongyu Zheng
- China State Farms Economic Development Center, Beijing, PR China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Qin Luo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Zhirun Zhang
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, PR China
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou, PR China
| |
Collapse
|
20
|
Javaid N, Ramzan M, Khan IA, Alahmadi TA, Datta R, Fahad S, Danish S. The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of Clade C of Brassicaceae. BMC PLANT BIOLOGY 2022; 22:384. [PMID: 35918648 PMCID: PMC9344719 DOI: 10.1186/s12870-022-03750-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.
Collapse
Affiliation(s)
- Nida Javaid
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Musarrat Ramzan
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi, Karachi, 75270 Pakistan
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461 Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Haripur, 22620 Pakistan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Punjab Pakistan
| |
Collapse
|
21
|
Ruang-Areerate P, Yoocha T, Kongkachana W, Phetchawang P, Maknual C, Meepol W, Jiumjamrassil D, Pootakham W, Tangphatsornruang S. Comparative Analysis and Phylogenetic Relationships of Ceriops Species (Rhizophoraceae) and Avicennia lanata (Acanthaceae): Insight into the Chloroplast Genome Evolution between Middle and Seaward Zones of Mangrove Forests. BIOLOGY 2022; 11:383. [PMID: 35336757 PMCID: PMC8945693 DOI: 10.3390/biology11030383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Ceriops and Avicennia are true mangroves in the middle and seaward zones of mangrove forests, respectively. The chloroplast genomes of Ceriops decandra, Ceriops zippeliana, and Ceriops tagal were assembled into lengths of 166,650, 166,083 and 164,432 bp, respectively, whereas Avicennia lanata was 148,264 bp in length. The gene content and gene order are highly conserved among these species. The chloroplast genome contains 125 genes in A. lanata and 129 genes in Ceriops species. Three duplicate genes (rpl2, rpl23, and trnM-CAU) were found in the IR regions of the three Ceriops species, resulting in expansion of the IR regions. The rpl32 gene was lost in C. zippeliana, whereas the infA gene was present in A. lanata. Short repeats (<40 bp) and a lower number of SSRs were found in A. lanata but not in Ceriops species. The phylogenetic analysis supports that all Ceriops species are clustered in Rhizophoraceae and A. lanata is in Acanthaceae. In a search for genes under selective pressures of coastal environments, the rps7 gene was under positive selection compared with non-mangrove species. Finally, two specific primer sets were developed for species identification of the three Ceriops species. Thus, this finding provides insightful genetic information for evolutionary relationships and molecular markers in Ceriops and Avicennia species.
Collapse
Affiliation(s)
- Panthita Ruang-Areerate
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Phakamas Phetchawang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Wijarn Meepol
- Department of Marine and Coastal Resources, Ranong Mangrove Forest Research Center, Tambon Ngao, Muang District, Ranong 85000, Thailand
| | - Darunee Jiumjamrassil
- Marine and Coastal Resources Office 5, 199/6 Khanom, Khanom, Nakhon Si Thammarat 80210, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | | |
Collapse
|
22
|
Santilli L, Pérez F, Schrevel CD, Dandois P, Mondaca H, Lavandero N. Nicotianarupicola sp. nov. and Nicotianaknightiana (sect.Paniculatae, Solanaceae), a new endemic and a new record for the flora of Chile. PHYTOKEYS 2022; 188:83-103. [PMID: 35095294 PMCID: PMC8789758 DOI: 10.3897/phytokeys.188.73370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/29/2021] [Indexed: 05/31/2023]
Abstract
Nicotianaknightiana is recorded for the first time for the flora of Chile. A new species of Nicotiana, endemic to the coast of the Coquimbo region is described and illustrated. Molecular analysis placed the new species within the N.sect.Paniculatae, as sister to N.cordifolia, an endemic to Juan Fernandez islands. The new species can be considered critically endangered (CR) according to the IUCN categories due to its restricted and fragmented distribution, small population number, and the threat that urbanization and mining activities represent for the conservation of the biodiversity of the area.
