1
|
Martins F, Arada R, Barros H, Matos P, Ramalho J, Ceña V, Bonifácio VDB, Gonçalves LG, Serpa J. Lactate-coated polyurea-siRNA dendriplex: a gene therapy-directed and metabolism-based strategy to impair glioblastoma (GBM). Cancer Gene Ther 2025:10.1038/s41417-025-00906-8. [PMID: 40289180 DOI: 10.1038/s41417-025-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma (GBM) is a highly lethal disease with limited treatment options due to its infiltrative nature and the lack of efficient therapy able to cross the protective blood-brain barrier (BBB). GBMs are metabolically characterized by increased glycolysis and glutamine dependence. This study explores a novel metabolism-based therapeutic approach using a polyurea generation 4 dendrimer (PUREG4) surface functionalized with lactate (LA) (PUREG4-LA24), to take advantage of glucose-dependent monocarboxylate transporters (MCTs) overexpression, loaded with selenium-chrysin (SeChry) and temozolomide (TMZ) or complexed with anti-glutaminase (GLS1) siRNAs to abrogate glutamine dependence. The nanoparticles (PUREG4-LA24) were efficient vehicles for cytotoxic compounds delivery, since SeChry@PUREG4-LA24 and TMZ@PUREG4-LA24 induced significant cell death in GBM cell lines, particularly in U251, which exhibits higher MCT1 expression. The anti-GLS1 siRNA-dendriplex with PUREG4-LA12 (PUREG4-LA12-anti-GLS1-siRNA) knocked down GLS1 in the GBM cell lines. In two in vitro BBB models, these dendriplexes successfully crossed the BBB, decreased GLS1 expression and altered the exometabolome of GBM cell lines, concomitantly with autophagy activation. Our findings highlight the potential of targeting glucose and glutamine pathways in GBM using dendrimer-based nanocarriers, overcoming the BBB and disrupting key metabolic processes in GBM cells. PUREG4-LA12-anti-GLS1-siRNA dendriplexes cross the blood-brain barrier (BBB) and impair glioblastoma (GBM) metabolism. The BBB is formed by a thin monolayer of specialized brain microvascular endothelial cells joined together by tight junctions that selectively control the passage of substances from the blood to the brain. It is a major obstacle in the treatment of GBM, since many chemotherapeutic drugs are unable to penetrate the brain. Therefore, we developed a strategy to overcome this obstacle: a lactate-coated polyurea dendrimer generation 4 (PUREG4) able to cross the BBB in vitro, that act as a nanocarrier of drugs and siRNA to the GBM cells. PUREG4-LA12 are nanoparticles functionalized with lactate (LA) to target MCT1, a lactate transporter highly expressed by GBM cells. Moreover, a complex of this nanoparticle with anti-GLS1 (glutaminase) siRNA (PUREG4-LA12-anti-GLS1-siRNA) was made, to target glutamine metabolism. It efficiently knocked down GLS1. Moreover, PUREG4-LA24 loaded with SeChry led to BBB disruption.
