1
|
Chen DX, Lu CH, Na N, Yin RX, Huang F. Endothelial progenitor cell-derived extracellular vesicles: the world of potential prospects for the treatment of cardiovascular diseases. Cell Biosci 2024; 14:72. [PMID: 38840175 DOI: 10.1186/s13578-024-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.
Collapse
Affiliation(s)
- De-Xin Chen
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Na
- Department of Neuroscience, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Rui-Xing Yin
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Feng Huang
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Chen Y, Wan G, Li Z, Liu X, Zhao Y, Zou L, Liu W. Endothelial progenitor cells in pregnancy-related diseases. Clin Sci (Lond) 2023; 137:1699-1719. [PMID: 37986615 PMCID: PMC10665129 DOI: 10.1042/cs20230853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyun Li
- The First Clinical School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucagon-Like Peptide 1 Receptor Agonists Versus Sodium-Glucose Cotransporter 2 Inhibitors for Atherosclerotic Cardiovascular Disease in Patients With Type 2 Diabetes. Cardiol Res 2023; 14:12-21. [PMID: 36896226 PMCID: PMC9990545 DOI: 10.14740/cr1459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/11/2023] [Indexed: 02/27/2023] Open
Abstract
Beyond improving hemoglobin A1c (HbA1c) in adults with type 2 diabetes, glucagon-like peptide 1 receptor agonists (GLP-1RA) have been approved for reducing risk of major adverse cardiovascular events (MACE) with established cardiovascular disease (CVD) or multiple CV risk factors. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) also reduced the risk for the primary composite CV outcome in patients with type 2 diabetes at high risk for CV events. In the American Diabetes Association (ADA) and European Association of Study in Diabetes (EASD) consensus report 2022, there is the description "In people with established atherosclerotic CVD (ASCVD) or with a high risk for ASCVD, GLP-1RA were prioritized over SGLT2i"; however, the evidence supporting such statement is limited. Therefore, we studied the superiority of GLP-1RA over SGLT2i for prevention of ASCVD from various viewpoints. We could not find a meaningful difference in the risk reduction in three-point MACE (3P-MACE), mortality due to any cause, mortality due to CV cause and nonfatal myocardial infarction between GLP-1RA and SGLT2i trials. The risk of nonfatal stroke decreased in all five GLP-1RA trials; however, two of three SGLT2i trials showed an increase in risk of nonfatal stroke. The risk of hospitalization for heart failure (HHF) decreased in all three SGLT2i trials, and one GLP-1RA trial showed an increase in risk of HHF. The risk reduction of HHF in SGLT2i trials was greater than that in GLP-1RA trials. These findings were consistent with current systematic reviews and meta-analyses. The risk reduction of 3P-MACE was significantly and negatively correlated with changes in HbA1c (R = -0.861, P = 0.006) and body weight (R = -0.895, P = 0.003) in GLP-1RA and SGLT2i trials. The studies using SGLT2i failed to reduce carotid intima media thickness (cIMT), the surrogate marker for atherosclerosis; however, several studies using GLP-1RA successfully reduced cIMT in patients with type 2 diabetes. Compared with SGLT2i, GLP-1RA had a higher probability of decreasing serum triglyceride. GLP-1RA have multiple vascular biological anti-atherogenic properties.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|
4
|
Cytokines and HIF-1α as dysregulation factors of migration and differentiation of monocyte progenitor cells of endotheliocytes in the pathogenesis of ischemic cardiomyopathy. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. Angiogenic endothelial dysfunction and progenitor endothelial cells (EPCs) in ischemic cardiomyopathy (ICMP) have not been studied enough.The aim. To establish the nature of changes in the cytokine profile and HIF-1α in blood and bone marrow associated with impaired differentiation of monocytic progenitor cells of endotheliocytes (CD14+VEGFR2+) in the bone marrow and their migration into the blood in patients with coronary heart disease (CHD), suffering and not suffering from ICMP.Materials and methods. A single-stage, single-centre, observational case-control study was conducted involving 74 patients with CHD, suffering and not suffering from ICMP (30 and 44 people, respectively), and 25 healthy donors. In patients with CHD, bone marrow was obtained during coronary bypass surgery, peripheral blood – before surgery. Healthy donors were taken peripheral blood. The number of CD14+VEGFR2+ in bone marrow and blood was determined by flow cytometry; the concentration of IL-6, TNF-α, M-CSF, GM-CSF, MCP-1 and HIF-1α – by the method of enzyme immunoassay.Results. A high content of CD14+VEGFR2+ cells in the blood of patients with CHD without cardiomyopathy was established relative to patients with ICMP against the background of a comparable number of these cells in myeloid tissue. Regardless of the presence of ICMP in the blood, patients with CHD showed an excess of TNF-α, a normal concentration of IL-6, GM-CSF, HIF-1α and a deficiency of M-CSF, and in the bone marrow supernatant, the concentration of IL-6 and TNF-α exceeded that in the blood plasma (the level of GM-CSF – only in patients without cardiomyopathy). With ICMP, the normal concentration of MCP-1 was determined in the blood plasma, and with CHD without cardiomyopathy, its elevated content was determined.Conclusion. The formation of ICMP is accompanied by insufficient activation of EPCs migration with the CD14+VEGFR2+ phenotype in blood without disruption of their differentiation in the bone marrow, which associated with the absence of an increase in the concentration of MCP-1 in blood plasma and not associated with the plasma content of M-CSF, GM-CSF, HIF-1α, IL-6 and TNF-α.
Collapse
|
5
|
Xie D, Li Y, Xu M, Zhao X, Chen M. Effects of dulaglutide on endothelial progenitor cells and arterial elasticity in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2022; 21:200. [PMID: 36199064 PMCID: PMC9533545 DOI: 10.1186/s12933-022-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Randomised controlled trial showed that dulaglutide can reduce the risk of atherosclerotic cardiovascular disease (ASCVD) in patients with type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear. This study aimed to investigate the effect of dulaglutide on the number and function of endothelial progenitor cells (EPCs) in the peripheral blood of patients with T2DM and its role in improving arterial elasticity, so as to determine potential mechanisms of preventive effect of dulaglutide on ASCVD. Methods Sixty patients with T2DM were treated with 1000 mg/day of metformin and randomly divided into two groups for 12 weeks: metformin monotherapy group (MET group, n = 30), and metformin combined with dulaglutide group (MET-DUL group, n = 30). Before and after treatment, the number of CD34+CD133+KDR+ EPCs and the brachial–ankle pulse wave velocity (baPWV) of the participants were measured, and EPC proliferation, adhesion, migration, and tubule formation were assessed in vitro. Results There were no significant differences in the number and function of EPCs and baPWV changes in MET group (P > 0.05). In MET-DUL group, nitric oxide (NO) levels and the number of EPCs increased after treatment (P < 0.05), while the levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), advanced glycation end products (AGEs), and baPWV decreased (P < 0.05). EPC proliferation, adhesion, migration, and tubule formation abilities were significantly enhanced (P < 0.05). Correlation analysis showed that in MET-DUL group, the changes in CRP, IL-6, TNF-α, and AGEs were negatively correlated with the number of EPCs and their proliferation and migration abilities (P < 0.05). Body weight, NO, CRP, and IL-6 levels were independent factors affecting the number of EPCs (P < 0.05). The changes in number of EPCs, proliferation and migration abilities of EPCs, and NO and IL-6 levels were independent influencing factors of baPWV changes (P < 0.05). Conclusion Dulaglutide can increase the number and function of EPCs in peripheral blood and improve arterial elasticity in patients with T2DM; it is accompanied by weight loss, inflammation reduction, and high NO levels. Dulaglutide regulation of EPCs may be a mechanism of cardiovascular protection.