Collapse
Affiliation(s)
- Ludovica Santilli
- Museo Nacional de Historia Natural, Área Botánica, Interior Parque Quinta Normal S/N, Casilla 787, Santiago, ChileMuseo Nacional de Historia Natural, Área BotánicaSantiagoChile
| | - Fernanda Pérez
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePontificia Universidad Católica de ChileSantiagoChile
| | - Claire De Schrevel
- Independent researcher, Copiapó, ChileIndependent researcherCopiapóChile
| | - Philippe Dandois
- Independent researcher, Copiapó, ChileIndependent researcherCopiapóChile
| | - Héctor Mondaca
- Independent researcher, Santiago, ChileIndependent researcherSantiagoChile
| | - Nicolás Lavandero
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, ChilePontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
23
|
Jamal A, Wen J, Ma ZY, Ahmed I, Abdullah, Chen LQ, Nie ZL, Liu XQ. Comparative Chloroplast Genome Analyses of the Winter-Blooming Eastern Asian Endemic Genus Chimonanthus (Calycanthaceae) With Implications For Its Phylogeny and Diversification. Front Genet 2021; 12:709996. [PMID: 34917123 PMCID: PMC8670589 DOI: 10.3389/fgene.2021.709996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Chimonanthus of Calycanthaceae is a small endemic genus in China, with unusual winter-blooming sweet flowers widely cultivated for ornamentals and medicinal uses. The evolution of Chimonanthus plastomes and its phylogenetic relationships remain unresolved due to limited availability of genetic resources. Here, we report fully assembled and annotated chloroplast genomes of five Chimonanthus species. The chloroplast genomes of the genus (size range 153,010 – 153,299 bp) reveal high similarities in gene content, gene order, GC content, codon usage, amino acid frequency, simple sequence repeats, oligonucleotide repeats, synonymous and non-synonymous substitutions, and transition and transversion substitutions. Signatures of positive selection are detected in atpF and rpoB genes in C. campanulatus. The correlations among substitutions, InDels, and oligonucleotide repeats reveal weak to strong correlations in distantly related species at the intergeneric levels, and very weak to weak correlations among closely related Chimonanthus species. Chloroplast genomes are used to reconstruct a well-resolved phylogenetic tree, which supports the monophyly of Chimonanthus. Within Chimonanthus, C. praecox and C. campanulatus form one clade, while C. grammatus, C. salicifolius, C. zhejiangensis, and C. nitens constitute another clade. Chimonanthus nitens appears paraphyletic and is closely related to C. salicifolius and C. zhejiangensis, suggesting the need to reevaluate the species delimitation of C. nitens. Chimonanthus and Calycanthus diverged in mid-Oligocene; the radiation of extant Chimonanthus species was dated to the mid-Miocene, while C. grammatus diverged from other Chimonanthus species in the late Miocene. C. salicifolius, C. nitens(a), and C. zhejiangensis are inferred to have diverged in the Pleistocene of the Quaternary period, suggesting recent speciation of a relict lineage in the subtropical forest regions in eastern China. This study provides important insights into the chloroplast genome features and evolutionary history of Chimonanthus and family Calycanthaceae.
Collapse
Affiliation(s)
- Abbas Jamal
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC, United States
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC, United States
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
| | - Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Long-Qing Chen
- Southwest Engineering Technology and Research Center of Landscape Architecture, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Li Z, Zhang Y, Wei YC, Meng JX, Wang YJ. The complete chloroplast genome of Casuarina cunninghamiana (Casuarinaceae). Mitochondrial DNA B Resour 2021; 6:3519-3521. [PMID: 34869899 PMCID: PMC8641684 DOI: 10.1080/23802359.2021.2005492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Casuarina cunninghamiana Miq. naturally occurs in eastern Australia from New South Wales to north Queensland. After being introduced to China, it has become an important tree species of ecological shelter plantations in coastal areas of southern China. In this study, the complete chloroplast (cp) genome of C. cunninghamiana was sequenced and analyzed based on the Illumina NovaSeq 6000 platform. The cp genome of C. cunninghamiana was found to be 15,6129 bp in length, including a large single copy (LSC) region of 86,200 bp and a small single copy (SSC) region of 18,457 bp, which were separated by two inverted repeats (IRs) of 25,736 bp. The cp genome contains 132 genes, consisting of 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The overall GC content of the cp genome was 36.34%. The phylogenetic analyses indicated that C. cunninghamiana was closely related to C. glauca and C. equisetifolia and clustered with 4 Betulaceae species.