Collapse
Affiliation(s)
- Filipa Martins
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Renata Arada
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Hélio Barros
- IBB - Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - José Ramalho
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Valentín Ceña
- Centro de Investigación Biomédica en Red (CIBER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Unidad Asociada Neurodeath, Institute of Molecular Nanoscience (INAMOL), Facultad de Medicina, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - Vasco D B Bonifácio
- IBB - Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Jacinta Serpa
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
2
|
Sak M, Williams BJ, Hey AJ, Sharma M, Schier L, Wilson MJ, Ortega M, Lara AI, Brentlinger MN, Lehman NL. O 6-methylguanine DNA methyltransferase (MGMT) expression in U1242 glioblastoma cells enhances in vitro clonogenicity, tumor implantation in vivo, and sensitivity to alisertib-carboplatin combination treatment. Front Cell Neurosci 2025; 19:1552015. [PMID: 40336841 PMCID: PMC12056744 DOI: 10.3389/fncel.2025.1552015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary adult CNS tumor. Increased understanding of glioma biology is needed for novel treatment strategies and maximization of current therapies. The action of the widely used antiglioma drug, temozolomide (TMZ), relies on its ability to methylate DNA guanine bases leading to DNA double strand breaks and apoptosis. However, glioma cells capable of reversing guanine methylation via the repair enzyme O 6-methylguanine DNA methyltransferase (MGMT) are resistant to TMZ. GBMs exhibiting high MGMT expression, reflected by MGMT gene promoter hypomethylation, respond poorly to both chemo- and radiation therapy. To investigate possible non-canonical biological effects of MGMT and develop a tool to investigate drug sensitivity and resistance, we generated MGMT knockout (KO) U1242 GBM cells. MGMT KO U1242 cells showed substantially increased sensitivity to TMZ in vivo, and unlike wildtype U1242 cells, failed to form tumors in nude mouse brains. They also showed reduced growth in soft agar, as did wildtype U1242 and additional glioma cell lines in which MGMT expression was knocked down by siRNA. MGMT thus possesses cellular functions related to tumor cell engraftment and anchorage-independent growth beyond guanine methyltransferase repair. We additionally show that the combination of the AURKA inhibitor alisertib and carboplatin selectively induces apoptosis in high MGMT expressing wildtype U1242 cells versus MGMT KO U1242 cells and extends survival of mice orthotopically implanted with wildtype U1242 cells. This or other platinum-based drug combinations may represent a potentially effective treatment approach to chemotherapy for GBM with MGMT promoter hypomethylation.
Collapse
Affiliation(s)
- Müge Sak
- Departments of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Brian J. Williams
- Neurological Surgery, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Andrew J. Hey
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Mayur Sharma
- Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Leslie Schier
- Departments of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Megan J. Wilson
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Mahatma Ortega
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, United States
| | - Alyssa I. Lara
- Departments of Pathology and Laboratory Medicine, Baylor Scott & White Health, Baylor College of Medicine, Temple, TX, United States
| | - Mikaela N. Brentlinger
- Departments of Pathology and Laboratory Medicine, Baylor Scott & White Health, Baylor College of Medicine, Temple, TX, United States
| | - Norman L. Lehman
- Departments of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Departments of Pathology and Laboratory Medicine, Baylor Scott & White Health, Baylor College of Medicine, Temple, TX, United States
| |
Collapse
|
3
|
Ng AT, Steve T, Jamouss KT, Arham A, Kawtharani S, Assi HI. The challenges and clinical landscape of glioblastoma immunotherapy. CNS Oncol 2024; 13:2415878. [PMID: 39469854 PMCID: PMC11524205 DOI: 10.1080/20450907.2024.2415878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Glioblastoma is associated with a dismal prognosis with the standard of care involving surgery, radiation therapy and temozolomide chemotherapy. This review investigates the features that make glioblastoma difficult to treat and the results of glioblastoma immunotherapy clinical trials so far. There have been over a hundred clinical trials involving immunotherapy in glioblastoma. We report the survival-related outcomes of every Phase III glioblastoma immunotherapy trial with online published results we could find at the time of writing. To date, the DCVax-L vaccine is the only immunotherapy shown to have statistically significant increased median survival compared with standard-of-care in a Phase III trial: 19.3 months versus 16.5 months. However, this trial used an external control group to compare with the intervention which limits its quality of evidence. In conclusion, glioblastoma immunotherapy requires further investigation to determine its significance in improving disease survival.