Collapse
Affiliation(s)
- Dandan Xie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Yutong Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Investigating the Molecular Mechanism of Quercetin Protecting against Podocyte Injury to Attenuate Diabetic Nephropathy through Network Pharmacology, MicroarrayData Analysis, and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7291434. [PMID: 35615688 PMCID: PMC9126727 DOI: 10.1155/2022/7291434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/03/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
Quercetin (QUE), a health supplement, can improve renal function in diabetic nephropathy (DN) rats by ameliorating podocyte injury. Its clinical trial for renal insufficiency in advanced diabetes (NCT02848131) is currently underway. This study aimed to investigate the mechanism of QUE protecting against podocyte injury to attenuate DN through network pharmacology, microarray data analysis, and molecular docking. QUE-associated targets, genes related to both DN, and podocyte injury were obtained from different comprehensive databases and were intersected and analyzed to obtain mapping targets. Candidate targets were identified by constructing network of protein-protein interaction (PPI) of mapping targets and ranked to obtain key targets. The major pathways were obtained from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) term enrichment analysis of candidate targets via ClueGO plug-in and R project software, respectively. Potential receptor-ligand interactions between QUE and key targets were evaluated via Autodocktools-1.5.6. 41. Candidate targets, of which three key targets (TNF, VEGFA, and AKT1), and the major AGE-RAGE signaling pathway in diabetic complications were ascertained and associated with QUE against podocyte injury in DN. Molecular docking models showed that QUE could closely bind to the key targets. This study revealed that QUE could protect against podocyte injury in DN through the following mechanisms: downregulating inflammatory cytokine of TNF, reducing VEGF-induced vascular permeability, inhibiting apoptosis by stimulating AKT1 phosphorylation, and suppressing the AGE-induced oxidative stress via the AGE-RAGE signaling pathway.
Collapse
|
7
|
Cavalcante S, Teixeira M, Duarte A, Ferreira M, Simões MI, Conceição M, Costa M, Ribeiro IP, Gonçalves AC, Oliveira J, Ribeiro F. Endothelial Progenitor Cell Response to Acute Multicomponent Exercise Sessions with Different Durations. BIOLOGY 2022; 11:biology11040572. [PMID: 35453771 PMCID: PMC9025950 DOI: 10.3390/biology11040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022]
Abstract
It is widely accepted that exercise training has beneficial effects on vascular health. Although a dose-dependent relation has been suggested, little is known about the effects of different exercise durations on endothelial markers. This study aimed to assess the effect of single exercise sessions with different durations in the circulating levels of endothelial progenitor cells (EPCs) and endothelial cells (CECs) among adults with cardiovascular risk factors. Ten participants performed two multicomponent exercise sessions, one week apart, lasting 30 and 45 min (main exercise phase). Before and after each exercise session, blood samples were collected to quantify EPCs and CECs by flow cytometry. The change in EPCs was significantly different between sessions by 3.0% (95% CI: 1.3 to 4.7), being increased by 1.8 ± 1.7% (p = 0.009) in the 30 min session vs. −1.2 ± 2.0% (p > 0.05) in the 45 min session. No significant change was observed in CECs [−2.0%, 95%CI: (−4.1 to 0.2)] between the sessions. In conclusion, a multicomponent exercise session of 30 min promotes an acute increase in the circulating levels of EPCs without increasing endothelial damage (measured by the levels of CECs) among adults with cardiovascular risk factors.