Collapse
Affiliation(s)
- Zhen Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, P.R. China
| | - Yong Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, P.R. China
| | - Yong-cheng Wei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, P.R. China
| | - Jing-xiang Meng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, P.R. China
| | - Yu-jiao Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, P.R. China
| |
Collapse
|
25
|
Qin XM, Li H, Cui N, Jiang SY, Liang YN, Wang ML, Huang XY. The complete chloroplast genome of Flemingia macrophylla (Willd.) Prain (Fabaceae) from Guangxi, China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3378-3380. [PMID: 34778558 PMCID: PMC8583843 DOI: 10.1080/23802359.2021.1997124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flemingia macrophylla (Willd.) Prain is an ethnomedicinal plant with high nutritional and medicinal values. In this study, we report the complete chloroplast genome of F. macrophylla. The chloroplast genome has a typical quadripartite structure with a genome size of 152,988 bp, including a large single-copy (LSC) of 83,634 bp, a small single-copy (SSC) of 17,774 bp and two inverted repeats (IRs) of 25,790 bp. The genome contains 129 genes, including 84 protein-coding, 37 tRNA and 8 rRNA genes. The overall GC content is 35.1%. Phylogenetic analysis showed that F. macrophylla grouped with a clade containing the genera of Fagelia, Dolichos, Eriosema, Dunbaria and Cajanus in Fabaceae. This study provides essential data and insight for understanding the phylogenetic placement of Flemingia.
Collapse
Affiliation(s)
- Xin-Mei Qin
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Hong Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Nan Cui
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Shui-Yuan Jiang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yan-Ni Liang
- Wuzhou University, College of Chemical Engineering and Resource Reuse, Wuzhou, China
| | - Man-Lian Wang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xi-Yang Huang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
26
|
Guo DQ, Li HL, Liu C, Zhang H, Du HH, Zhou N. The complete chloroplast genome and phylogenetic analysis of Sida szechuensis matsuda (Malvaceae). Mitochondrial DNA B Resour 2021; 6:3146-3147. [PMID: 34746387 PMCID: PMC8567882 DOI: 10.1080/23802359.2021.1987161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sida szechuensis Matsuda is an economically and medicinally important plant. Here, we report the first chloroplast (cp) genome of the genus Sida (S. szechuensis). The complete cp genome is 159,878 bp in length with an overall GC content of 36.9% and consists of a large single copy region (LSC, 89,426 bp), a small single copy region (SSC, 114,715 bp), and a pair of inverted repeat regions (IRa and IRb, 25,288 bp). The genome encodes 111 unique genes, including 78 protein-coding genes, 29 tRNA genes, 4 rRNA genes, and 1 pseudogene. Phylogenetic analysis constructed using the maximum likelihood (ML) method showed that Sida was closely related to Malvastrum and Malva.
Collapse
Affiliation(s)
- Dong-Qin Guo
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Engineering Laboratory of Chongqing for Green Planting and Deep Processing of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing, China
| | - Hai-Ling Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Chang Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Hua Zhang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Engineering Laboratory of Chongqing for Green Planting and Deep Processing of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing, China
| | - Hui-Hui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Engineering Laboratory of Chongqing for Green Planting and Deep Processing of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing, China
| | - Nong Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- Engineering Laboratory of Chongqing for Green Planting and Deep Processing of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
27
|
Zou X, Bk A, Abu-Izneid T, Aziz A, Devnath P, Rauf A, Mitra S, Emran TB, Mujawah AAH, Lorenzo JM, Mubarak MS, Wilairatana P, Suleria HAR. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomed Pharmacother 2021; 143:112191. [PMID: 34562769 DOI: 10.1016/j.biopha.2021.112191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
Tobacco is grown in large quantities worldwide as a widely distributed commercial crop. From the harvest of the field to the process into the final product, a series of procedures generate enormous amount of waste materials that are rarely recycled. In recent years, numerous potential bioactive compounds have been isolated from tobacco, and the molecular regulatory mechanisms related to the performance of some functionalities have been identified. This review describes the source of tobacco waste and expounds a large amount of biomass during the tobacco processing, and the necessity of exploring the reuse of tobacco waste. In addition, the review summarizes the bioactive compounds from tobacco that have been discovered so far, and links them to various functions from tobacco extracts, including anti-inflammatory, antitumor, antibacterial, and antioxidant, thus proving the potential value from tobacco waste reuse. In this regard, nornicotine in tobacco is the culprit of many health issues, while the polyphenols and polysaccharides often contribute to the health benefits of tobacco extract. In addition, it is hard to ignore that realization of these functions of tobacco extracts require the involvement of intestinal flora metabolism, which should be considered in the development of new product dosage forms.