Collapse
Affiliation(s)
- Andrew Timothy Ng
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Tyler Steve
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Kevin T Jamouss
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Abdul Arham
- Department of Medicine, University of Massachusetts Chan Medical School – Baystate Campus, Springfield, MA01199, USA
| | - Sarah Kawtharani
- Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Department of Hematology and Oncology, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| |
Collapse
|
4
|
Chang CH, Tsai HP, Yen MH, Lin CJ. Methanolic Extract of Cimicifuga foetida Induces G 1 Cell Cycle Arrest and Apoptosis and Inhibits Metastasis of Glioma Cells. Nutrients 2024; 16:3254. [PMID: 39408228 PMCID: PMC11478387 DOI: 10.3390/nu16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is among the most aggressive and challenging brain tumors, with limited treatment options. Cimicifuga foetida, a traditional Chinese medicine, has shown promise due to its bioactive components. This study investigates the anti-glioma effects of a methanolic extract of C. foetida (CF-ME) in GBM cell lines. METHODS The effects of CF-ME and its index compounds (caffeic acid, cimifugin, ferulic acid, and isoferulic acid) on GBM cell viability were assessed using MTT assays on U87 MG, A172, and T98G cell lines. The ability of CF-ME to induce cell cycle arrest, apoptosis, and autophagy and inhibit metastasis was evaluated using flow cytometry, Western blotting, and functional assays. Additionally, the synergistic potential of CF-ME with temozolomide (TMZ) was explored. RESULTS CF-ME significantly reduced GBM cell viability in a dose- and time-dependent manner, induced G1 phase cell cycle arrest, promoted apoptosis via caspase activation, and triggered autophagy. CF-ME also inhibited GBM cell invasion, migration, and adhesion, likely by modulating epithelial-mesenchymal transition (EMT) markers. Combined with TMZ, CF-ME further enhanced reduced GBM cell viability, suggesting a potential synergistic effect. However, the individual index compounds of CF-ME exhibited only modest inhibitory effects, indicating that the full anti-glioma activity may result from the synergistic interactions among its components. CONCLUSIONS CF-ME exhibited potent anti-glioma activity through multiple mechanisms, including cell cycle arrest, apoptosis, autophagy, and the inhibition of metastasis. Combining CF-ME with TMZ further enhanced its therapeutic potential, making it a promising candidate for adjuvant therapy in glioblastoma treatment.
Collapse
Affiliation(s)
- Chih-Hsuan Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Ming-Hong Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| |
Collapse
|
5
|
Biedermann GB, Merrifield K, Lustgarten L. Case report: Safety of Tumor Treating Fields therapy with an implantable cardiac pacemaker in a patient with glioblastoma. Front Oncol 2024; 14:1441146. [PMID: 39239269 PMCID: PMC11374662 DOI: 10.3389/fonc.2024.1441146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is an anti-cancer treatment modality that is delivered noninvasively to the tumor site via skin-placed arrays. The therapy is US Food and Drug Administration (FDA) approved and Conformité Européenne (CE) marked for adults with newly diagnosed and recurrent glioblastoma (GBM) (grade 4 glioma in the European Union). To date, there are limited data on the safety and efficacy of TTFields therapy in patients with implanted cardiac pacemakers. Herein, we report a case of a 79-year-old male patient with GBM receiving TTFields therapy with a prior medical history of cardiac events necessitating a cardiac pacemaker. The patient presented to the emergency department in May 2021 with newly onset left-sided weakness along with seizures. Based on an initial evaluation and results of the initial computed tomography (CT) scans (May 2021), the patient was clinically diagnosed with a high-grade glioma which was later confirmed as IDH wildtype following a biopsy. He was treated with radiotherapy (40 Gy in 15 fractions), followed by adjuvant temozolomide (TMZ) (75 mg/m2). TTFields therapy was initiated alongside maintenance TMZ (150 mg/m2). Average TTFields therapy usage was 67% throughout the duration of treatment. Follow-up CT scans (February and May of 2022) indicated stable disease. CT scans in August 2022 showed an increase in size of a mass with heterogeneous contrast enhancement and the patient subsequently passed away in October 2022. The patient's last cardiac tests demonstrated that the pacemaker was operational with adequate cardiac function. This report suggests that TTFields therapy concomitant with an implanted electronic device may be safe in patients with GBM.