Collapse
Affiliation(s)
- Suiane Cavalcante
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal; (S.C.); (J.O.)
| | - Manuel Teixeira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana Duarte
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Miriam Ferreira
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Maria I. Simões
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Maria Conceição
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Mariana Costa
- Câmara Municipal de Oliveira do Bairro—Projeto Não Fique Parado, 3800-120 Aveiro, Portugal;
| | - Ilda P. Ribeiro
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal;
- Institute for Clinical and Biomedical Research (iCBR), Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Institute for Clinical and Biomedical Research (iCBR)—Group of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal;
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - José Oliveira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal; (S.C.); (J.O.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Fernando Ribeiro
- Institute of Biomedicine—iBiMED, School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
8
|
ox-LDL-Induced Endothelial Progenitor Cell Oxidative Stress via p38/Keap1/Nrf2 Pathway. Stem Cells Int 2022; 2022:5897194. [PMID: 35140793 PMCID: PMC8820940 DOI: 10.1155/2022/5897194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Background Nrf2 which was recently reported to regulate the antioxidant genes and cellular redox regulators was highly expressed in EPCs. However, its role in ox-LDL-induced EPC oxidative stress and apoptosis has not been fully illustrated. Methods EPCs isolated from human peripheral blood mononuclear cells were treated with different concentrations of ox-LDL, Keap1 siRNA, and a specific p38 MAPK inhibitor SB203580 and then used to assay the cytoplasmic Nrf2, nuclear Nrf2, NAD(P) H:quinone oxidoreductase 1 (NQO1) and Bax/Bcl-2 levels with Western blot, NQO1 mRNA levels with RT-PCR, ROS levels with H2DCF-DA, loss/disruption of mitochondrial membrane potential with JC-1, apoptosis with Annexin V and PI, migration with transwell chambers, and tube formation with Matrigel. Results ox-LDL decreased the nuclear Nrf2/Histone H3 to cytoplasmic Nrf2/GAPDH ratio, NQO1 mRNA, and protein levels. ox-LDL enhanced ROS production, induced the loss of membrane potential, and increased the cell shrinkage, pyknotic nuclei, and apoptosis of EPCs. Keap1 siRNA increased Nrf2 nuclear translocation, NQO1 mRNA transcription, and protein expression and prevented ROS generation and formation of JC-1 monomers. ox-LDL increased the activation of p38. SB203580 significantly eliminated ox-LDL induced inhibition of Nrf2 nuclear translocation, depression of NQO1 mRNA transcription, generation of ROS, and formation of JC-1 monomers in EPCs. Keap1 siRNA decreased the Bax/Bcl-2 ratio which was increased by ox-LDL in EPCs. ox-LDL decreased EPC migration and tube formation. Keap1 siRNA preserved the migration and tube formation of EPCs. Conclusion ox-LDL activated EPCs p38/Keap1/Nrf2 pathway and induced oxidative stress, dysfunction, and apoptosis of EPCs.
Collapse
|
9
|
Jayaraman S, Gnanasampanthapandian D, Rajasingh J, Palaniyandi K. Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:723236. [PMID: 34447796 PMCID: PMC8382889 DOI: 10.3389/fcvm.2021.723236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to myocardial abnormalities, cardiac ailments are considered to be the major cause of morbidity and mortality worldwide. According to a recent study, membranous vesicles that are produced naturally, termed as "exosomes", have emerged as the potential candidate in the field of cardiac regenerative medicine. A wide spectrum of stem cells has also been investigated in the treatment of cardiovascular diseases (CVD). Exosomes obtained from the stem cells are found to be cardioprotective and offer great hope in the treatment of CVD. The basic nature of exosomes is to deal with the intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps us to rely on them as the attractive pharmaceutical delivery agents. Most importantly, exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk of CVD, as they serve as notable biomarkers of the disease. Exosomes are small, less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as a therapeutic entity and would provide fruitful benefits if consequential research were focused on their upbringing and development as a useful diagnostic and therapeutic tool in the field of medicine.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research & Medicine-Cardiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