Collapse
Affiliation(s)
- Xinda Zou
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amrit Bk
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University Al Ain Campus, Unites Arab Emirates
| | - Ahsan Aziz
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Popy Devnath
- Department of Microbiology, Faculty of Sciences, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Adil A H Mujawah
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| | | | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
28
|
Abdullah, Mehmood F, Heidari P, Rahim A, Ahmed I, Poczai P. Pseudogenization of the chloroplast threonine (trnT-GGU) gene in the sunflower family (Asteraceae). Sci Rep 2021; 11:21122. [PMID: 34702873 PMCID: PMC8548347 DOI: 10.1038/s41598-021-00510-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
The chloroplast genome evolves through the course of evolution. Various types of mutational events are found within the chloroplast genome, including insertions-deletions (InDels), substitutions, inversions, gene rearrangement, and pseudogenization of genes. The pseudogenization of the chloroplast threonine (trnT-GGU) gene was previously reported in Cryptomeria japonica (Cupressaceae), Pelargonium × hortorum (Geraniaceae), and Anaphalis sinica and Leontopodium leiolepis of the tribe Gnaphalieae (Asteroideae, Asteraceae). Here, we performed a broad analysis of the trnT-GGU gene among the species of 13 subfamilies of Asteraceae and found this gene as a pseudogene in core Asteraceae (Gymnarrhenoideae, Cichorioideae, Corymbioideae, and Asteroideae), which was linked to an insertion event within the 5' acceptor stem and is not associated with ecological factors such as habit, habitat, and geographical distribution of the species. The pseudogenization of trnT-GGU was not predicted in codon usage, indicating that the superwobbling phenomenon occurs in core Asteraceae in which a single transfer RNA (trnT-UGU) decodes all four codons of threonine. To the best of our knowledge, this is the first evidence of a complete clade of a plant species using the superwobbling phenomenon for translation.
Collapse
Affiliation(s)
- Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, 3619995161, Shahrood, Iran
| | - Abdur Rahim
- Government Degree College Nowshera, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00065, Helsinki, Finland.
| |
Collapse
|
29
|
Ju X, Shi G, Chen S, Dai W, He T. Characterization and phylogenetic analysis of the complete chloroplast genome of Tulipa patens (Liliaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2750-2751. [PMID: 34471694 PMCID: PMC8405118 DOI: 10.1080/23802359.2021.1967799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chloroplast genome and evolutionary relationship analysis of Tulipa patens could provide fundamental genetic reference for its molecular breeding and biological research. The complete chloroplast genome of T. patens was sequenced and reported here. The genome was 152,050 bp in length, containing a pair of inverted repeated regions (26,330 bp) which were separated by a large single copy region of 82,184 bp, and a small single copy region of 17,206 bp. A total of 133 functional genes were annotated, including 87 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The phylogenetic relationships of 10 species indicated that T. patens was closely related to Tulipa sylvestris.
Collapse
Affiliation(s)
- Xiuting Ju
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China.,The Key Laboratory of Landscape Plants of Qinghai Province, Xining, China
| | - Guomin Shi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China.,The Key Laboratory of Landscape Plants of Qinghai Province, Xining, China
| | - Shengrong Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wubin Dai
- The Academic Administration Office of Qinghai University, Xining, China
| | - Tao He
- The Key Laboratory of Landscape Plants of Qinghai Province, Xining, China.,The Academic Administration Office of Qinghai University, Xining, China.,College of Ecological Environment Engineering, Qinghai University, Xining, China
| |
Collapse
|
30
|
Huang Q, Kai G. Characterization and phylogenetic analysis of the complete chloroplast genome of Ophiorrhiza pumila (Rubiaceae). Mitochondrial DNA B Resour 2021; 6:1973-1975. [PMID: 34179485 PMCID: PMC8205021 DOI: 10.1080/23802359.2021.1925985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ophiorrhiza pumila (Rubiaceae) is an herbaceous plant that grows streamside in forest gullies or wetlands in the shade. Complete chloroplast genome of O. pumila was obtained and analyzed its phylogeny relationship within Rubiaceae plants. The results showed that the genome had a typical quadripartite structure of 154,385 bp, and contained a total of 112 unique genes, including 79 protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Phylogenetic analysis suggested that O. pumila is sister to a highly supported clade composed of 10 species including Morinda officinalis, Gynochthodes cochinchinensis, Saprosma merrillii, Hedyotis ovata, Foonchewia guangdongensis, Dunnia sinensis, Paederia scandens, Leptodermis scabrida, Rubia cordifolia, and Galium mollugo. The complete chloroplast genome provides valuable information for the phylogenetic analysis of O. pumila.