Collapse
Affiliation(s)
- Gregory B Biedermann
- Department of Radiation Oncology, University of Missouri, Columbia, MO, United States
| | - Kathleen Merrifield
- Department of Global Medical Safety, Novocure Inc., New York, NY, United States
| | | |
Collapse
|
6
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
7
|
Montes-Escobar K, de la Hoz-M J, Castillo-Cordova P, Duran-Ospina JP, Bravo-Saltos RK, Lapo-Talledo GJ, Siteneski A. Glioblastoma: a comprehensive approach combining bibliometric analysis, Latent Dirichlet Allocation, and HJ-Biplot : Glioblastoma insights and trends: a 49-year bibliometric analysis. Neurosurg Rev 2024; 47:209. [PMID: 38724684 DOI: 10.1007/s10143-024-02440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma is a common and aggressive malignant central nervous system tumor in adults. This study aims to evaluate and analyze the scientific results, collaboration countries, main research topics, and topics over time reported about glioblastoma. A bibliometric analysis of glioblastoma publications was performed mainly using R and Multbiplot software for author, journal, and resume. Associated statistic methods Latent Dirichlet Allocation (LDA) and HJ-Biplot. Inclusion criteria were research articles from the PubMed database published in English between 1973 and December 2022. A total of 64,823 documents with an annual growth rate of 8.27% indicates a consistent increase in research output over time. The results for the number of citations and significant publications showed Cancer Res, J Neuro-Oncol, and Neuro-Oncology are the most influential journals in the field of glioblastoma. The countries that concentrated research were the tumor United States, China, Germany, and Italy. Finally, there has been a marked growth in studies on prognosis and patient survival, therapies, and treatments for glioblastoma. These findings reinforce the need for increased global resources to address glioblastoma, particularly in underdeveloped countries. Glioblastoma research's exponential growth reflects sustained interest in early diagnosis and patient survival.
Collapse
Affiliation(s)
- Karime Montes-Escobar
- Departamento de Matemáticas y Estadística, Faculta de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
- Statistics Department, University of Salamanca, Salamanca, 37007, Spain
| | - Javier de la Hoz-M
- Statistics Department, University of Salamanca, Salamanca, 37007, Spain
- Universidad del Magdalena, Santa Marta, 470004, Colombia
| | - Paul Castillo-Cordova
- SOLCA Nucleus Loja, Loja, 110105, Ecuador
- Carrera de Medicina, Facultad de Ciencias de la Salud,, Universidad Técnica Particular de Loja, Loja, 1101608 , Ecuador
| | | | - Rosalba Karen Bravo-Saltos
- Departamento de Matemáticas y Estadística, Faculta de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - German Josuet Lapo-Talledo
- School of Medicine, Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Aline Siteneski
- School of Medicine, Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
- Research Institute, Faculty of Health Sciences, Medicine Career, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| |
Collapse
|
8
|
Crucitta S, Pasqualetti F, Gonnelli A, Ruglioni M, Luculli GI, Cantarella M, Ortenzi V, Scatena C, Paiar F, Naccarato AG, Danesi R, Del Re M. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. BMC Cancer 2024; 24:31. [PMID: 38172718 PMCID: PMC10763009 DOI: 10.1186/s12885-023-11726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA, liquid biopsy) is a powerful tool to detect molecular alterations. However, depending on tumor characteristics, biology and anatomic localization, cfDNA detection and analysis may be challenging. Gliomas are enclosed into an anatomic sanctuary, which obstacles the release of cfDNA into the peripheral blood. Therefore, the advantages of using liquid biopsy for brain tumors is still to be confirmed. The present study evaluates the ability of liquid biopsy to detect IDH1 mutations and its correlation with survival and clinical characteristics of glioma patients. METHODS Blood samples obtained from glioma patients were collected after surgery prior to the adjuvant therapy. cfDNA was extracted from plasma and IDH1 p.R132H mutation analysis was performed on a digital droplet PCR. χ2-test and Cohen k were used to assess the correlation between plasma and tissue IDH1 status, while Kaplan Meier curve and Cox regression analysis were applied to survival analysis. Statistical calculations were performed by MedCalc and GraphPad Prism software. RESULTS A total of 67 samples were collected. A concordance between IDH1 status in tissue and in plasma was found (p = 0.0024), and the presence of the IDH1 mutation both in tissue (138.8 months vs 24.4, p < 0.0001) and cfDNA (116.3 months vs 35.8, p = 0.016) was associated with longer median OS. A significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS was demonstrated by univariate Cox regression analysis. No statistically significant association between IDH1 mutation and tumor grade was found (p = 0.10). CONCLUSIONS The present study demonstrates that liquid biopsy may be used in brain tumors to detect IDH1 mutation which represents an important prognostic biomarker in patients with different types of gliomas, being associated to OS.