10
|
Geetha RG, Ramachandran S. Recent Advances in the Anti-Inflammatory Activity of Plant-Derived Alkaloid Rhynchophylline in Neurological and Cardiovascular Diseases. Pharmaceutics 2021; 13:pharmaceutics13081170. [PMID: 34452133 PMCID: PMC8400357 DOI: 10.3390/pharmaceutics13081170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Rhynchophylline (Rhy) is a plant-derived indole alkaloid isolated from Uncaria species. Both the plant and the alkaloid possess numerous protective properties such as anti-inflammatory, neuroprotective, anti-hypertensive, anti-rhythmic, and sedative effects. Several studies support the significance of the anti-inflammatory activity of the plant as an underlying mechanism for most of the pharmacological activities of the alkaloid. Rhy is effective in protecting both the central nervous system and cardiovascular system. Cerebro-cardiovascular disease primarily occurs due to changes in lifestyle habits. Many previous studies have highlighted the significance of Rhy in modulating calcium channels and potassium channels, thereby protecting the brain from neurodegenerative diseases and related effects. Rhy also has anticoagulation and anti-platelet aggregation activity. Although Rhy has displayed its role in protecting the cardiovascular system, very little is explored about its intervention in early atherosclerosis. Extensive studies are required to understand the cardioprotective effects of Rhye. This review summarized and discussed the various pharmacological effects of Rhy in neuro- and cardioprotection and in particular the relevance of Rhy in preventing early atherosclerosis using Rhy-loaded nanoparticles.
Collapse
|
11
|
Zhao H, He Y. The Inhibitory Effect of Lysophosphatidylcholine on Proangiogenesis of Human CD34 + Cells Derived Endothelial Progenitor Cells. Front Mol Biosci 2021; 8:682367. [PMID: 34179086 PMCID: PMC8223510 DOI: 10.3389/fmolb.2021.682367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence reveals that lysophosphatidylcholine (LPC) is closely related to endothelial dysfunction. The present study aimed to investigate the mechanism of LPC in inhibiting the proangiogenesis and vascular inflammation of human endothelial progenitor cells (EPCs) derived from CD34+ cells. The early EPCs were derived from CD34+ hematopoietic stem cells whose purity was identified using flow cytometry analysis. The surface markers (CD34, KDR, CD31; VE-cadherin, vWF, eNOS) of EPCs were examined by flow cytometry analysis and immunofluorescence. RT-qPCR was used to detect the mRNA expression of inflammatory cytokines (CCL2, IL-8, CCL4) and genes associated with angiogenesis (VEGF, ANG-1, ANG-2) in early EPCs after treatment of LPC (10 μg/ml) or phosphatidylcholine (PC, 10 μg/ml, control). The angiogenesis of human umbilical vein endothelial cells (HUVECs) incubated with the supernatants of early EPCs was detected by a tube formation assay. The mRNA and protein levels of key factors on the PKC pathway (phosphorylated PKC, TGF-β1) were measured by RT-qPCR and western blot. The localization of PKC-β1 in EPCs was determined by immunofluorescence staining. We found that LPC suppressed the expression of CCL2, CCL4, ANG-1, ANG-2, promoted IL-8 expression and had no significant effects on VEGF expression in EPCs. EPCs promoted the angiogenesis of HUVECs, which was significantly inhibited by LPC treatment. Moreover, LPC was demonstrated to promote the activation of the PKC signaling pathway in EPCs. In conclusion, LPC inhibits proangiogenesis of human endothelial progenitor cells derived from CD34+ hematopoietic stem cells.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Pain, The First Hospital of Jilin University, Changchun, China
| | - Yanhui He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhuo X, Bu H, Hu K, Si Z, Chen L, Chen Y, Yang L, Jiang Y, Xu Y, Zhao P, Ma X, Tao S, Zhu Q, Cui L, Sun H, Cui Y. Differences in the reaction of hyperlipidemia on different endothelial progenitor cells based on sex. Biomed Rep 2021; 15:64. [PMID: 34155448 PMCID: PMC8212447 DOI: 10.3892/br.2021.1440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