Collapse
Affiliation(s)
- Qikai Huang
- College of pharmacy, Laboratory of Medicinal Plant Biotechnology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Guoyin Kai
- College of pharmacy, Laboratory of Medicinal Plant Biotechnology, Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
31
|
Liu J, Jiang M, Chen H, Liu Y, Liu C, Wu W. Comparative genome analysis revealed gene inversions, boundary expansions and contractions, and gene loss in the Stemona sessilifolia (Miq.) Miq. chloroplast genome. PLoS One 2021; 16:e0247736. [PMID: 34143785 PMCID: PMC8213164 DOI: 10.1371/journal.pone.0247736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
Stemona sessilifolia (Miq.) Miq., commonly known as Baibu, is one of the most popular herbal medicines in Asia. In the Chinese Pharmacopoeia, Baibu has multiple authentic sources and there are many similar herbs sold as Baibu in herbal medicine markets. The existence of counterfeits of Baibu brings challenges to its identification. To assist in its accurate identification, we sequenced and analyzed the complete chloroplast genome of S. sessilifolia using next-generation sequencing technology. The genome was found to be 154,037 bp in length, possessing a typical quadripartite structure consisting of a pair of inverted repeats (IRs: 27,090 bp) separated by a large single copy (LSC: 81,949 bp) and a small single copy (SSC: 17,908 bp). A total of 112 unique genes were identified, including 80 protein-coding, 28 transfer RNA and four ribosomal RNA genes. In addition, 45 tandem, 27 forward, 23 palindromic and 104 simple sequence repeats were detected in the genome by repeated analysis. Compared with its counterfeits (Asparagus officinalis and Carludovica palmata) we found that IR expansion and SSC contraction events of S. sessilifolia resulted in two copies of the rpl22 gene in the IR regions and a partial duplication of the ndhF gene in the SSC region. An approximately 3-kb-long inversion was also identified in the LSC region, leading to the petA and cemA genes being presented in the complementary strand of the chloroplast DNA molecule. Comparative analysis revealed some highly variable regions, including trnF-GAA_ndhJ, atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU, ndhF_rpl32, accD_psaI, rps2_rpoC2, trnS-GCU_trnG-UCC, trnT-UGU_trnL-UAA and rps16_trnQ-UUG. Finally, gene loss events were investigated in the context of phylogenetic relationships. In summary, the complete plastome of S. sessilifolia will provide valuable information for the distinction between Baibu and its counterfeits and assist in elucidating the evolution of S. sessilifolia.
Collapse
Affiliation(s)
- Jingting Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| |
Collapse
|
32
|
Abdullah, Mehmood F, Rahim A, Heidari P, Ahmed I, Poczai P. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecol Evol 2021; 11:7810-7826. [PMID: 34188853 PMCID: PMC8216946 DOI: 10.1002/ece3.7614] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
The genus Blumea (Asteroideae, Asteraceae) comprises about 100 species, including herbs, shrubs, and small trees. Previous studies have been unable to resolve taxonomic issues and the phylogeny of the genus Blumea due to the low polymorphism of molecular markers. Therefore, suitable polymorphic regions need to be identified. Here, we de novo assembled plastomes of the three Blumea species B. oxyodonta, B. tenella, and B. balsamifera and compared them with 26 other species of Asteroideae after correction of annotations. These species have quadripartite plastomes with similar gene content, genome organization, and inverted repeat contraction and expansion comprising 113 genes, including 80 protein-coding, 29 transfer RNA, and 4 ribosomal RNA genes. The comparative analysis of codon usage, amino acid frequency, microsatellite repeats, oligonucleotide repeats, and transition and transversion substitutions has revealed high resemblance among the newly assembled species of Blumea. We identified 10 highly polymorphic regions with nucleotide diversity above 0.02, including rps16-trnQ, ycf1, ndhF-rpl32, petN-psbM, and rpl32-trnL, and they may be suitable for the development of robust, authentic, and cost-effective markers for barcoding and inference of the phylogeny of the genus Blumea. Among these highly polymorphic regions, five regions also co-occurred with oligonucleotide repeats and support use of repeats as a proxy for the identification of polymorphic loci. The phylogenetic analysis revealed a close relationship between Blumea and Pluchea within the tribe Inuleae. At tribe level, our phylogeny supports a sister relationship between Astereae and Anthemideae rooted as Gnaphalieae, Calenduleae, and Senecioneae. These results are contradictory to recent studies which reported a sister relationship between "Senecioneae and Anthemideae" and "Astereae and Gnaphalieae" or a sister relationship between Astereae and Gnaphalieae rooted as Calenduleae, Anthemideae, and then Senecioneae using nuclear genome sequences. The conflicting phylogenetic signals observed at the tribal level between plastidt and nuclear genome data require further investigation.