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
- Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandra Gonnelli
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Cantarella
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Valerio Ortenzi
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology, Department of Medicine and Oncology, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono, 7, Milano, 20122, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Sim J, Park J, Moon JS, Lim J. Dysregulation of inflammasome activation in glioma. Cell Commun Signal 2023; 21:239. [PMID: 37723542 PMCID: PMC10506313 DOI: 10.1186/s12964-023-01255-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Gliomas are the most common brain tumors characterized by complicated heterogeneity. The genetic, molecular, and histological pathology of gliomas is characterized by high neuro-inflammation. The inflammatory microenvironment in the central nervous system (CNS) has been closely linked with inflammasomes that control the inflammatory response and coordinate innate host defenses. Dysregulation of the inflammasome causes an abnormal inflammatory response, leading to carcinogenesis in glioma. Because of the clinical importance of the various physiological properties of the inflammasome in glioma, the inflammasome has been suggested as a promising treatment target for glioma management. Here, we summarize the current knowledge on the contribution of the inflammasomes in glioma and therapeutic insights. Video Abstract.
Collapse
Affiliation(s)
- JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - JeongMan Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea.
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
10
|
Park DJ, Persad AR, Yoo KH, Marianayagam NJ, Yener U, Tayag A, Ustrzynski L, Emrich SC, Chuang C, Pollom E, Soltys SG, Meola A, Chang SD. Stereotactic Radiosurgery for Contrast-Enhancing Satellite Nodules in Recurrent Glioblastoma: A Rare Case Series From a Single Institution. Cureus 2023; 15:e44455. [PMID: 37664337 PMCID: PMC10470661 DOI: 10.7759/cureus.44455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Glioblastoma (GBM) is the most common malignant adult brain tumor and is invariably fatal. The standard treatment for GBM involves resection where possible, followed by chemoradiation per Stupp's protocol. We frequently use stereotactic radiosurgery (SRS) as a single-fraction treatment for small (volume ≤ 1cc) nodular recurrent GBM to the contrast-enhancing target on T1 MRI scan. In this paper, we aimed to evaluate the safety and efficacy of SRS for patients with contrast-enhancing satellite nodules in recurrent GBM. Methods This retrospective study analyzed the clinical and radiological outcomes of five patients who underwent CyberKnife (Accuray Inc., Sunnyvale, California) SRS at the institute between 2013 and 2022. Results From 96 patients receiving SRS for GBM, five (four males, one female; median age 53) had nine distinct new satellite lesions on MRI, separate from their primary tumor beds. Those nine lesions were treated with a median margin dose of 20 Gy in a single fraction. The three-, six, and 12-month local tumor control rates were 77.8%, 66.7%, and 26.7%, respectively. Median progression-free survival (PFS) was seven months, median overall survival following SRS was 10 months, and median overall survival (OS) was 35 months. Interestingly, the only lesion that did not show radiological progression was separate from the T2-fluid attenuated inversion recovery (FLAIR) signal of the main tumor. Conclusion Our SRS treatment outcomes for recurrent GBM satellite lesions are consistent with existing findings. However, in a unique case, a satellite nodule distinct from the primary tumor's T2-FLAIR signal and treated with an enlarged target volume showed promising control until the patient's demise. This observation suggests potential research avenues, given the limited strategies for 'multicentric' GBM lesions.