The sex of a patient can affect the outcomes of several cardiovascular diseases, and men generally tend to experience earlier episodes of cardiovascular diseases compared with women. The progression of atherosclerosis during hyperlipidemia can be induced by reactive oxygen species (ROS) and oxidized-low-density lipoprotein (ox-LDL). By contrast, bone marrow (BM)-derived endothelial progenitor cells (EPCs) have been reported to serve a protective role against atherosclerosis. The aim of the present was to compare the effects of sex under conditions of hyperlipidemia on different populations of EPCs, and to identify the potential underlying mechanisms. EPC numbers and ROS levels in the blood and BM were measured using fluorescence activated cell sorting in male and female LDL receptor knock-out C57BL/6 mice maintained on a high-fat diet for 6 months, and in male and female wild type C57BL/6 mice following ox-LDL injection for 3 days. Female hyperlipidemic mice exhibited lower levels of plasma lipids, atherosclerotic plaque formation, intracellular EPC ROS formation and inflammatory cytokine levels. Furthermore, BM CD34+/ fetal liver kinase-1 (Flk-1+), CD34+/CD133+ and stem cell antigen-1+/Flk-1+, as well as all circulating EPCs, were maintained at higher levels in female hyperlipidemic mice. In addition, similar changes with regards to BM CD34+/Flk-1+, CD34+/CD133+, c-Kit+/CD31+ and circulating CD34+/Flk1+ and CD34+/CD133+ EPCs were observed in female mice following ox-LDL treatment. These sustained higher levels of BM and circulating EPCs in female mice with hyperlipidemia may be associated with reduced levels of ox-LDL as a result of reduced intracellular ROS formation in EPCs and decreased inflammatory cytokine production.
Collapse
Affiliation(s)
- Xiaoqing Zhuo
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250118, P.R. China
| | - Haoran Bu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ke Hu
- Department of Emergency, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Zhihua Si
- Department of Neurology, Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Liming Chen
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yufan Jiang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yixin Xu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Peng Zhao
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Shufei Tao
- Ross University School of Medicine, Barbados 60515, Barbados
| | - Qingyi Zhu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lianqun Cui
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haihui Sun
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuqi Cui
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
13
|
Decreased Lymphangiogenic Activities and Genes Expression of Cord Blood Lymphatic Endothelial Progenitor Cells (VEGFR3 +/Pod +/CD11b + Cells) in Patient with Preeclampsia. Int J Mol Sci 2021; 22:ijms22084237. [PMID: 33921847 PMCID: PMC8073258 DOI: 10.3390/ijms22084237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The abnormal development or disruption of the lymphatic vasculature has been implicated in metabolic and hypertensive diseases. Recent evidence suggests that the offspring exposed to preeclampsia (PE) in utero are at higher risk of long-term health problems, such as cardiovascular and metabolic diseases in adulthood, owing to in utero fetal programming. We aimed to investigate lymphangiogenic activities in the lymphatic endothelial progenitor cells (LEPCs) of the offspring of PE. Human umbilical cord blood LEPCs from pregnant women with severe PE (n = 10) and gestationally matched normal pregnancies (n = 10) were purified with anti-vascular endothelial growth factor receptor 3 (VEGFR3)/podoplanin/CD11b microbeads using a magnetic cell sorter device. LEPCs from PE displayed significantly delayed differentiation and reduced formation of lymphatic endothelial cell (LEC) colonies compared with the LEPCs from normal pregnancies. LECs differentiated from PE-derived LEPCs exhibited decreased tube formation, migration, proliferation, adhesion, wound healing, and 3D-sprouting activities as well as increased lymphatic permeability through the disorganization of VE-cadherin junctions, compared with the normal pregnancy-derived LECs. In vivo, LEPCs from PE showed significantly reduced lymphatic vessel formation compared to the LEPCs of the normal pregnancy. Gene expression analysis revealed that compared to the normal pregnancy-derived LECs, the PE-derived LECs showed a significant decrease in the expression of pro-lymphangiogenic genes (GREM1, EPHB3, VEGFA, AMOT, THSD7A, ANGPTL4, SEMA5A, FGF2, and GBX2). Collectively, our findings demonstrate, for the first time, that LEPCs from PE have reduced lymphangiogenic activities in vitro and in vivo and show the decreased expression of pro-lymphangiogenic genes. This study opens a new avenue for investigation of the molecular mechanism of LEPC differentiation and lymphangiogenesis in the offspring of PE and subsequently may impact the treatment of long-term health problems such as cardiovascular and metabolic disorders of offspring with abnormal development of lymphatic vasculature.