Collapse
Affiliation(s)
- Abdullah
- Department of BiochemistryFaculty of Biological SciencesQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Furrukh Mehmood
- Department of BiochemistryFaculty of Biological SciencesQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Abdur Rahim
- Department of ZoologyPost Graduate College NowsheraAbdul Wali Khan UniversityMardanPakistan
| | - Parviz Heidari
- Faculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Ibrar Ahmed
- Alpha Genomics Private LimitedIslamabadPakistan
| | - Péter Poczai
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
33
|
Gu L, Su T, Luo GL, Hu GX. The complete chloroplast genome sequence of Heteropolygonatum ginfushanicum (Asparagaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2021; 6:1799-1802. [PMID: 34104777 PMCID: PMC8168753 DOI: 10.1080/23802359.2021.1933636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Heteropolygonatum ginfushanicum is an endemic epiphytic herb in China. The complete chloroplast (cp) genome of H. ginfushanicum is reported in this study. The total length of the cp genome is 155,508 bp with a typical quadripartite structure consisting of a large single copy region (LSC) of 84,552 bp and a small single copy region (SSC) of 18,528 bp, separated by a pair of 26,214 bp inverted repeats (IRs). It encodes a total of 113 unique genes, including 79 protein-coding, 30 tRNA, and four rRNA genes. Phylogenetic analysis indicated that H. ginfushanicum is sister to Heteropolygonatum marmoratum within subfamily Nolinoideae.
Collapse
Affiliation(s)
- Li Gu
- College of Life Sciences, Guizhou University, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang, China.,Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Ting Su
- College of Life Sciences, Guizhou University, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang, China.,Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Guang-Ling Luo
- College of Life Sciences, Guizhou University, Guiyang, China.,The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang, China.,Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Guo-Xiong Hu
- College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
34
|
Tang Y, Zhao Y, Li C, Yang G, Peng J, Xu Z. New insights into the evolutionary characteristic between the New World and Old World Lupinus species using complete chloroplast genomes. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1926341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Yiwang Tang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, People’s Republic of China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, People’s Republic of China
| | - Chaoyang Li
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, People’s Republic of China
| | - Guiyan Yang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, People’s Republic of China
- College of Forestry, Northwest A & F University, Yangling, People’s Republic of China
| | - Jiao Peng
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, People’s Republic of China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, People’s Republic of China
- College of Forestry, Northwest A & F University, Yangling, People’s Republic of China
| |
Collapse
|
35
|
Abdullah, Henriquez CL, Croat TB, Poczai P, Ahmed I. Mutational Dynamics of Aroid Chloroplast Genomes II. Front Genet 2021; 11:610838. [PMID: 33552129 PMCID: PMC7854696 DOI: 10.3389/fgene.2020.610838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
The co-occurrence among single nucleotide polymorphisms (SNPs), insertions-deletions (InDels), and oligonucleotide repeats has been reported in prokaryote, eukaryote, and chloroplast genomes. Correlations among SNPs, InDels, and repeats have been investigated in the plant family Araceae previously using pair-wise sequence alignments of the chloroplast genomes of two morphotypes of one species, Colocasia esculenta belonging to subfamily Aroideae (crown group), and four species from the subfamily Lemnoideae, a basal group. The family Araceae is a large family comprising 3,645 species in 144 genera, grouped into eight subfamilies. In the current study, we performed 34 comparisons using 27 species from 7 subfamilies of Araceae to determine correlation coefficients among the mutational events at the family, subfamily, and genus levels. We express strength of the correlations as: negligible or very weak (0.10–0.19), weak (0.20–0.29), moderate (0.30–0.39), strong (0.40–0.69), very strong (0.70–0.99), and perfect (1.00). We observed strong/very strong correlations in most comparisons, whereas a few comparisons showed moderate correlations. The average correlation coefficient was recorded as 0.66 between “SNPs and InDels,” 0.50 between “InDels and repeats,” and 0.42 between “SNPs and repeats.” In qualitative analyses, 95–100% of the repeats at family and sub-family level, while 36–86% of the repeats at genus level comparisons co-occurred with SNPs in the same bins. Our findings show that such correlations among mutational events exist throughout Araceae and support the hypothesis of distribution of oligonucleotide repeats as a proxy for mutational hotspots.
Collapse
Affiliation(s)
- Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, Pakistan
| |
Collapse
|