Collapse
Affiliation(s)
- David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Amit R Persad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Kelly H Yoo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Ulas Yener
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Armine Tayag
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Louisa Ustrzynski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Sara C Emrich
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Antonio Meola
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
11
|
Zhang R, Ye Y, Wu J, Gao J, Huang W, Qin H, Tian H, Han M, Zhao B, Sun Z, Chen X, Dong X, Liu K, Liu C, Tu Y, Zhao S. Immunostimulant In Situ Fibrin Gel for Post-operative Glioblastoma Treatment by Macrophage Reprogramming and Photo-Chemo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17627-17640. [PMID: 37000897 DOI: 10.1021/acsami.3c00468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tumor recurrence remains the leading cause of treatment failure following surgical resection of glioblastoma (GBM). M2-like tumor-associated macrophages (TAMs) infiltrating the tumor tissue promote tumor progression and seriously impair the efficacy of chemotherapy and immunotherapy. In addition, designing drugs capable of crossing the blood-brain barrier and eliciting the applicable organic response is an ambitious challenge. Here, we propose an injectable nanoparticle-hydrogel system that uses doxorubicin (DOX)-loaded mesoporous polydopamine (MPDA) nanoparticles encapsulated in M1 macrophage-derived nanovesicles (M1NVs) as effectors and fibrin hydrogels as in situ delivery vehicles. In vivo fluorescence imaging shows that the hydrogel system triggers photo-chemo-immunotherapy to destroy remaining tumor cells when delivered to the tumor cavity of a model of subtotal GBM resection. Concomitantly, the result of flow cytometry indicated that M1NVs comprehensively improved the immune microenvironment by reprogramming M2-like TAMs to M1-like TAMs. This hydrogel system combined with a near-infrared laser effectively promoted the continuous infiltration of T cells, restored T cell effector function, inhibited the infiltration of myeloid-derived suppressor cells and regulatory T cells, and thereby exhibited a strong antitumor immune response and significantly inhibited tumor growth. Hence, MPDA-DOX-NVs@Gel (MD-NVs@Gel) presents a unique clinical strategy for the treatment of GBM recurrence.
Collapse
Affiliation(s)
- Ruotian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianing Wu
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichang Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingyang Han
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Boyan Zhao
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Zhenying Sun
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xingli Dong
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Kun Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chang Liu
- Sport Science College, Beijing Sport University, Beijing 100091, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| |
Collapse
|
12
|
Kao YT, Wang HI, Shie CT, Lin CF, Lai MM, Yu CY. Zika virus cleaves GSDMD to disseminate prognosticable and controllable oncolysis in a human glioblastoma cell model. Mol Ther Oncolytics 2023; 28:104-117. [PMID: 36699618 PMCID: PMC9845690 DOI: 10.1016/j.omto.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive malignant brain cancer and is chemo- and radioresistant, with poor therapeutic outcomes. The "double-edged sword" of virus-induced cell death could be a potential solution if the oncolytic virus specifically kills cancer cells but spares normal ones. Zika virus (ZIKV) has been defined as a prospective oncolytic virus by selectively targeting GBM cells, but unclear understanding of how ZIKV kills GBM and the consequences hinders its application. Here, we found that the cellular gasdermin D (GSDMD) is required for the efficient death of a human GBM cell line caused by ZIKV infection. The ZIKV protease specifically cleaves human GSDMD to activate caspase-independent pyroptosis, harming both viral protease-harboring and naive neighboring cells. Analyzing human GSDMD variants showed that most people were susceptible to ZIKV-induced cytotoxicity, except for those with variants that resisted ZIKV cleavage or were defective in oligomerizing the N terminus GSDMD cleavage product. Consistently, ZIKV-induced secretion of the pro-inflammatory cytokine interleukin-1β and cytolytic activity were both stopped by a small-molecule inhibitor targeting GSDMD oligomerization. Thus, potential ZIKV oncolytic therapy for GBM would depend on the patient's GSDMD genetic background and could be abolished by GSDMD inhibitors if required.