Collapse
|
14
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
16
|
Lin L, Zhang L, Li XT, Ji JK, Chen XQ, Li YL, Li C. Rhynchophylline Attenuates Senescence of Endothelial Progenitor Cells by Enhancing Autophagy. Front Pharmacol 2020; 10:1617. [PMID: 32047439 PMCID: PMC6997466 DOI: 10.3389/fphar.2019.01617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/11/2019] [Indexed: 12/25/2022] Open
Abstract
The increase of blood pressure accelerates endothelial progenitor cells (EPCs) senescence, hence a significant reduction in the number of EPCs is common in patients with hypertension. Autophagy is a defense and stress regulation mechanism to assist cell homeostasis and organelle renewal. A growing number of studies have found that autophagy has a positive role in repairing vascular injury, but the potential mechanism between autophagy and senescence of EPCs induced by hypertension has rarely been studied. Therefore, in this study, we aim to explore the relationship between senescence and autophagy, and investigate the protective effect of rhynchophylline (Rhy) on EPCs. In angiotensin II (Ang II)-treated EPCs, enhancing autophagy through rapamycin mitigated Ang II-induced cell senescence, on the contrary, 3-methyladenine aggravated the senescence by weakening autophagy. Similarly, Rhy attenuated senescence and improved cellular function by rescuing the impaired autophagy in Ang II-treated EPCs. Furthermore, we found that Rhy promoted autophagy by activating AMP-activated protein kinase (AMPK) signaling pathway. Our results show that enhanced autophagy attenuates EPCs senescence and Rhy rescues autophagy impairment to protect EPCs against Ang II injury.
Collapse
Affiliation(s)
- Lin Lin
- Institute of Traditional Chinese Medicine Innovation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- The First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin-Tong Li
- Institute of Education and Psychological Sciences, University of Jinan, Jinan, China
| | - Jing-Kang Ji
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Qing Chen
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Institute of Traditional Chinese Medicine Innovation, Shandong University of Traditional Chinese Medicine, Jinan, China.,Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Sun HX, Li GJ, Du ZH, Bing Z, Ji ZX, Luo G, Pan SL. The relationship between endothelial progenitor cells and pulmonary arterial hypertension in children with congenital heart disease. BMC Pediatr 2019; 19:502. [PMID: 31847901 PMCID: PMC6918598 DOI: 10.1186/s12887-019-1884-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) caused by congenital heart disease (CHD) is very common in clinics. Some studies have shown that PAH is related to the number of endothelial progenitor cells (EPCs), but there is no report on the relationship between PAH and the number of EPCs in children with CHD. METHODS In this study, a total of 173 cases with CHD (from 0 to 6 years old) were collected. According to the mean pulmonary arterial pressure (mPAP) measured by right heart catheterization, these cases were divided into PAH groups (including high PAH group, mPAP> 25 mmHg, n = 32, and the middle PAH group, 20 mmHg ≤ mPAP≤25 mmHg, n = 30) and non-PAH group (mPAP< 20 mmHg, n = 111). Peripheral blood was taken for flow cytometry, and the number of EPCs (CD133+/KDR+ cells) was counted. The number of EPCs /μL of peripheral blood was calculated using the following formula: EPCs /μL = WBC /L × lymphocytes % × EPCs % × 10- 6. RESULTS The median EPCs of the non-PAH group, middle PAH group and high PAH group is 1.86/μL, 1.30 /μL and 0.98/μL, respectively. The mPAP decreases steadily as the level of EPCs increases (P < 0.05). After adjustment of gender, age and BMI, the number of EPCs was significantly associated with a decreased risk of high PAH (OR = 0.37, 95% CI: 0.16-0.87, P < 0.05). However, EPCs was not significantly associated with middle PAH (P > 0.05). CONCLUSION The findings revealed that the EPCs and high PAH in patients with CHD correlate significantly and EPCs may become an effective treatment for PAH in patients with CHD. EPCs may be a protective factor of high PAH for children with CHD.