Collapse
Affiliation(s)
- Yu-Ting Kao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Hsin-I Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chi-Ting Shie
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taipei 110, Taiwan
| | - Michael M.C. Lai
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung 404, Taiwan,Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan,Department of Microbiology and Immunology, National Cheng Kung University, Tainan 701, Taiwan,Corresponding author: Chia-Yi Yu, PhD, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan.
| |
Collapse
|
13
|
Annese T, Errede M, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Double Immunohistochemical Staining on Formalin-Fixed Paraffin-Embedded Tissue Samples to Study Vascular Co-option. Methods Mol Biol 2023; 2572:101-116. [PMID: 36161411 DOI: 10.1007/978-1-0716-2703-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31+ vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells. Results can be quantified by the Aperio Colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy.
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
14
|
Godugu K, Hay BA, Glinsky GV, Mousa SA. Discovery of novel thyrointegrin αvβ3 antagonist fb-PMT (NP751) in the management of human glioblastoma multiforme. Neurooncol Adv 2023; 5:vdac180. [PMID: 36879662 PMCID: PMC9985163 DOI: 10.1093/noajnl/vdac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Thyrointegrin αvβ3 receptors are unique molecular cancer therapeutic targets because of their overexpression on cancer and rapidly dividing blood vessel cells compared and quiescent on normal cells. A macromolecule, TriAzole Tetraiodothyroacetic acid (TAT) conjugated to polyethylene glycol with a lipophilic 4-fluorobenyl group (fb-PMT and NP751), interacts with high affinity (0.21 nM) and specificity with the thyrointegrin αvβ3 receptors on the cell surface without nuclear translocation in contrast to the non-polymer conjugated TAT. Methods The following in vitro assays were carried out to evaluate NP751 including binding affinity to different integrins, transthyretin (TTR)-binding affinity, glioblastoma multiforme (GBM) cell adhesion, proliferation assays, nuclear translocations, chorioallantoic membrane model of angiogenesis, and microarray for molecular mechanisms. Additionally, in vivo studies were carried out to evaluate the anticancer efficacy of NP751, its biodistribution, and brain GBM tumor versus plasma levels kinetics. Results NP751 demonstrated a broad spectrum of antiangiogenesis and anticancer efficacy in experimental models of angiogenesis and xenografts of human GBM cells. Tumor growth and cancer cells' viability were markedly decreased (by > 90%; P < .001) in fb-PMT-treated U87-luc or 3 different primary human GBM xenograft-bearing mice based on tumor in vivo imaging system (IVIS) imaging and histopathological examination, without relapse upon treatment discontinuation. Additionally, it effectively transports across the blood-brain barrier via its high-affinity binding to plasma TTR with high retention in brain tumors. NP751-induced effects on gene expression support the model of molecular interference at multiple key pathways essential for GBM tumor progression and vascularization. Conclusions fb-PMT is a potent thyrointegrin αvβ3 antagonist with potential impact on GBM tumor progression.