Collapse
Affiliation(s)
- Hong-Xiao Sun
- Medical College, Qingdao University, Qingdao, 266071, Shandong, China
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Guo-Ju Li
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Zhan-Hui Du
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Zhen Bing
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Zhi-Xian Ji
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Gang Luo
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Si-Lin Pan
- Heart Center, Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China.
| |
Collapse
|
18
|
Lin F, Zeng Z, Song Y, Li L, Wu Z, Zhang X, Li Z, Ke X, Hu X. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res Ther 2019; 10:263. [PMID: 31443679 PMCID: PMC6708233 DOI: 10.1186/s13287-019-1377-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022] Open
Abstract
Background Myocardial fibrosis is a common pathophysiological change in cardiovascular disease, which can cause cardiac dysfunction and even sudden death. Excessively activated fibroblasts proliferate and secret excessive extracellular matrix (ECM) components, resulting in normal cardiac structural damage and cardiac fibrosis. We previously found that human endothelial progenitor cell (EPC)-derived exosomes, after hypoxia/reoxygenation (H/R) induction, could significantly increase the mesenchymal-endothelial transition (MEndoT) compared to normal culture EPC-derived exosomes. Exosomes have been shown to carry different nucleic acids, including microRNAs. However, the effects of microRNAs in EPC-derived exosomes on MEndoT and myocardial fibrosis remain unknown. Methods EPCs were isolated from human peripheral blood, and fibroblasts were isolated from rat hearts, then transfected with miR-133 inhibitor, si-YBX-1, and ov-YBX-1 into EPCs. After H/R induction for 48 h, isolation and characterization of exosomes derived from human EPCs were performed. Finally, fibroblasts were treated by exosome at 48 h. The expression of miR-133 was measured by qRT-PCR; YBX-1 expression was measured by qRT-PCR and western blot. Angiopoiesis was measured by tube formation assay. Endothelial markers and fibrosis markers were measured by western blot. Results H/R treatment promoted miR-133 expression in EPCs and EPC-derived exosomes. miR-133 could be incorporated into exosomes and transmitted to cardiac fibroblasts, increasing the angiogenesis and MEndoT of cardiac fibroblasts. miR-133 silencing in H/R-induced EPCs could inhibit miR-133 expression in EPCs and EPCs-derived exosomes. miR-133 silencing in H/R-induced EPCs could inhibit the angiogenesis and MEndoT of cardiac fibroblasts and reverse the effect of H/R treatment. Additionally, miR-133 was specially sorted into H/R-induced EPC-derived exosomes via YBX-1. YBX-1 silencing inhibited miR-133 transfer and reduced fibroblast angiogenesis and MEndoT. Conclusion miR-133 was specially sorted into H/R-induced EPC-derived exosomes via YBX-1 to increase fibroblast angiogenesis and MEndoT.
Collapse
Affiliation(s)
- Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Liang Li
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zijun Wu
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Xiaoduo Zhang
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Zhiwen Li
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, Guangdong, China. .,Shenzhen University School of Medicine & Shenzhen University Health Science Center, No. 12, Langshan Road, Nanshan District, Shenzhen, 518057, Guangdong, China.
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|