Collapse
Affiliation(s)
- Kavitha Godugu
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer & NanoPharmaceuticals LLC, Rensselaer, New York, USA
| | - Bruce A Hay
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer & NanoPharmaceuticals LLC, Rensselaer, New York, USA
| | - Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer & NanoPharmaceuticals LLC, Rensselaer, New York, USA
| |
Collapse
|
15
|
Tyrosine Kinase Inhibitors for Glioblastoma Multiforme: Challenges and Opportunities for Drug Delivery. Pharmaceutics 2022; 15:pharmaceutics15010059. [PMID: 36678688 PMCID: PMC9863099 DOI: 10.3390/pharmaceutics15010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with high mortality rates. Due to its invasiveness, heterogeneity, and incomplete resection, the treatment is very challenging. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have great potential for GBM treatment, however, their efficacy is primarily limited by poor brain distribution due to the presence of the blood-brain barrier (BBB). This review focuses on the potential of TKIs in GBM therapy and provides an insight into the reasons behind unsuccessful clinical trials of TKIs in GBM despite the success in treating other cancer types. The main section is dedicated to the use of promising drug delivery strategies for targeted delivery to brain tumors. Use of brain targeted delivery strategies can help enhance the efficacy of TKIs in GBM. Among various drug delivery approaches used to bypass or cross BBB, utilizing nanocarriers is a promising strategy to augment the pharmacokinetic properties of TKIs and overcome their limitations. This is because of their advantages such as the ability to cross BBB, chemical stabilization of drug in circulation, passive or active targeting of tumor, modulation of drug release from the carrier, and the possibility to be delivered via non-invasive intranasal route.
Collapse
|
16
|
Zhang K, Liu X, Li G, Chang X, Li S, Chen J, Zhao Z, Wang J, Jiang T, Chai R. Clinical management and survival outcomes of patients with different molecular subtypes of diffuse gliomas in China (2011-2017): a multicenter retrospective study from CGGA. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0469. [PMID: 36350010 PMCID: PMC9630520 DOI: 10.20892/j.issn.2095-3941.2022.0469] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE We aimed to summarize the clinicopathological characteristics and prognostic features of various molecular subtypes of diffuse gliomas (DGs) in the Chinese population. METHODS In total, 1,418 patients diagnosed with DG between 2011 and 2017 were classified into 5 molecular subtypes according to the 2016 WHO classification of central nervous system tumors. The IDH mutation status was determined by immunohistochemistry and/or DNA sequencing, and 1p/19q codeletion was detected with fluorescence in situ hybridization. The median clinical follow-up time was 1,076 days. T-tests and chi-square tests were used to compare clinicopathological characteristics. Kaplan-Meier and Cox regression methods were used to evaluate prognostic factors. RESULTS Our cohort included 15.5% lower-grade gliomas, IDH-mutant and 1p/19q-codeleted (LGG-IDHm-1p/19q); 18.1% lower-grade gliomas, IDH-mutant (LGG-IDHm); 13.1% lower-grade gliomas, IDH-wildtype (LGG-IDHwt); 36.1% glioblastoma, IDH-wildtype (GBM-IDHwt); and 17.2% glioblastoma, IDH-mutant (GBM-IDHm). Approximately 63.3% of the enrolled primary gliomas, and the median overall survival times for LGG-IDHm, LGG-IDHwt, GBM-IDHwt, and GBM-IDHm subtypes were 75.97, 34.47, 11.57, and 15.17 months, respectively. The 5-year survival rate of LGG-IDHm-1p/19q was 76.54%. We observed a significant association between high resection rate and favorable survival outcomes across all subtypes of primary tumors. We also observed a significant role of chemotherapy in prolonging overall survival for GBM-IDHwt and GBM-IDHm, and in prolonging post-relapse survival for the 2 recurrent GBM subtypes. CONCLUSIONS By controlling for molecular subtypes, we found that resection rate and chemotherapy were 2 prognostic factors associated with survival outcomes in a Chinese cohort with DG.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Guanzhang Li
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xin Chang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shouwei Li
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Chen
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518057, China
| | - Tao Jiang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruichao Chai
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|